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Abstract

This paper deals with the solution of nonlinear systems of equations via asynchronous iterative algo-
rithms. New conditions underlying convergence of asynchronous relaxation algorithms are given. Con-
ditions of convergence of asynchronous versions of a generalization of Richardson’s method for linear
systems of equations are also presented. Application to nonlinear network flow problems is considered
and computational experiences using a distributed memory multiprocessor are presented.

1. INTRODUCTION

In this paper we concentrate on the solution of nonlinear systems of equations via asynchronous
iterative methods whereby iterations are carried out in parallel by several processors in arbitrary order
and without any synchronization (see in particular [1] and [2]). The restrictions imposed on asynchronous
iterative algorithms are very weak: no component of the iterate vector is abandoned forever and more and
more recent values of the components of the iterate vector have to be used as the computation progresses.

In [3], we have considered nonlinear systems of equations, F'(z) = z, and we have given a conver-
gence result for point asynchronous relaxation when F' is continuous, off-diagonally antitone, and strictly
diagonally isotone. In this paper we present weaker conditions underlying convergence of asynchronous
relaxation (AR). We propose also and prove convergence of asynchronous versions of a generalization of
Richardson’s method for linear systems of equations (AGR). These results apply to the discretization of
certain boundary value problems and economic problems (see [4]), they generalize convergence results
for network flows (see [5] and [6]). Finally, we present computational experiences for network flows using
a distributed memory multiprocessor. The reader is also referred to [7-8] for convergence results under
partial ordering for block asynchronous relaxation.

2. PARALLEL ASYNCHRONOUS RELAXATION ALGORITHMS
Consider the nonlinear systems of equations :

Fl(l'l,...,l'n) zZ1
F(z) = =1 .1, (1)
Fo(x1,...,xy) Zn

where z1, ..., 2, denote the components of vector z element of the n-dimensional real linear space R™.
We define the natural partial ordering on R™ by: for z,y € R, x <y if and only if z; < y;, i =1,...,n.
We operate under the following weak assumptions.

Assumption 2.1. F: D C R™ — R" is continuous, off-diagonally antitone, and diagonally isotone, i.e.
for any x € R", the functions ¢;; : {t € R'/x +t.e/ € D} — RY,¢;;(t) = Fy(x +t.e?),j #4,4,5=1,...,m,
and ¢;; : {t € R /v + t.e' € D} — RY, ¢yi(t) = Fy(z + t.e'),i = 1,...,n, where e’,i = 1,...,n, are the unit
basis vectors with ¢-th component one and all others zero, are antitone and isotone, respectively.



For study of off-diagonally antitone and diagonally isotone mappings, reference is made to [4, Section
13.5] and [9, Section 2].

Assumption 2.2. For some z € R™ there exist points 2°,4° € D such that

2 <y, D' ={x e R"/a" <2 <y°} C D, F(2°) <z < F(y°). (2)

We consider the point-to-set mapping G, defined on D' € R", with components G;, i = 1,...,n, given by
D Gi(x) =& /Fi(xy, ooy &y oy ) = 25,20 <3y <yf}

Proposition 2.1. Let Assumptions 2.1 and 2.2 hold. For all i € {1,...,n} and =z € D', G;(x) is a
nonempty and compact interval and the point-to-point mappings G and G, with components: G;(z) =
ming, e, (z) &i,i = 1,...,n, and Gi(z) = max;,cq,(x) Li,¢ = 1,...,n, respectively, are well defined and
isotone on D’. Moreover, we have:

2? <G(2%) <G <% 2% <G(2°) < G(y°) <y°. (3)

Proof: see the Appendix.

We call G and G, the minimal and the maximal relaxation mapping, respectively. An asynchronous
iterative algorithm relative to the mapping G (G), the starting point 2°, the sequence of delays {k? =
(K7, ...,kP)}, and the sequence {h?} of nonempty subsets of {1,...,n} is a sequence of points {2”} defined
recursively by:

xf‘H = G-(xfl(p), ...,xﬁ"'(p)), (xf"H = @(xfl(”, ...,xfl"(p))),‘v’i € hp,xf'H =2l Vi g h?, (4)

—1

where for all i € {1,...,n} : ¢ occurs infinitely often in the sequence {h”}, and for all j € {1,...,n} : the
function d;(p) is isotone, lim, o d;(p) = +00, and 0 < d;(p) =p — kf <p,p=0,1,..
The following proposition is the main result of this section.

Proposition 2.2. Let Assumptions 2.1 and 2.2 hold and assume that the mapping G (G) is continuous on
D'. The asynchronous relaxation algorithms {2} and {y?} defined by (4), relative to the same sequences
{h*}, {kP}, and starting from 2° and 3°, respectively, are uniquely defined and satisfy:

¥ <P <P <yt <P <<y p =0, (5)
lim 2P = 2" <y* = lim y”, (6)
P—00 P—00
G(x") =a"Gy") =y, (G(z") =", G(y*) = y"), F(z*) = 2, F(y") = =. (7)

Proof: The proof is given in the Appendix.



3. PARALLEL ASYNCHRONOUS GENERALIZED RICHARDSON’S METHOD

We turn now to a different approach to constructing iterative processes which converge monotonically
to a solution of nonlinear systems of equations:

Fl(l'l,...,l'n) 0
F(z) = =1..]. (8)
F,(x1,...,x,) 0

Assumption 3.1. F: D C R™ — R" is Lipschitz continuous on D, i.e. there exists a constant « such
that

1F(z) = F(yll, < o [lz = ylly, Yo,y € D, (9)

where ||.||, denotes the Euclidean norm on R™.

Proposition 3.1. Let Assumptions 2.1, 2.2 (with z = 0), and 3.1 hold. The mapping H : D C R® — R",
defined by H(z) = z — L.F(x), is continuous and isotone on D. Moreover: z° < H(z°) < H(y°) < y°.
Proof: The proof is detailed in the Appendix.

We consider now asynchronous algorithms relative to the mapping H. These algorithms can be viewed
as asynchronous versions of a generalization of Richardson’s method for linear systems of equations (see
[1] and [10]).

Proposition 3.2. Let Assumptions 2.1, 2.2 (with z = 0), and 3.1 hold. The asynchronous algorithms
{2P} and {yP} relative to the mapping H, the same sequences {h?}, {k?}, and starting from 2° and y°,
respectively, are uniquely defined and satisfy:

2? < L<aP <aPtt <Pt <P <<y p=0,1, (10)
lim 2 =z" <y* = lim y?, (11)

p—00 p—r00
H(z") =z", H(y") =y", F(z") = F(y") = 0. (12)

Proof: The proof is analogous with the proof of Proposition 2.2 and is omitted.

4. APPLICATION TO NETWORK FLOWS

Let G = (N, A) be a directed graph. N and A are referred to as the set of nodes and the set of arcs,
respectively. Let ¢;j : R — (—00,+00] be the convex cost function associated with each arc (,j) € A,
ci; is a function of the flow of the arc (¢,7), denoted by f;;. Let b; the supply or demand at node i. The
problem is to minimize total cost subject to a conservation of flow constraint at each node:

min Y cij(fij), (13)

(i,j)eA

subject t0 - ; e fis = 2 (m.iyea fmi = bi, Vi € N.

We assume that problem (13) has a feasible solution. We also make the following assumptions: c¢;;
is strictly convex, and lower semicontinuous, the conjugate convex function of c;;, defined by: ; (tij) =
supy, {ti;-fij — cij(fij)}, is real valued.

A dual problem for (13) is given by:

i 14
min a(p), (14)

subject to no constraints on the vector p = {p;/i € N}, where ¢ is the dual functional given by: ¢(p) =
Z(i,j)eA ci;(pi — pj) — Xsen bi-pi. We refer to p as a price vector and its components as prices. Price
p; is the Lagrange multiplier associated with conservation of flow constraint at node i. Existence of an
optimal solution of the dual problem can be guaranteed under the following additional regular feasibility



assumption (see [11, p. 360 and p. 329]): there exists a feasible flow vector, f = {fi;/(¢,7) € A}, such
that c;;_(fi;) < +oo and c;, (fij) > —oo, for all (i, ) € A, where ¢;;_ and c;, denote the left and right
derivatives of c;;, respectively.

The following nonlinear system of equations is derived from the convex, unconstrained, and differen-
tiable dual problem.

9q . . .
oD = Z gij(pi_pj)_ Z gmz(pm_pl) _bi:()a?’: 17"'7”7 (15)
Pilp (i,j)€A (myi)€A

«
ij
of components g—p‘{ is off-diagonally antitone and diagonally isotone, moreover it is continuous. For many

where g;; denotes the gradient of c;;- We note that g;; is isotone, since ¢j; is convex. Thus the mapping

practical problems, it is easy to find a subsolution z° and a supersolution 3° satisfying (2) and to show
that the mapping H defined in Section 3 is isotone and continuous (see for example [6]). For network flow
problems, the generalization of Richardson’s method is in fact a gradient method which will be denoted
by G.

We present now computational experiences carried out on a transputer based, distributed memory
multiprocessor, T-node 16-32. We have implemented synchronous and asynchronous relaxation and gra-
dient methods on 2, 4, 8, and 16 processors, they are denoted by SRx, ARx, SGx, and AGx, respectively,
where x is the number of processors. We have considered grid network flow problems. For each problem
there is only one nonzero traffic imput, say b; = 1 and the arc costs are: c;;(fi;) = ( # +0.5). 5, if
fi; >0, and ¢;;(fi;) = 400, if fi; < 0. For the gradient methods we have chosen a stepsize o = 2. We have
chosen the same starting point forathe different problems and methods: the subsolution p; = 0,Vi € N.

q

Computations are stopped when g < 0.1 where d is the destination node. A detailed description of a

preliminary implementation on a multitransputer system can be found in [12].

Table 1 gives the solution times, in seconds, for R and G on one processor in function of the number
of dual variables (i.e. the number of nodes in the network). Table 1 points out that for medium scale
problems, G is faster than R. The nonlinear dual functional cannot be minimized analytically with
respect to each price. Parallel relaxation algorithms lead to indeterministic load unbalancing, since line
search is made by an iterative procedure. Table 2 shows that asynchronous implementation can speedup
efficiently a relaxation method. Table 2 points out that synchronous relaxation methods are slower than
asynchronous relaxation methods. There is generally deterministic load balancing in the particular case of
parallel gradient algorithms since we compute essentially a gradient at each updating and try to balance
the computational load. Table 3 points out that synchronous and asynchronous implementations speed
up very efficiently the gradient method. We note that AG methods are faster than SG methods. We note
also that AG algorithms are faster than AR algorithms.

Table 1
Times of R, G
R G

48 99.60 74.37
72 279.10  235.85
96 588.60  527.73
120 1054.00 968.60
144 1696.00 1562.30

Table 2
Speedups of SR2, AR2, SR4, AR4, SR8, ARS8, SR16, and AR16



SR2 AR2 SR4 AR4 SR8 ARS8 SR16 ARI6
48 147 165 253 292 389 4.86 - -
72 146 167 257 3.04 444 538 - -
96 145 1.67 254 3.09 4.61 568 7.50 9.40
120 144 166 251 3.10 4.57 567 7.26 9.55
144 144 164 249 3.09 457 585 821 10.30

Table 3
Speedups of SG2, AG2, SG4, AG4, SG8, AG8, SG16, and AG16
SG2 AG2 SG4 AG4 SG8 AG8 SGI16 AGI16
48 1.83 1.84 335 347 6.49 6.50 - -
72 1.84 1.87 339 354 6.37 6.73 - -
96 1.84 188 337 3.55 6.22 6.81 11.78 12.78
120 1.83 188 3.32 354 6.09 6.78 9.87 12.50
144 183 187 3.22 353 589 6.79 11.02 12.90

5. CONCLUSIONS

In this paper we have considered the solution of nonlinear systems of equations and we have given new
conditions underlying convergence of asynchronous relaxation algorithms and asynchronous versions of a
generalization of Richardson’s method for linear systems of equations. We note that the conditions un-
derlying convergence of AGR are more restrictive than the conditions given for AR. The class of problems
considered in this paper is broad. Off-diagonally antitone and diagonally isotone mappings occur in the
discretization of certain boundary value problems, in economic problems, and in the study of nonlinear
network flows. Computational experiences for network flow problems using a distributed memory multi-
processor have mainly shown that asynchronous methods are faster than synchronous methods. Moreover
AGR is faster than AR when there is no special structure that makes price relaxation particularly easy.

6. APPENDIX

6.1. Proof of Proposition 2.1

Suppose that for € D" and i € {1,...,n}, F;(z) < z;. From the off-diagonal antitonicity of F' and (2)
it follows that

Fi(@) < 2 < Fi(y®) < Fi(@1, 030, o ). (16)

By the continuity and diagonal isotonicity of F, (16) implies that G;(x) is nonempty and compact. If
z; < Fi(z), the proof is very similar. Hence, for all € D', and i € {1,...,n}, G;(x) is nonempty and
compact.

Consider now x,y € D', such that < y. By the definition of G we have:

Fi(z1,....G(x),...ozn) = Fi(y1, -, G;(¥)sooiyyn) = zi,t =1, .., n. (17)

Moreover we have: F;(y1,...,G;(y), .., yn) < Fi(z1,...,G;(Y), -, Tpn),5 = 1, ...,n, since F is off-diagonally
antitone. Suppose in particular that for ¢ € {1,...,n}:

Fi(ylv "'7Qi(y)7 7yn) < Fi(xlv "'7Qi(y)7 7xn) (18)

By the diagonal isotonicity of F, (17) and (18) imply: G,(x) < G,(y). Suppose now that for i € {1,...,n}

I

Fi(y1y .-y G;(Y)y ooy Yn) = Fi(z1, ...y G (Y),y vy ). (19)



By the definition of G, (17) and (19) imply G;(z) < G,(y). Thus G is isotone on D’. The proof of
isotonicity of G is very similar.

Consider now 2°, by the definition of G, we have

Fi(a9,...,G;(2°),...,20) = z;,i = 1,....,n. (20)

rn

Moreover we have F'(z°) < z. Suppose that for i € {1,...,n} :

Fi(l’o) < z;. (21)
By the diagonal isotonicity of F, (20) and (21) imply 29 < G,(z°). Suppose now that for i € {1,...,n} :

Fi(l’o) = Zj. (22)

By the definition of G, (20) and (22) imply G,(2°) = z?. Hence, 2° < G(z°). We can show analogously
that: G(y°) < y°. Moreover by the isotonicity of G, (2) 1mphes G(2%) < G(y°). We can show analogously
that: 2° < G(2°) < G(y°) < 4°. Q.E.D.

6.2. Proof of proposition 2.2
It follows from (3) and (4) that z° < #! < y' < y°. Suppose now that there exists p > 1 such that:

<L <Pl <P <y <yPl <<yl (23)

If i ¢ hP, then from (4) and (23) it follows that

a? = Pt <Pt =yl (24)
Consider now the following sets S? = {m/i € "™, 0<m <p},i=1,...,n,p=0,1, ...
If i € h? and S? is empty, then from (4) it follows that

xi’ = x’L ? yz = yz (25)

For all j € {1,...,n},d;(p) > 0,p=0,1,... By the isotonicity of G, (4), (23), (3) and (25) imply

= G2 P) 2 G (°) 2 af = o, (26)
= Gy ) < G0 <P =y (27)
For all j € {1,...,n},d;(p) < p,p=0,1,... Hence, by the isotonicity of G, (23), (26), and (27) imply
<2l =G e, e ) <Gyl ) =y <y (28)
Suppose now that i € h” and S} is nonempty, consider M = max,,csr m, from (4) we have:
xf = m+17 yz - yz (29)
By the isotonicity of G and d;(p),j =1,...,n, (4), (23), and (29) imply
=G 2 P) 2 G i ) = a7 =l (30)
y = Gy Py ) < G Ty ) = T = (31)

By the isotonicity of G, (23), (30) and (31) imply

2 <Pt = G PP et ) < Gy )Ly @)y = gt < yp, (32)



It follows from (24), (28) and (32) that 27 < 2P*! < yP*! < yP. Hence, the monotone sequences {z?}
and {y?} have limits z* and y*, with 2* < y*. Since for all i € {1,...,n}, i occurs infinitely often in the
sequence {h?}, there exist infinite sequences {p?} = {p/i € h?},i =1, ...,n. It follows from (4) that

. di(p}) dn(p})y 1 e
qlggogi(x; PO antty = qlggoxf =gaii=1,..,n, (33)
. di(p}) dn(p})y 1 1
qll{glogi(yll ! ) Yn ! ) - qll{goyf =Yt = 17"'7”' (34)
Since for all j € {1,...,n}, limy_,o d;(p) = +00, we have
. di(pf) _ x4 di(pf) _ s« . .
qliraloxj _xj’qlggoyj =y;,j=1.,ni=1,..,n (35)
By the continuity of G, (35) implies
lim Qi(xfl(p?)7 .“7xin(p?)) = Ql(x*)7z = 17 ey Ty (36)
q—00
. d1 (p? dn (p" o
lim Qi(yll(pz)7 ey Un (p")) =G;(y"),i=1,..,n. (37)
q—00

It follows from (33), (34), (36), and (37) that 2* = G(2*),y* = G(y*). The proof of convergence for the

fixed point mapping G is analogous with the one just given. Q.E.D.

6.3. Proof of Proposition 3.1

Since F' is continuous on D, H is clearly continuous on D. From (9) it follows that for all i € {1, ...,n},
and for all x,2" € D, such that »; < ; and 2y = x; for j # i, we have

Fi(z) - Fi(@") < [|[F(z) = F@), < a.lle = 2'[ly = a.(z; — 7). (38)
By the off-diagonal antitonicity of F, for all i € {1,...,n}, and for all 2’,2" € D such that " < 2’ and
x) =}, we have
Fi(2") < Fi(2"). (39)
It follows from (38) and (39) that for all ¢ € {1,...,n} and for all z,z’,2" € D, such that z" < a',z =
z; < z; and oy = x; for j # i, we have Fi(z) — F;(z") < Fi(z) - Fi(2") < a.(z; —2}) < a.(z; —z}). Hence,
H is isotone on D and (2) with z = 0, implies 2° < H(2°) = 2° - L. F(2°) < H(y°) =y — L. F(3°) <¢°.
Q.E.D.
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