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LAAS-CNRS

Toulouse, France
{thomas.lemaire, simon.lacroix, joan.sola}@laas.fr

Abstract— This article presents a bearing only 3D SLAM
algorithm which has the same complexity and optimality as
the usual extended kalman filter used in classical SLAM. We
especially focus on the landmark initialization process, which
relies on visual point features tracked in the sequence of
acquired images: a probabilistic approach to estimate their
parameters is presented. This induces a particular structure
of the filter architecture, in which are memorized a set of past
robot poses. Simulations are made to compare the influence of
some parameters required by our approach, and results with an
indoor robot and an airship are presented.

Index Terms— SLAM 3D, bearing only SLAM, sum of gaus-
sians, vision

I. INTRODUCTION

The Simultaneous Localization And Mapping (SLAM)
problem is one of the fundamental problem of robotics. It
fuses proprioceptive data (odometry IMU. . . ) with perception
data (laser range finders, cameras,. . . ) to incrementally build
a consistant map of the environment, using landmarks or raw
data. This kind of information is required for a variety of
functionalities to endow a robot with autonomy.

Using a video camera to tackle a SLAM problem has many
assets over the commonly used laser range finder:
• It is a sensor from which 3D information can be

extracted. Even for indoor robots which pose can be
represented in 2D [x, y, θ], the ability to gather 3D
information on the environment is essential.

• Cameras are more and more used in robotics: they are
well adapted for embedded systems, they are cheap, quite
light, and power-saving,

• Many algorithms are available from the vision commu-
nity, that can be used to extract high level primitives from
an image, and match them with primitives memorized in
the map – thus allowing reliable data associations, which
is one of the essential problem to solve in SLAM.

On the other hand, depth information cannot be retrieved
using a single image. Classic EKF SLAM algorithms can
therefore not be directly applied in this case, as the addition
of a feature to the stochastic map requires a full gaussian
estimation of its state. As a consequence, a special landmark
initialization process must be used, which combines at least
two observations of the same feature from sufficiently sepa-
rated robot poses.

The scale of the observed world cannot be retrieved with
only vision. An arbitrary scale can be selected letting the first
observed feature lay at, for exemple, one meter. But in many

cases scale is necessary. In [1] a known pattern is introduced
in the environemt (a white A4 sheet) which delivers this
information. In robotic this metric information is available
through odometry or inertial sensors.

Also, many authors use the Mahalanobis distance and the
χ2 test to match observed features with landmarks in the map:
this is not appropriate in the bearing-only case, because a
single observation can be matched with all the landmarks that
are near the corresponding line in the map. But this difficulty
is nicely dealt with thanks to vision-based data association.

In this article, we propose a bearing-only SLAM algorithm
based on the EKF. A description of the feature initialization
process is given in section III. To assess the influence of the
parameters that drive the process, simulations are presented in
section IV: they show that standard values for the parameters
can easily be found. Section V presents some results obtained
with data gathered by two kinds of robots. Various issues
that must be addressed so that the approach can be applied
in any context without modification or parameter tuning are
also discussed.

II. RELATED WORK

The bearing-only SLAM problem is an instance of the more
general partially observable SLAM, in which the sensor does
not give enough information to compute the full state of a
landmark from a single observation. Using sonar sensors for
example, raises the problem of range-only SLAM. A solution
to this problem has been proposed in [2]: since a single
observation is not enough to estimate a feature, multiple
observations are combined from multiple poses.

Several contributions propose different solutions for de-
layed initial state estimation in bearing-only SLAM. In [3],
an estimation is computed using observations from two robot
poses, and is determined to be gaussian using the Kullback
distance. The complexity of the sampling method proposed
to evaluate this distance is quite high. A method based on
a particle filter to represent the initial depth of a feature is
proposed in [1], [4]. However its application in large environ-
ments is not straightforward, as the number of particles would
not scale nicely. In [5], a combination of a Bundle Adjustment
for feature initialization and a kalman filter is proposed. The
complexity of the initialization step is greater than a kalman
filter but theoretically gives more optimal results. All these
works propose a delayed initialization of a feature in the map,
with either a solution less optimal than the kalman filter, or
at the price of a higher complexity.



To our knowledge, only the work presented in [6] pro-
poses an undelayed feature initialization. The initial state is
approximated with a sum of gaussians and is explicitly added
to the state of the kalman filter. The sum of gaussians is not
described and the convergence of the filter when updating a
multi gaussian feature is not proved. This algorithm has been
recently extended in [7] using Gaussian Sum Filter. In parallel
to the work presented in our article, an undelayed algorithm
based on federated kalman filtering is also proposed in [8].

Bearing only SLAM using vision is also very similar
to the well known structure from motion (SFM) problem.
The main difference is that robotic applications require an
incremental and computationally tractable solution whereas
SFM algorithm can run in a time consuming batch process.
Links between non linear optimization algorithms and stan-
dard kalman filter for SLAM and bearing-only SLAM are
studied in [9].

Note that other contributions use vision sensors to feed a
SLAM algorithm. In [10], rectangular patches are used as
landmarks, the distance from the camera to the landmarks
being computed knowing the real size of the patches. In
[11], landmarks are interest points, whose depth is computed
thanks to a stereovision bench. Although based on vision,
these approaches are however not related to a bearing-only
SLAM problem.

III. BEARING-ONLY SLAM ALGORITHM

The algorithm presented here is in the delayed category.
Figure 1 depicts our overall approach. When a new feature is
observed, a full gaussian estimate of its state cannot be com-
puted from the measure, since the bearing-only observation
function cannot be inverted. We initialize the representation
of this feature with a sum of Gaussians (section III-B). Then,
a process updates this initial state representation, until the
feature can be declared as a landmark whose full state is
estimated (section III-C). Once estimated, the landmark is
introduced in the stochastic map, which is managed by the
usual EKF (the properties of this well known approach to
SLAM are presented in [12]).

The main characteristics of our approach are the following:
• the initial probability density of a feature is approxi-

mated with a particular weighted sum of gaussians,
• this initial state is expressed in the robot frame, and not

in the global map frame, so that it is decorrelated from
the stochastic map, until it is declared as a landmark and
added to the map,

• many features can enter the initial estimation process at
a low computational cost, and the delay can be used to
select the best features,

In order to add the landmark to the map, and to compute
its state in the map frame along with the correlations in
a consistant way, the pose where the robot was when the
feature was first seen has to be estimated in the filter. Since
then, all observations of the feature can also be memorized,
and corresponding robot poses estimated, so that all available
information is added to the filter at initialization.

Fig. 1. Our approach to the bearing-only SLAM problem

Fig. 2. Left: gaussian sum approximating the initial distribution over depth.
Right: different initial distributions

A. Structure of the kalman filter

The state of the EKF is composed of the landmarks
estimates, the current robot pose, and as previously pointed
out, some past poses of the robot. For simplicity, let’s consider
that the k last poses of the robot are kept in the filter state. In
our implementation, the orientation of the robot is represented
using Euler parameters, so each pose is a 6 dimensions vector.
The kalman state is:
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In the associated covariance matrix P , PXi

refers to covari-
ances of substate Xi and PXi,Xj

refers to cross covariance
of substates Xi and Xj .

The update steps of the filter are not detailed here, as
they correspond to the usual kalman update equations. In
our case the prediction step must be conducted with special
care since a whole part of the trajectory is estimated. All the
poses but the current one are static states, so only the current



pose is affected by prediction. Before applying the prediction
equations, all the past poses are re-numbered, so that the robot
trajectory looks like: Xr =

[
X0

r , X2
r , · · · , Xk

r , Xk+1
r

]
. The

oldest robot pose Xk+1
r is forgotten because we don’t want

the size of the filter to increase. Xk+1
r is used to back up

the current robot pose and becomes X1
r (this is implemented

using a ring buffer mechanism):

X1
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B. Feature initialization

From now we consider 3D point features represented by
their cartesian coordinates Xf = (x, y, z) and the associated
bearing-only observation function z = h(Xf ):(

θ
φ

)
=
(

arctan(y/x)
− arctan(z/

√
x2 + y2)

)
Actually z = (θ, φ) represents the direction of a pixel (u, v)

which corresponds to a corner point (see section V).
In our notation, the observation model h(), as well as the

inverse observation model g() do not include frame compo-
sition with the robot pose, instead these transformations are
formalized in to() and from() functions: to(f, v) computes
vector v in frame f , and from(f, v) computes vector v in
frame f−1. This eases the following developments, and is
general with respect to the underlying representation of a 3D
pose (using Euler angle, quaternion,. . . ). This also makes the
implementation more modular, and observation models easier
to implement.

In the sensor polar coordinate system (ρ, θ, φ), the density
probability of the feature state is already jointly gaussian on
(θ, φ), since the measure (interest point location estimate) is
considered gaussian. The measure itself does not give any
information about the depth, but we generally have a priori
knowledge. For indoor robots, the maximal depth can for
instance be bounded to several meters. For outdoor robots
the maximal range is theoretically infinity, but in general only
the surrounding environment may be of interest for the robot.
This gives us for ρ an a priori uniform distribution in the
range [ρmin, ρmax].

Gaussian PDFs offer nice properties, so we choose to
approximate this a priori knowledge on the depth with a sum
of gaussians:

p(θ, φ, s) = Γ(θ, σθ).Γ(φ, σφ).p(ρ)

= Γ(θ, σθ).Γ(φ, σφ).
∑

i

wiΓi(ρi, σρi )

Considering the invariant scale of the PDF, the following
geometric series for

∑
i wiΓi(ρi, σρi) is proposed:

ρ0 = ρmin/(1− α)
ρi = βi.ρ0 σρi = α.ρi wi ∝ ρi

ρn−2 < ρmax/(1− α) ρn−1 ≥ ρmax/(1− α)

Figure 2 shows a plot of this distribution for typical values
of α and β. We use a constant ratio α between the mean and
the variance (the same ratio can also be found in [1]). The

rate β of geometric series defines the density of gaussians to
fill in the depth range. α and β are choosen so as to meet the
following contraints:
• nearly constant distribution in the range [ρmin, ρmax],
• the covariance of each gaussian must be compatible

with non-linearities of the observation function around
the mean of this gaussian, so that it will eventually be
acceptable to update it in the EKF,

• the number of gaussians should be kept as low as
possible for computational efficiency purposes.

Each gaussian {µp
i = (ρi, θ, φ),Σp

i = (σ2
ρi

, σ2
θ , σ2

φ)} is then
converted to {µc

i , σ
c
i )} in Cartesian coordinates in the current

robot frame, which is the reference frame for this feature X
tf
r

(figure 3):

µc
i = g(z) =

 ρi cos φ cos θ
ρi cos φ sin θ
−ρi sinφ

 Σc
i = GΣp

i G
T

where G = ∂g/∂z|(ρi,θ,φ). Since we do not project this
distribution in the map frame, the distribution is for now kept
uncorrelated with the current map. As a consequence the sum
of gaussians is not added to the state of the kalman filter and
initialization is done at a low computational cost.

C. Initial state update

The rest of the initialization step consists in choosing
the gaussian which best approximates the feature pose - the
feature being thrown away if no consistent gaussian is found.
This process is illustrated in figure 3.

Subsequent observations are used to compute the likelihood
of each gaussian i given observation zt at time t. The
likelihood of Γi to be an estimation of the observed feature
is:

Lt
i =

1√
2π|Si|

exp
(
−1

2
(zt − ẑi)T S−1

i (zt − ẑi)
)

where Si is the covariance of the innovation zt− ẑi. And the
normalized likelihood for the hypothesis i is the product of
likelihoods obtained for Γi:

Λi =
∏

t Lt
i∑

j

∏
t Lt

j

The prediction of the observation ẑi must be done consid-
ering each gaussian in the robot frame. For clarity, let H()
be the full observation function. We have:

ẑi = h(to(X0
r , from(Xtf

r , µc
i )))

= H(X0
r , X

tf
r , µc

i )
Si = H1PX0

r
HT

1 + H2PX
tf
r

HT
2
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r ,X
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r
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T
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r ,X
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r
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1

+H3Σc
iH

T
3

where H1 = ∂H/∂X0
r

∣∣
X̂0

r ,X̂
tf
r ,µc

i

H2 = ∂H/∂X
tf
r

∣∣∣
X̂0

r ,X̂
tf
r ,µc

i

and H3 = ∂H/∂µc
i |

X̂0
r ,X̂

tf
r ,µc

i



Fig. 3. From an observed feature in the images to a landmark in the map. From left to right: the sum of gaussians is initialized in the robot frame; some
gaussians are pruned based on their likelihood after additional observations of the feature; when a single hypothesis remains, the feature is declared as a
landmark and it is projected into the map frame; and finally past observations are used to update the landmark estimate.

Then we can select the bad hypotheses and prune the asso-
ciated Gaussian. Bad hypotheses are those whose likelihood
Λi is low. In [6], the statistically well-founded sequential ratio
test is used to prune bad hypotheses. This test does not seem
appropriate in our case since it considers pairwise hypotheses
comparisons: with 10 Gaussians, it would lead to 2×45 tests.
When observing the evolution of the likelihoods Λi computed
with simulated or with real data, we see that the likelihood
of an hypothesis which is getting unlikely dramatically drops.
The likelihood of n equally likely hypotheses is 1/n: we take
1/n as a reference value, and simply prune an hypothesis if
its likelihood is under a certain threshold τ/n. The value of
τ is discussed in section IV.

When only a single gaussian remains, the feature is a
candidate for addition to the map. We check that this gaussian
is consistent with the last measure using the χ2 test. Such a
convergence is plotted step by step in figure 4. If the test
does not pass, it means that our a priori distribution did not
include the feature, in other words that the feature is not in
the range [ρmin, ρmax]: in this case the feature is rejected.

D. Landmark initialization

When a Gaussian Γi(µc
i ,Σ

c
i ) is chosen, the corresponding

feature j is declared as a landmark, and is added to the
stochastic map:

X+ =
(

X−

Xj
f

)
P+ =

(
P− PX−,Xj

f

PXj
f
,X− PXj

f

)

Xj
f = from(X̂

tj
f

r , µc
i )

PXj
f

= F1P
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j
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T
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−

where F1 = ∂from/∂f |
X̂

t
j
f

r ,µc
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X̂

t
j
f

r ,µc
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Remember that for all steps since the feature was first seen,
we kept the feature observations, and the corresponding poses
of the robot have been estimated by the filter. Up to now the

observations were used only to compute the likelihood of the
hypotheses, but we can now use this information to update
the filter state. Our algorithm tries to be as optimal as possible
in the sense that all available information in the initial step
is added to the stochastic map just after the feature is added
as a landmark. and a robot pose, the whole correlated map is
updated.

IV. EVALUATIONS

We made some simulations to study the influence of the
different parameters of the algorithm: (α, β) which define the
initial PDF, and τ which defines the threshold used to prune
the hypotheses. In order to evaluate how much information we
loose with our bearing-only SLAM algorithm, we compared
it in simulation to a standard fully observable SLAM. We
simulated a sensor which senses sizeless points with a field
of view of 90 degrees and noise standard-deviation of 0.2
degree, which is realistic for camera. For the fully observable
SLAM we add range information with varying noise. All tests
were done in the simulated environment presented in figure 4,
the robot moving along a circle.

In all our tests we track the quality of the estimated
map and robot pose: such information is represented by the
covariance matrix. Different relevant measures can be defined
on a covariance matrix. We can compute the eigen values
and the higher one can be selected, or the determinant of the
matrix (which is equal to the product of the eigen values),
or simply the trace of the matrix (which is equal to the sum
of the eigen values): we use this latter criteria to analyze the
results.

A. Influence of τ and (α, β)

The parameter τ directly influences the number of observa-
tions required before a feature is declared as a landmark and
inserted in the map. When τ gets smaller, fewer features can
be added. Figure 4 shows that values of τ from 10−1 to 10−5

do not notably reduce the number of initialized features.
Parameters (α, β) define the initial probability distribution.

This distribution approximates a constant distribution but



Fig. 4. Left: Simulated environment in 2D. Center: evolution of the weighted sum of gaussians through initialization steps. Right: influence of τ on the
speed of feature initialization.

presents some waves. Figure 2 shows different distributions
obtained with 3 sets of values. At first sight, one could try to
reduce the waves by accordingly choosing (α, β). This has
two bad consequences: it augments the number of gaussians,
and moreover the gaussians tend to have larger overlaps. If
the overlap is too important, successive measures will not
discriminate a single gaussian and with our algorithm the
feature will rarely be added to the map. Figure 5 shows the
number of initialized features for different values of (α, β). It
appears that for β = 1.5, features take significantly more time
to be initialized. As one can expect, plot of map uncertainty
(figure 5 plots two first laps) shows that larger value of α leads
to larger map uncertainty since the initial gaussian added to
the filter is larger.

In conclusion, the values of τ and (α, β) does not have
a crucial influence, as variations of these parameters in
reasonable range do not influence the algorithm result. From
our simulations, we can choose τ = 10−4, α = 0.2, β = 1.8.

B. Comparison with fully observable SLAM

In order to quantify the loss of information induced by the
bearing-only SLAM, full SLAM was run in simulation with
increasing noise on range data. Figure 5 shows the evolution
of the uncertainty of the pose of the robot during three laps.
One can see that this uncertainty in the bearing-only case is
twice the one of full observable case with σρ = 0.3 ∗ ρ.

V. EXPERIMENTS

For our experiments, we used the matching algorithm
described in [13], that reliably matches Harris points from
two images and can run in real-time. The camera is calibrated
and the usual pin-hole model is used to compute metric
observations (θ, φ) from pixel coordinate (u, v). Observation
covariance R is computed considering the uncertainty on
(u, v) is a fraction of a pixel - a typical value is 0.5 pixel.

Figure 6 gives an example of extracted and matched points.
As one can see, there are a lot of points extracted and
matched between two pictures, so we need to select some
of them. One of the problem is to select points that will be
tracked over several frames, but we do not have any a priori
information to help us choosing such points. In order to end
with enough landmarks in the map, we initialize more features

Fig. 6. Top: Camera looking on the left side of the robot, interest points
(red crosses) are matched between two successive images (green), current
tentative features (blue) and map features (orange). Bottom: Reconstructed
map of 3D points (3-sigma ellipsoid are drawn)

than needed. This can be done at low cost with our approach,
and a later selection process can be applied.

As the robot moves, the part of the environment seen by
the camera changes. Depending on the speed of the robot
and the position of the camera on the robot, the scene in
the image can move from right to left, top to bottom. . . or
any other directions. The proposed strategy watches at the
more recent part of the video image (the left part for example
if the scene moves from left to right) and tries to initialize



Fig. 5. Left: Influence of α, β on the speed of feature initialization. Center: influence of α, β on map uncertainty. Right: comparison of bearing-only and
full SLAM

Fig. 7. Sparse elevation map of a flat area reconstructed using low altitude
aerial images - the gridstep is 5 meters.

features with the interest points extracted in this particular
region. We maintain a constant number of features in the
“landmark nursery”, and try to choose them uniformally. A
simple way to achieve this is to define some subparts in the
zone of interest and maintain a constant number of features
in each of them, as illustrated on figure 6.

Some of the tentative features will be lost. Features whose
state converges to a single Gaussian are added to the map, if
the landmark density in the current map is not high enough.

We successfully ran our algorithm using images and odom-
etry acquired from a rover in indoor environment, camera
looking sideward (figure 6), the robot is driving along a
circular path with diameter of about 3 meters. Also images
acquired from a blimp looking downward were processed,
along with GPS and attitude central data, to build a sparse
elevation map. A simple Delaunay triangulation is constructed
from the landmarks. Figure 7 illustrates results obtained with
100 images taken along a 120 meters straight trajectory at a
low altitude (40 meters).

VI. DISCUSSION AND FUTURE WORK

The algorithm proposed in this paper is efficient, offers
an interesting optimality and is well adapted to a real-
time implementation. The estimation part has been explained
using 3D point features, but more complex primitives can

be used such as lines. This is an ongoing research work,
corresponding perceptions algorithms need to be finalized.
Also this algorithm can be extended with large-scale map
approaches so as to build large outdoor 3D maps using vision.
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