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Abstract-- The particular geometry of panoramic cameras 
defines complex epipolar lines equations. In this paper, we 
present a way to warp images from a panoramic stereovision 
bench, so that the epipolar lines become parallel straight lines, 
thus allowing the use of an optimized fast pixel correlation 
based stereovision algorithm. The paper first introduces the 
geometric characterization of panoramic camera composed of 
parabolic and spherical mirrors, that computes both the 
intrinsic parameters of the system (mirror surfaces and 
intrinsic camera parameters) and the errors alignment between 
the mirrors. Then, it presents the warping equations that allow 
to generate rectified images. Calibration and stereovision 
results are presented. 

Index Terms- Panoramic images, calibration, 
epipolar lines, stereovision 
 

II.  INTRODUCTION 

For the purpose of path planning and obstacle 
avoidance, a detailed analysis is not necessarily required, 
and high speed and rough understanding of the environment 
around the robot can be sufficient. One effective way to 
enhance the field of view with high speed of acquisition is to 
use of catadioptric panoramic cameras, i.e. convex mirrors 
in conjunction with lenses. 

Omnidirectional cameras with a single center of 
projection allow the generation of images projected on any 
given surface, such as a pure perspective images or 
panoramic images. Indeed, with the single viewpoint 
property, every pixel in the sensed image measures the light 
passing through the viewpoint in one particular direction: we 
will show that this property also allows to rectify panoramic 
image pairs, and therefore to apply an optimized pixel 
correlation based algorithm. 

Various contributions on panoramic stereovision can be 
found in the literature (e.g. [9, 20, 1, 3, 12, 17, 19, 13]), but 
most of them consider that the catadioptric system is 
perfectly aligned, which is seldom the case for actual 
cameras. Stereo has been obtained in panoramic images with 
perfectly aligned cameras positioned one above the other [9, 
20]. The main advantage of this alignment is that the 
epipolar curves are reduced to radial lines. But in several 
applications this alignment can't be used, in the case of 
environment modeling with several panoramic cameras [16, 
4, 10] for instance. 

In this paper, we present an algorithm to perform fast 
stereovision with a pair of panoramic cameras positioned in 
any configuration. For that purpose, a precise calibration of 
the cameras is required: the following section presents a full 
characterization of a panoramic camera composed of a 
parabolic and a spherical mirrors, introducing the system 
misalignment errors. Section III describes the calibration 
procedure to estimate all the parameters of the camera 
geometric model, and section IV presents the epipolar 

geometry of a panoramic stereovision system, and a way to 
rectify the panoramic images. Results are presented 
throughout the paper. 

II.  CHARACTERIZATION OF THE 
OMNIDIRECTIONAL VISION SENSOR 

A. Related work 
Several catadioptric camera calibration methods have 

been proposed in the literature. In [5], the authors use a 
catadioptric camera with a conic mirror. They present a 
sensor characterization and proposes a method to calibrate it 
using different calibration pattern. The calibration method in 
[15] uses the bounding circle of the omnidirectional image. 
The parabolic parameter and the mirror axis are directly 
computed using the radius and circle center. The method 
proposed in [11] uses the circle-based calibration method to 
initialize a minimization function. A self-calibration method 
using point features tracked across an omnidirectional image 
sequence is proposed. In [8], the authors introduce the 
catadioptric line projection for catadioptric calibration. The 
projection of two sets of parallel lines is sufficient to 
compute the parabolic mirror parameter and its optical 
projection axis in the image. The calibration method 
proposed in [6] assumes that the mirror surface parameters 
are known, and estimate the intrinsic parameters of the 
camera with respect to the mirror, using the two circles 
appearing in the image corresponding to a known section of 
the mirror. All the previous models suppose that the 
alignment between the camera and the mirror is perfect: the 
authors in [18] present a full model of the imaging process 
that includes the translation and rotation between the camera 
and the mirror that uses tracked points across a sequence. In 
[13], a theory that describes the image formation is 
proposed, with an auto-calibration of central omnidirectional 
cameras. 
 
B. Perfectly aligned configuration 

Figure 1 presents the geometry of image formation for a 
catadioptric camera built with parabolic and spherical 
mirrors, and the various associated frames. For the 
characterization of this system, we use the following 
notations: 3D points are represented by bold upper case 
letter, while 3D point projections on any surface are 
represented by bold lower case letters. The entities with 
subscript w  refer to the world coordinate system W  and 
entities with subscript spc ,,  refer to the camera, parabolic 
and spherical coordinate systems SPC ,,  respectively. 

In Figure 1, the parabolic and spherical mirrors axes are 
superposed, and the conventional camera is placed on the 
projection center of the spherical mirror: the rays that 
intersect the conventional camera lens are parallel to the 
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spherical and parabolic optical axis, and each perceived ray 
virtually intersects on P . The expression of the parabolic 
mirror surface is by the Equation (1) ([14]). 

 
Fig. 1 An ideal catadioptric camera with a parabolic and spheroidal 
mirrors; it is assembled so that the optical axis of the conventional camera 
is aligned with the mirrors symmetry axis. The values 

sp xxu ,,  are 

homogeneous vectors, corresponding to image points, points on the 
parabolic and on the spherical surface respectively. 
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where h  is the mirror parameter. The point wL  is 

transformed to the point [ ]Tzyx LLL ,,=L  ( wwwR TTL −= , 
see Figure 1) and projected by a central projection onto the 
surface of the mirror ( x ) according to: 























′

′

=



























+++

+++

=















=

11
1

222

222

Z
hL
Z

hL

LLLL

hL
LLLL

hL

y
x

y

x

zzyx

y

zzyx

x

p

p

px

         (2) 

where zLZ +=′ || L . After the projection on the 
parabolic surface, the ray intersects the spherical surface. 
The spherical mirror section is very small as compared to the 
spherical radius R : we can approximate the spherical 
surface using only the first term of the follow equation: 
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In Figure 1, the camera lens is positioned in the focal 
point of the spherical mirror. Then the image plane is 
intersected by the parallel ray of optical axis of the spherical 
and parabolic mirror. This assumption allows us to have an 
orthographic projection in the parabolic mirror, and only one 
projection center in the parabolic surface. The points of the 
spherical mirror sx  are defined as a function of the points 
on the parabolic mirror by: 
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where px  and py  are given in Equation 2. Using the 
following equation, we obtain the perspective projection of 

sx  in the plane image defined in pixels. 

[ ] sscscC
T RIssvsu xTMu ],[==          (4) 

where CI  is the intrinsic matrix of the conventional 
camera [7], and ],[ scsc TRM  is the translation and rotation 

homogeneous matrix between the spherical mirror S  and the 
camera frame C . 
    In the ideal case the matrix ],[ scsc TRM  is the identity 
matrix. Then, an ideal omnidirectional camera with 
parabolic and spherical mirror is characterized by: 
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where ),( pp yx  is given in Equation 2. 

C. Error alignment considerations  
The characterization defined by Equation 5 doesn't take 

into account the possible misalignments that come from the 
system assembly. Figure 2 shows a system with alignment 
errors: in this configuration, the rays captured by the 
conventional camera are parallel to optical axis of the 
spherical mirror, but not parallel to the optical axis of the 
parabolic mirror. Figure 3 shows the virtual reflection rays 
of the parabolic mirror in a system with a rotation angle of 

o5  between the parabolic and spherical mirror: the lines 
inside of the surface are an extension of incident rays. For 
these lines, there is not only one intersection point, they are 
tangents to a caustic surface. If the rotation angle between 
the mirrors is small, the caustic surface can be approximated 
to a point [ ]zyx pppP ′′′=′  that minimizes the projection 
error. 

 
Fig. 2: A real panoramic camera using spherical and parabolic mirror. 

 
Figure 3: Reection of a parabolic mirror (outside of the surface) and 
incidents rays (inside of the surface). If the parabolic and spherical mirror 
are not aligned the incident rays are tangent to a caustic surface. On right, 
the caustic surface is approximated by the point P′ . 
 

Let ],[ spsp TRM  the transformation matrix between the 
spherical mirror frame S  and the parabolic mirror frame P , 
where spR  and 

spT  is the rotation and translation. The 
projection of incident rays in parabolic are parallel to 

)(wxS , in the frame P . The direction w  (see Figure 2) is 
given by: 
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Considering that the point P′  is the intersection point of 

the incidents rays, the 3D point L  is projected to parabolic 
surface (see Figure 3) according to: 

 
0LxL =−−−′ )( pP λ  

There are two possible solutions, the only valid one 
being for 0>λ . Substituting the λ value, we have the 
projection of a 3D point L  into parabolic surface passing 
by P′ . The projection on the parabolic surface is defined by: 
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The rays that intersect the parabolic mirror are projected to 
the spherical surface. This projection is in w direction, and 
then the relationship between the spherical surface and 
parabolic surface is given by: 
 

[ ] 0xx =−−+ T
ssppsp TR 100λ  

where 
sppsp TxR +  is the paraboloid surface defined in the 

frame C . We can write sx  as: 
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The pp yx ,  values are given by Equation 6. Finally, the 

projection into the plane image is:  

sCI xu =                                           (9) 
The transformation from a real point L  to its projected 

point u  consists in: 
• a change from the world, coordinate system into the 

parabolic coordinate system. 
• the parabolic mirror reflection in direction zS . 

• the rotation and translation between the parabolic and 
spherical mirror. 

• the perspective projection of the spherical surface to 
camera frame. 

• finally the transformation between the camera frame and 
the image plane. 

 
So, we obtain the following model: 
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where 21 , pp  are given in Equation 8 

III.  CALIBRATION ALGORITHM 

Given the number of parameters to estimate, it is very 
likely that a minimization procedure converges on a local 
minima if it is not properly initialized. To avoid this, our 
calibration algorithm uses several steps, minimizing 
incrementally some parameters, before refining all their 
estimations using Equation 10. 

A first estimate of the intrinsic parameters is obtained by 
measuring the width of the image circle in the image, which 
is related to the parameter h of the parabolic mirror (see 
Figure 1). The spherical parameter R  is twice the distance 
between the spherical surface and the camera lens position. 
These values are measured by hand in the catadioptric 
systems. 

 
Figure 4: Calibration image example and sub-pixel corner extraction. 

A. Extrinsic parameters ( wR ) 
Figure 4 shows the pattern used by the camera calibration. 
The patterns coordinate are known with respect to the world 
coordinate placed on the grid pattern. In order to compute 
this position with respect to the parabolic frame, one must 
compute the rotation and translation between the world and 
parabolic frames (extrinsic parameters). The intersection 
between the plane that contains the line jV  and the point P  
(in Figure 5) and parabolic mirror is given by: 
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by solving the equations system: 
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The world frame axis yW  is given by )()( 1+∧ jj VNVN . 
We compute the xW  and yW   direction using: 
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Finally, the axis zW  is computed by 

yx WW ∧ . Where ∧  
denotes a cross product. The rotation between parabolic and 
world frame is computed by finding the rotation matrix that 
transform the 

zyx www ,, vectors to 
zyx ppp ,,  

 
Figure 5: The line world projection into a parabolic mirror is given by the 
intersection between the mirror and the plane formed by the line and P . 

B. Ideal camera parameters 
To refine the initialization of the camera intrinsic 

parameters, we first consider a perfectly aligned camera 
model. Under this assumption, the extrinsic parameter wR , 
the h  and R  values are recomputed as follows: the 
transformation of a world point L  to the image point 

Tvuu ),(=  is characterized by Equation 5. The parameters of 
this equation are computed by minimizing  
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where ),( ii vu  are the position in pixels for the corner 
extracted in the images calibration (see Figure 4). 

 

C. Fnalcalibration 

 The extrinsic parameters and some intrinsic parameters 
),,,,,( 00 vuRhvu αα  are now initialized. For the total 

calibration, we use Equation 10, and carry out a refinement 
stage by the total minimization of the following expressions: 
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where ),( ii vu  are the pixels measured in the calibration 
images. The minimization uses the Levenberg-Marquardt`s 
method of Matlab, and is obtained by solving the equations 
system: 
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The following table summarizes the various estimated 
parameters during the calibration process. 
 

00 ,,, vuvu αα  Intrinsic parameters of conventional camera 

Rh,  Parabolic and spherical parameters surface 

zyxyx ttt ,,,,θθ  Rotation and translation between parabolic and 
spherical surace 

zyx ppp ′′′ ,,  Focal point stimation 

wwTR  The extrinsic parameter for each image 

 
Figure 6 shows the mean re-projection errors using the 

calibration parameters estimated with the ideal aligned 
model and with the full model, for two cameras of a stereo 
bench and 15 calibration frame images: the improvements 
are noticeable. The average re-projection errors are around 
0:35 pixels, which does not seem very satisfactory with 
respect to conventional cameras calibration results - 
however, in [18] the mean re-projection error is about 0:4 
pixels, and 0:5 pixels in [2] for an omnidirectional camera 
composed of a fish-eye lens and a conventional camera 

 
Fig. 6: Left: mean re-projection errors (in pixels) with the parameters 
estimated with the ideal aligned geometric model for 15 different images of 
the calibration frame, Right: errors obtained with the full geometric model 
parameters (note the scale change between the two figures). 

 

IV.  EPIPOLAR GEOMETRY ON A PARABOLIC 
SURFACCE 

Epipolar geometry describes the relationship between 
the position of corresponding points in a pair of images 
acquired by cameras with single view-points. In this section, 
we consider that the panoramic images have been rectfied 
using the parameters of section 3 in order to obtain the ideal 
case of the panoramic image. Figure 7 shows the epipolar 
plane on catadioptric camera with parabolic mirror. The 
projections of the intersection of this plane and the mirror 
surface in the image plane are conics too. Every point 1q  

onto omnidirectional image has an epipolar curve in the 
second mirror ( 2l ), represented by: 

( ) 0, 2122 =qqEAqT  
In the generic case, the matrix ),( 12 qEA  is a non linear 

function of the essential matrix E , the point 1q , and the 
calibration parameters of a central panoramic catadioptric 
camera.  

Figure 7 shows the normal of plane Π  passing by the 
two optical centers that can be expressed in the first mirror 
coordinate system: 
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The normal vector 1′FN can be expressed in the second 
mirror coordinate system using E , we have: 
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If we set [ ]TF sqp=′2N , we can write the equation 
Π  in the second coordinate system: 

0222 =++ ZsYqXp                   (14) 
where [ ]2222 ZYX=x  

 
Writing 2Z  as a function of 2X  and 2Y , and knowing 

equation of the parabolic surface, we have: 
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Fig. 7: Epipolar geometry between two omnidirectional cameras with 
parabolic mirror.  
 
Let [ ]TZYX 1111 =x  a point in the first parabolic mirror. 
Its epipolar curve in the second mirror is defined by 2L  (see 
Figure 7) and its orthographic projection on the image is 
represented by Equation 15, and defined by the circle 2l . 
 
A. Image projection criteria with the epipolar plane 

We demonstrated that 2l  is the epipolar circle in the 
second image for a point 1x . With the same process, we want 
to find the epipolar curve or curves in the first image for 
each point of the circle 2l . 

Each point of 2l  forms with the translation vector T  a 
plane which is normal to 2′FN  . This normal is defined in the 
first coordinate systems by: 
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Replacing 2′FN  of Equation 13 in Equation 14, we have 
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The vector [ ]TSQP  is defined by Equation 16. The 

epipolar curve of the circle 2l  is defined by Equation 17 and 
is a circle too.  

In two panoramic catadioptric cameras with a translation 
and rotation between them, we have a set of circles 1l  and 

2l , where 2l  is the epipolar circle of 1l  and vice versa (see 
Figure 7). These circles are the perpendicular projections of 
the intersection between the two parabolic mirrors with a 
plane that contains the centers of the parabolic mirrors. The 

1l  and 2l  equations are functions of the essential matrix E  
(Equations 15 and 17). 

We use this property in order to generate rectified 
images, in which epipolar lines are parallel. The algorithm is 
as follows: 

 
• Given a translation and rotation ],[ RT  between two cameras, 
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• do 
omnidirectional image sampling 
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Warping algorithm. The subscript 2,1,2,1 =k  define the reference frame, 

while the superscript i  is the iteration number. The rotation function 
),,( CBA℘  turn the point BA,  degrees around of the axisC . These rotations 

are computed with Rodriguez equation. The function )( i
kQℑ  projected the 

point iQ  (defined in the to parabolic frame k ) to the parabolic surface k  in 
direction 

k
i
k FQ . The warping image is defined by ),(2,1 αβix  
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B. 3D reconstruction 
If we know the rotation ( R ), translation ( T ) between 

two cameras and the intrinsic parameters, we can compute 
the tables that allows us to rectify the panoramic images. In 
this process, we can also compute the tables that contain the 
angular values ( )2111 ,,, ϖϖφθ  for each rectified pixel (see 
Figure 7). These angles are defined by: 
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Where 1x  and 2x  are the projections of a point 3D to 

parabolic surface 1 and 2. 
Knowing the coordinates of two matched points 1x  and 

2x  that correspond to the same 3D point X , we can compute 
the coordinate of X  in the frame 1F : 
 

[ ]TDDD 111 sincossin φθθ=X                 (19) 
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( )21

2

sin
sin

ωω
ω
+

=
T

D  

Figure 8 shows the warped images and 3D 
reconstruction for the real panoramic images acquired with 
the cameras calibrated in section 3. 
 

 
Fig. 8: Stereovision result. From top to bottom: original images acquired 
with the two cameras, rectified images, and two views of the 3D 
reconstruction. Note the “blind area”, due to the mast that supports the 
cameras. 

V. SUMMARY 

We presented a complete characterization of a 
catadioptric camera with parabolic and spherical mirrors, 
which takes into account the alignment errors between the 
mirrors. In such a configuration, the projection of the 
parabolic mirror is not orthogonal, and the incidental rays 

therefore do not cross the focus of the paraboloid. To cope 
with this, we introduced a model in which the single 
viewpoint does not perfectly match the paraboloid focus. We 
used this characterization to calibrate for camera calibration 
in several steps, which enables to ensure the convergence of 
the estimate of the parameters of the model. 

We presented the equations of the epipolar curves in 
panoramic images, and introduced a rectifying method that 
transform the epipolar curves into parallel straight lines. 
This makes possible to carry out a dense pixel matching 
algorithm with good computing time performance. The 
method is independent of the configuration of the stereo 
bench. 
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