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Abstract-- The particular geometry of panoramic cameras
defines complex epipolar lines equations. In this paper, we
present a way to warp images from a panoramic stereovision
bench, so that the epipolar lines become parallel straight lines,
thus allowing the use of an optimized fast pixel correlation
based stereovision algorithm. The paper first introduces the
geometric characterization of panoramic camera composed of
parabolic and spherical mirrors, that computes both the
intrinsic parameters of the system (mirror surfaces and
intrinsic camera parameters) and the errors alignment between
the mirrors. Then, it presents the warping equations that allow
to generate rectified images. Calibration and stereovision
results are presented.
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images, calibration,

II. INTRODUCTION

For the purpose of path planning and obstacle
avoidance, a detailed analysis is not necessarily required,
and high speed and rough understanding of the environment
around the robot can be sufficient. One effective way to
enhance the field of view with high speed of acquisition is to
use of catadioptric panoramic cameras, i.e. convex mirrors
in conjunction with lenses.

Omnidirectional cameras with a single center of
projection allow the generation of images projected on any
given surface, such as a pure perspective images or
panoramic images. Indeed, with the single viewpoint
property, every pixel in the sensed image measures the light
passing through the viewpoint in one particular direction: we
will show that this property also allows to rectify panoramic
image pairs, and therefore to apply an optimized pixel
correlation based algorithm.

Various contributions on panoramic stereovision can be
found in the literature (e.g. [9, 20, 1, 3, 12, 17, 19, 13]), but
most of them consider that the catadioptric system is
perfectly aligned, which is seldom the case for actual
cameras. Stereo has been obtained in panoramic images with
perfectly aligned cameras positioned one above the other [9,
20]. The main advantage of this alignment is that the
epipolar curves are reduced to radial lines. But in several
applications this alignment can't be used, in the case of
environment modeling with several panoramic cameras [16,
4, 10] for instance.

In this paper, we present an algorithm to perform fast
stereovision with a pair of panoramic cameras positioned in
any configuration. For that purpose, a precise calibration of
the cameras is required: the following section presents a full
characterization of a panoramic camera composed of a
parabolic and a spherical mirrors, introducing the system
misalignment errors. Section III describes the calibration
procedure to estimate all the parameters of the camera
geometric model, and section IV presents the epipolar

Simon Lacroix
LAAS-CNRS
7, Av. du Colonel Roche
31077 Toulouse Cedex 4 France
Simon.Lacroix@laas.fr

geometry of a panoramic stereovision system, and a way to
rectify the panoramic images. Results are presented
throughout the paper.

II. CHARACTERIZATION OF THE
OMNIDIRECTIONAL VISION SENSOR

A. Related work

Several catadioptric camera calibration methods have
been proposed in the literature. In [5], the authors use a
catadioptric camera with a conic mirror. They present a
sensor characterization and proposes a method to calibrate it
using different calibration pattern. The calibration method in
[15] uses the bounding circle of the omnidirectional image.
The parabolic parameter and the mirror axis are directly
computed using the radius and circle center. The method
proposed in [11] uses the circle-based calibration method to
initialize a minimization function. A self-calibration method
using point features tracked across an omnidirectional image
sequence is proposed. In [8], the authors introduce the
catadioptric line projection for catadioptric calibration. The
projection of two sets of parallel lines is sufficient to
compute the parabolic mirror parameter and its optical
projection axis in the image. The calibration method
proposed in [6] assumes that the mirror surface parameters
are known, and estimate the intrinsic parameters of the
camera with respect to the mirror, using the two circles
appearing in the image corresponding to a known section of
the mirror. All the previous models suppose that the
alignment between the camera and the mirror is perfect: the
authors in [18] present a full model of the imaging process
that includes the translation and rotation between the camera
and the mirror that uses tracked points across a sequence. In
[13], a theory that describes the image formation is
proposed, with an auto-calibration of central omnidirectional
cameras.

B.  Perfectly aligned configuration

Figure 1 presents the geometry of image formation for a
catadioptric camera built with parabolic and spherical
mirrors, and the various associated frames. For the
characterization of this system, we use the following
notations: 3D points are represented by bold upper case
letter, while 3D point projections on any surface are
represented by bold lower case letters. The entities with
subscript W refer to the world coordinate system W and
entities with subscript ¢, p,s refer to the camera, parabolic
and spherical coordinate systems ¢, p,§ respectively.

In Figure 1, the parabolic and spherical mirrors axes are
superposed, and the conventional camera is placed on the
projection center of the spherical mirror: the rays that
intersect the conventional camera lens are parallel to the
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spherical and parabolic optical axis, and each perceived ray
virtually intersects on P . The expression of the parabolic
mirror surface is by the Equation (1) ([14]).

—t~paraholic mirror
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Fig. 1 An ideal catadioptric camera with a parabolic and spheroidal
mirrors; it is assembled so that the optical axis of the conventional camera

is aligned with the mirrors symmetry axis. The values , , . are

VA
homogeneous vectors, corresponding to image points, points on the
parabolic and on the spherical surface respectively.

hz—(x2+y2)_ B2
2h 2k

where /1 is the mirror parameter. The point L, is

M

zZ =

transformed to the point L =L, L,L f(L=R,T,-T,.

see Figure 1) and projected by a central projection onto the
surface of the mirror ( X ) according to:

7S Y (2)
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where Z'oL|+L. -
parabolic surface, the ray intersects the spherical surface.
The spherical mirror section is very small as compared to the

spherical radius R : we can approximate the spherical
surface using only the first term of the follow equation:

After the projection on the

2 2 4 4 2 2 2
gp=R Xy dxry  Roxoy
2 2R 2 2°2IR 2R

In Figure 1, the camera lens is positioned in the focal
point of the spherical mirror. Then the image plane is
intersected by the parallel ray of optical axis of the spherical
and parabolic mirror. This assumption allows us to have an
orthographic projection in the parabolic mirror, and only one

projection center in the parabolic surface. The points of the

spherical mirror X are defined as a function of the points
on the parabolic mirror by:
2 2 2
R —x, -y,
2R

X, =|x, », 1 3

where x, and y, are given in Equation 2. Using the

following equation, we obtain the perspective projection of

X, in the plane image defined in pixels.
u= [su sV s]T =IM[R_,T,_ Ix, 4)

where [ ¢ 1s the intrinsic matrix of the conventional

sc?

camera [7], and M[R_,T, ] is the translation and rotation
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homogeneous matrix between the spherical mirror § and the
camera frame C.
In the ideal case the matrix M[R,T, ] is the identity

matrix. Then, an ideal omnidirectional camera with
parabolic and spherical mirror is characterized by:
__-exeR
TR+ (%)
a,y,(2R)
VE———>——-+V,

R* - (x; + y;)
where (x,,¥,) is given in Equation 2.

C. Error alignment considerations

The characterization defined by Equation 5 doesn't take
into account the possible misalignments that come from the
system assembly. Figure 2 shows a system with alignment
errors: in this configuration, the rays captured by the
conventional camera are parallel to optical axis of the
spherical mirror, but not parallel to the optical axis of the
parabolic mirror. Figure 3 shows the virtual reflection rays
of the parabolic mirror in a system with a rotation angle of
5? between the parabolic and spherical mirror: the lines
inside of the surface are an extension of incident rays. For
these lines, there is not only one intersection point, they are
tangents to a caustic surface. If the rotation angle between
the mirrors is small, the caustic surface can be approximated
to a point P’ =|p’ » p’ | that minimizes the projection

€11or.

= er_L/—’/

Figure 3: Reection of a parabolic mirror (outside of the surface) and
incidents rays (inside of the surface). If the parabolic and spherical mirror
are not aligned the incident rays are tangent to a caustic surface. On right,
the caustic surface is approximated by the point P .

Let M[ R,.T,] the transformation matrix between the

spherical mirror frame S and the parabolic mirror frame P,
where R, and T, is the rotation and translation. The

projection of incident rays in parabolic are parallel to
S.(w), in the frame P. The direction W (see Figure 2) is

W=|:R5p 0}[0 o -1 1]

given by:

0 1



1 0 0 cos@, 0 sing;
wherep 10 cose: —singi| 0 1 0
0 sin@, cos@; |—sind, 0 cosd,

Considering that the point P’ is the intersection point of
the incidents rays, the 3D point L is projected to parabolic
surface (see Figure 3) according to:

P -L-A(x,-L)=0
There are two possible solutions, the only valid one
being for A>0 . Substituting the A value, we have the
projection of a 3D point L into parabolic surface passing
by P’. The projection on the parabolic surface is defined by:

T

1 (6)

2 2 2
R —x, =)

X]’ = x]’ yP 2R

where
S = IR = (f)P L =2 f/hL, + LI* + fIL, fl+ LA+ fls,
. = v L

P

S,

SO = S = (D L, =2 0L, + L + fIL S+ LY+ fs

’ S5,

(N
and
S| =4/88, + S5,
sso=(L|" =2p;L, =2p L, =2p.L +| P'|")h’
ss, =2(p piL +p.p,L, +p LL +p,LL ~(p)L,..
= P = pLL = (P LR+ 2p pi L, L~ (p)) L}, = (p}) L}
ss,=pyL,—(p)) =(P,)" = plh+ Lh+piL +s,
The rays that intersect the parabolic mirror are projected to
the spherical surface. This projection is in wdirection, and
then the relationship between the spherical surface and
parabolic surface is given by:

7
R,x,+T,-x, -0 0 1]' =0

where R,x,+T, is the paraboloid surface defined in the
frame C. We can write X as:

4R’h* - p; - p;
8h’R

_| P P,

X, = ®)
2h 2h
where
pr=2x,hcosBF —h’*sin @) +xsin6” + y, sin 6 +21.h
Dy =—2y,hcos@” =2t h—2x,hsin 6 sinG” —...
...h?cos @7 sin 6 +x) cos 87 sin 67 + y’ cos G sin 6,

X

The X,.9, values are given by Equation 6. Finally, the

projection into the plane image is:
u=1/7,.x, )
The transformation from a real point L to its projected
point W consists in:
e a change from the world, coordinate system into the
parabolic coordinate system.
e the parabolic mirror reflection in direction §_.
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e the rotation and translation between the parabolic and
spherical mirror.

e the perspective projection of the spherical surface to
camera frame.

e finally the transformation between the camera frame and
the image plane.

So, we obtain the following model:

_—a,p 8h°R
T R -pi-pl (0
4R°h” — p; — p; (10)

-a,p, 8h’R

2h 4R’K’ - p! - p;
where p,, p, are given in Equation 8

III. CALIBRATION ALGORITHM

Given the number of parameters to estimate, it is very
likely that a minimization procedure converges on a local
minima if it is not properly initialized. To avoid this, our
calibration algorithm wuses several steps, minimizing
incrementally some parameters, before refining all their
estimations using Equation 10.

A first estimate of the intrinsic parameters is obtained by
measuring the width of the image circle in the image, which
is related to the parameter h of the parabolic mirror (see
Figure 1). The spherical parameter R is twice the distance
between the spherical surface and the camera lens position.
These values are measured by hand in the catadioptric
systems.

Figure 4: Calibration image example and sub-pixel corner extraction.

A.  Extrinsic parameters (R, )

Figure 4 shows the pattern used by the camera calibration.
The patterns coordinate are known with respect to the world
coordinate placed on the grid pattern. In order to compute
this position with respect to the parabolic frame, one must
compute the rotation and translation between the world and
parabolic frames (extrinsic parameters). The intersection
between the plane that contains the line v, and the point P

(in Figure 5) and parabolic mirror is given by:
2 2
hp hq . 2
X—L + Y—i zhfz(p?+qf+s?)
S S S

n
i=1

Given points {(x.,y,)}" in one line of the grid (v, or H,),

we compute the p  g.,s, values (see Figure 5) minimizing

2 2
h.p, hq, n
[X[—”] +[K—’; ’/} —j’é(pf+qf+sj)

Sj S S

the sum:

f(p/’ 4;> S/): 27:1

by solving the equations system:
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a—f = af =0, and a—f =0
dp; aq ds;
The world frame axis w, is given by NWV)ANW ) -

We compute the 7 and w, direction using:
=2 NO)AN, )
W= N AN )

Finally, the axis W, is computed by W, AW, Where A

denotes a cross product. The rotation between parabolic and
world frame is computed by finding the rotation matrix that
transform the v _,w ,w_vectorsto p .p . p.

Figure 5: The line world projection into a parabolic mirror is given by the
intersection between the mirror and the plane formed by the line and P .
B. Ideal camera parameters

To refine the initialization of the camera intrinsic
parameters, we first consider a perfectly aligned camera
model. Under this assumption, the extrinsic parameter R ,
the » and R values are recomputed as follows: the
transformation of a world point L to the image point
u = (u,v)" is characterized by Equation 5. The parameters of
this equation are computed by minimizing

,%,(2R)
2_( 2 2i+u0—u‘, (11)
PRy a0 R) =1 x”;y)P

,,(2R

TV, —V;

2 2 i
R —ixp+ypi

where (u;,v,) are the position in pixels for the corner

extracted in the images calibration (see Figure 4).

C. Fnalcalibration

The extrinsic parameters and some intrinsic parameters
(a,,c,,h,R,u,,v,) are now initialized. For the total

calibration, we use Equation 10, and carry out a refinement
stage by the total minimization of the following expressions:

-a,p, 8h°R
1= 272 2 > Ty~
2h  4R°h"—p; —p;
F, = vP2 8h R +v, =,

2h  AR’h* - p} - p3 '
where (u,,v,) are the pixels measured in the calibration

images. The minimization uses the Levenberg-Marquardt's
method of Matlab, and is obtained by solving the equations
system:

JF, 0 oF,

ar ar
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Where - _ Y0 Vo /20, %, R,6,,0,,
L.t P, P PR, T,

The following table summarizes the various estimated
parameters during the calibration process.

Intrinsic parameters of conventional camera
au»aw”mvo p

h R Parabolic and spherical parameters surface

0.,0,,t.,t,,t. Rotat_ion and translation between parabolic and
spherical surace

p;,p; ’p; Focal point stimation

Rw Tw The extrinsic parameter for each image

Figure 6 shows the mean re-projection errors using the
calibration parameters estimated with the ideal aligned
model and with the full model, for two cameras of a stereo
bench and 15 calibration frame images: the improvements
are noticeable. The average re-projection errors are around
0:35 pixels, which does not seem very satisfactory with
respect to conventional cameras calibration results -
however, in [18] the mean re-projection error is about 0:4
pixels, and 0:5 pixels in [2] for an omnidirectional camera
composed of a fish-eye lens and a conventional camera

0 5 ®
Image number Image number

Fig. 6: Left: mean re-projection errors (in pixels) with the parameters
estimated with the ideal aligned geometric model for 15 different images of
the calibration frame, Right: errors obtained with the full geometric model
parameters (note the scale change between the two figures).

IV. EPIPOLAR GEOMETRY ON A PARABOLIC
SURFACCE

Epipolar geometry describes the relationship between
the position of corresponding points in a pair of images
acquired by cameras with single view-points. In this section,
we consider that the panoramic images have been rectfied
using the parameters of section 3 in order to obtain the ideal
case of the panoramic image. Figure 7 shows the epipolar
plane on catadioptric camera with parabolic mirror. The
projections of the intersection of this plane and the mirror
surface in the image plane are conics too. Every point g,

onto omnidirectional image has an epipolar curve in the
second mirror (/, ), represented by:

qu (E qi)Qz =0

In the generic case, the matrix 4,(E,q,) is a non linear
and the
calibration parameters of a central panoramic catadioptric
camera.

Figure 7 shows the normal of plane IT passing by the
two optical centers that can be expressed in the first mirror
coordinate system:

function of the essential matrix £, the point ¢,




N =T~Ax (12)
The normal vector /N can be expressed in the second

mirror coordinate system using £ , we have:

N,, =RN_ =R(TAx,)=R[T],x, =Ex, (13)
€y €p €
where E=le

€ €n €y

2 €n €

If weset N, =[p ¢ =], we can write the equation
IT in the second coordinate system:
pX,+qY,+sZ,=0 (14)
where X, =[Xz Y, Zz]

Writing 7, as a function of X, and Y,, and knowing
equation of the parabolic surface, we have:

2 2 2
] 2 St o
N N N

This is the circle equation centered in (hp’hqj with

S S
radius 7 [, 2, 2
—pi+q+s?-
S

Fyp

ID|

Fy

x l Fy

Fig. 7: Epipolar geometry between two omnidirectional cameras with
parabolic mirror.

Let x, =[X, ¥, 2 apoint in the first parabolic mirror.
Its epipolar curve in the second mirror is defined by L, (see

Figure 7) and its orthographic projection on the image is
represented by Equation 15, and defined by the circle 7, .

A. Image projection criteria with the epipolar plane
We demonstrated that 7, is the epipolar circle in the

second image for a point x,. With the same process, we want
to find the epipolar curve or curves in the first image for
each point of the circle /.

Each point of /, forms with the translation vector T a
plane which is normal to N . This normal is defined in the
first coordinate systems by:

N, =RN_ =R(Trx,)=R[T],x, = Ex, (16)
Replacing N, of Equation 13 in Equation 14, we have

e X\ X, te, Y\ X, +e Z X, +e, X\Y, +...
epl\ Y, +enZ\Y, +ey X\ Z, tenYZ, +te 2,2, =0

W - X7 =Y
2h
We can write the last equation in the following form:

(1) o (5-12] -0 est) 0D

where Z, =

S S?
P e €y & X,
where Y.
0 €n ©€n €y 2

The vector [P @S] is defined by Equation 16. The
epipolar curve of the circle 7, is defined by Equation 17 and

is a circle too.
In two panoramic catadioptric cameras with a translation
and rotation between them, we have a set of circles /, and

1, where [ is the epipolar circle of / and vice versa (see

Figure 7). These circles are the perpendicular projections of
the intersection between the two parabolic mirrors with a
plane that contains the centers of the parabolic mirrors. The
{, and ], equations are functions of the essential matrix £
(Equations 15 and 17).

We use this property in order to generate rectified
images, in which epipolar lines are parallel. The algorithm is
as follows:

. Given a translation and rotation [T, R] between two cameras,
17 ={R e % < RF,T>=0}
15 = {P, e % < P,F,,RT >=0}
. We choose a point p! = {Pl| c Hf}
e Initalize g/ g and p'  p!
. do
o The epipolar plane of Plf
M/ ={0,€ < 0,0/F, T>=0,0 1T} }
mn’ :{Qz € R <0,,0,F,,RT >= 0}
o Initialize
O/ «F
0 —{oiew
o «0
. do
omnidirectional image sampling
X (Boa)=1.3(Q)) (Equation 5)
x5 (B,a)=1:3(Q3)
O =p(0].0,, 0F, AT)
0y = (05,0, O; F, ART)
o' =a' +Aa
o  while (g™ <27)
P =p(R,p'T)
B =p+0B
e while (8™ <27)

Warping algorithm. The subscript 12 y =1 define the reference frame,

0ie 15,0} e T}

(Equation 5)

while the superscript I is the iteration number. The rotation function
@(4,B,C) turn the point 4 g degrees around of the axis . These rotations

are computed with Rodriguez equation. The function 3(0!) projected the
point ' (defined in the to parabolic frame f) to the parabolic surface  in

direction QiF, - The warping image is defined by s (B.@)
1,2 >

1226



B. 3D reconstruction

If we know the rotation ( R ), translation (T ) between
two cameras and the intrinsic parameters, we can compute
the tables that allows us to rectify the panoramic images. In
this process, we can also compute the tables that contain the
angular values (91 ,0,,0,,00, ) for each rectified pixel (see

Figure 7). These angles are defined by:

6 = arctan(le ¢ = arcsin S
X A xlz +y12 (18)
X xJRT

, = arccos @, = arccos| ———
x[T xR

Where x, and x, are the projections of a point 3D to

parabolic surface 1 and 2.
Knowing the coordinates of two matched points x, and

x, that correspond to the same 3D point X, we can compute
the coordinate of X in the frame F;:

X:[‘D‘sin@1 ‘D‘cos&l ‘D‘sin¢l]r (19)
where | p - sin @,
Tisin(w, + @,)
Figure 8 shows the warped images and 3D

reconstruction for the real panoramic images acquired with
the cameras calibrated in section 3.

Fig. 8: Stereovision result. From top to bottom: original images acquired
with the two cameras, rectified images, and two views of the 3D
reconstruction. Note the “blind area”, due to the mast that supports the
cameras.

V. SUMMARY

We presented a complete characterization of a
catadioptric camera with parabolic and spherical mirrors,
which takes into account the alignment errors between the
mirrors. In such a configuration, the projection of the
parabolic mirror is not orthogonal, and the incidental rays
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therefore do not cross the focus of the paraboloid. To cope
with this, we introduced a model in which the single
viewpoint does not perfectly match the paraboloid focus. We
used this characterization to calibrate for camera calibration
in several steps, which enables to ensure the convergence of
the estimate of the parameters of the model.

We presented the equations of the epipolar curves in
panoramic images, and introduced a rectifying method that
transform the epipolar curves into parallel straight lines.
This makes possible to carry out a dense pixel matching
algorithm with good computing time performance. The
method is independent of the configuration of the stereo
bench.
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