
CSCLD: A Component for Software Component Library Discovering

SOFIEN KHEMAKHEM
Department of Computer Science

Higher Institute of Technological Studies of Sfax
P.B. 88A 3099 El boustan Sfax, Tunisia

Khemakhemsofien@yahoo.fr

KHALIL DRIRA
LAAS-CNRS

7, Avenue du Colonel Roche
31077 Toulouse Cedex 4

Khalil.Drira@laas.fr

MOHAMED JMAIEL
LARIS Laboratory

Faculty of Economic Sciences and Management of Sfax
P.B. 1088 Sfax, Tunisia

Mohamed.jmaiel@enis.rnu.tn

Abstract: Component-oriented software development
is a promising solution for complex software systems
like internet-based distributed service. The success of
this type of development is explained by the re-use of
the components. To improve this re-use, it is necessary
to implement and maintain well-structured software
component libraries and efficient search engine to
guarantee the success of the research and the selec-
tion of the component, which fulfills the developer’s
requirements. This paper proposes a new approach
to select software components from a library. Without
leaving the environment of development, the developer
loads Component for Software Component Library
Discovering CSCLD, a persistent component that
automatically locates and presents a list of software
components that could be used in the current devel-
opment situation. This Component is a specialized
search engine that automatically generates a query
from developer specification and indexes a database of
software components

Keywords: Software component, discover,
CSCLD, non-functional constraints.

1 Introduction

The development of complex software systems is a dif-
ficult task. To reduce such a task, it is necessary to
elaborate solutions to improve the re-use of the soft-
ware. After object technology [1], we assist with the
emergence of the component technology which pro-
poses solutions for this problem [2, 3]. Component
technology extends that of the object while preserv-
ing the benefit promised by the latter: reutilisability,
productivity, quality and maintainability. In this con-
text, the development of an application consists simply
in adapting [4] and integrating the suitable component
[5, 6]. Consequently, the re-use of the components is
a justifying factor, because it allows to increase in an
appreciable way the productivity of the software and to
improve development quality.

During the application development, the program-
mer is faced with a significant number of various com-
ponents categories. Consequently, the use of a software
components library, having a clear structure, is a cru-
cial criteria for the successful of the reuse. This allows
the developer to seek and select efficiently the compo-
nent which meets its need perfectly. To be useful, a
library needs to be supported by: tools to create ini-
tial information structures, and flexible mechanisms to
search and browse the library. In this context, many ap-

1

proaches have developed software component retrieval
systems based on many techniques such as Artificial
intelligence, neural network and Agent.

Since the late 1980s, AI-based techniques have
been used extensively by component retrieval systems.
These techniques have attempted to capture searchers
domain knowledge and classification scheme knowl-
edge and effective search strategies. Significant efforts
are often required to acquire knowledge from domain
experts and to maintain and update the knowledge base
[7]. This knowledge base provides components repre-
sentations and indexes software component library in
order to ameliorate the accuracy during the search of
components.

The neural network technique, which is a newer
paradigm, has attracted attention of researchers in com-
puter science, and in software engineering particulary.
This newer technique, has provided greater opportuni-
ties for researchers to enhance the information process-
ing and retrieval capabilities of current components
storage and search systems.

More recently the software agent technique ex-
plores a new approach to locating software compo-
nents. In fact, it ameliorates, speeds up the search for
components and infers the search goal of software de-
velopers by observing their browsing actions and de-
livers components that closely match the inferred goal
[8].

In this paper, we have developed a tool which help
the developer to find the adequate component and an
ontology for the component description. This tool and
a component description library are incorporated in a
software component that can be integrated in several
development environments as C++, Vb, DELPHI, VI-
SUAL Java and browse the library to find the appropri-
ate component. By running this component, the devel-
oper formulates a query after selecting the criteria that
response to his needs.

This paper is organized as follows: section2 and
section3 present respectively the architecture and the
implementation of the CSCLD. We will devote sec-
tion4 to compare our approach with related technolo-
gies. Section5 deduces the advantages of the CSCLD
through a discussion. In conclusion, we will suggest
some openings and prospects related to this study.

2 Architecture

During the application development, the programmer
sometimes needs a component that meets its current
task. Our system provides a persistent and intelligent
component that can be loaded in development environ-
ment only during the project creation. This component
is persistent because it is always ready for execution by
the developers, and intelligent because it contains not
only the search process but also the software compo-
nent description library.

Figure 1: System architecture

Once CSCLD is running, the developer spec-
ifies the query by selecting the adequate criteria.
An approximate comparison between the specified
query and the description of components in the
component description library is made by thecom-
pare querydescription()function. If there is a pos-
itive result, the system indexes the obtained de-
scription(s) to software component library. So the
searchcomponent(refcomponent[])function retrieves
the appropriate component(s), whereref component[]
is the list of the components references to retrieve.
Then, the developer uses an application programme in-
terface (API) to integrate the desired components in the
current project.

The librarian can also manipulate the CSCLD in
order to manage the two libraries. He can add, mod-
ify and delete the component or/and the component
description. Component description is an ontological
description that contains:

-Functional properties such as methods and com-
munication objects.

-External properties such as type and author.
-Static non-functional properties such as Capacity

and QoS.

2

-Dynamic non-functional properties such as relia-
bility and availability.

The value for each criterion is also managed by the
librarian. The developer has not this privilege; all he
can do is to read and select the criteria or the adequate
component.

3 Implementation

CSCLD is a component responsible for the location
of re-usable components. It executes the specified
query and retrieves and presents relevant components.
CSCLD requires no loading from software developers
in development environments. In current development
practices, the developer clicks on the CSCLD icons.
Next, he chooses the non-functional constraints and the
functional information which meets his needs. A dy-
namic query would be formulated and then executed
automatically in order to deliver the adequate compo-
nent.

����� ��� ����	
��� ���� ��� � ����	
��� � ��� ��� �� ��� 	

����� � ��� ���� � � ���

� � �����

Figure 2: Search criteria

Figure 2 shows the development of a simple Chat
application by using Visual BASIC. The Listbox com-
ponent contains the identity of the recipient, the Text
component contains the content of the message. The
developer needs an ActiveX component that contains a
method having two input parameters of string type that
correspond to the address of the recipient, and the mes-
sage. This component must also ensure the security
of the message and establish the communication with
the mailing server. To find this component, the devel-
oper selects the following search criteria: method and
communicating objects as functional properties, com-
ponent type as external property and security as static
non-functional property. In the following step, a value
is applied to each criterion previously selected. Thus,

the developer can associates the label ”Send” or any
other synonym label to the criterion method. A query
will be then formulated automatically when clicking
on the search button. The components-result of the re-
search will be sorted according to the degree of the sim-
ilarity with the query. The developer can read the de-
scription of each component to understand their func-
tionality detail. Thus, the developer loads the adequate
component -that approximately answers its need- in the
chat application.

The retrieved re-usable components are presented
in the search result form in decreasing order of sim-
ilarity value. Each component is accompanied by its
degree of similarity, name, access path and a short de-
scription. Developers who are interested in a particular
component can load it in the tool bar, by a mouse click.
Finally, the developer can adapt it to the task or re-use
it, as it is in the program, depending on the value of the
similarities degree. CSCLD provides also an interface
for the librarian in order to add, remove components
and modify the components information. We formulate
many queries without introducing the non-functional
constraints. We notice that in many cases the delivery
component does not meet the developer needs. In fact,
the non-functional constraints play a decisive role in
the search quality.

4 Comparison of CSCLD with related technolo-
gies

Existing research techniques in software libraries adopt
different retrieval methods. Based on a variety of tech-
nologies, they can be divided into agent, artificial intel-
ligence, and neural network technology.

Agent technology is a recent technology used in
many retrieval systems to facilitate the component
search in the library.

In some approaches, the agent runs continuously
in the background of a development environment and
monitors the developer’s actions. The CodeBroker
agent [8] infers software developers needs for compo-
nents by comparing the contents of doc comments with
methods signatures. It supports ”context-aware brows-
ing” and measures the similarity between the specified
query which is a comment in the emacs editor and the
documentation of the components. The comparison
distance is based on a probabilistic calculation. The
information type in the documentation of each compo-

3

nent is functional. Whereas in [9] the agent infers the
search goal of software developers by comparing their
browsing actions and delivers components that closely
match the inferred goal. In this approach the specifi-
cation level is limited to the methods signatures and
input/output parameters. The comparison distance is
approximative.

In other approaches, agent is directly running
by the developer, after query specification. Agora
system[10] use an independent JavaBeans and
CORBA agents in conjunction with AltaVista search
Developer’s Kit for indexing and retrieving component
data. The Agora searches only on component inter-
faces, covering solely the component connectiveness
problem. The component name and type are preserved
as fields to enable searches by name and component
type. Indexed search is the search style adopted. The
functional information is the information type used in
this approach.

AI-based technologies uses knowledge representa-
tion to represent and index components. The goal is
to give semantic meaning to the representation in order
to ameliorate the accuracy during the search of compo-
nents.

CodeFinder [11] as well as LaSSIE [12] repre-
sent components as frames and have used the inferenc-
ing capabilities of inheritance and classification to re-
trieve information with Kandor representations. Kan-
dor is the frame-based knowledge representation lan-
guage that is used by CodeFinder to index components
and create a frame-based hierarchy. CodeFinder or-
ganizes those frames into an associated network and
uses spreading activation to find components whereas
Frames in LaSSIE are organized into hierarchical, tax-
onomic categories. LaSSIE allows the use of natu-
ral language queries that can be converted into query
frames. This query frame is placed by the search al-
gorithm in the frame hierarchy and then matches all of
the instances that a query frames subsumes.

The Knowledge-base in [13] is a base of frames
where each software component has a set of associated
frames. Those frames contain the internal representa-
tion of components description and other associated
information (source code, executable examples, re-use
attributes, etc). The same mechanism applied to the
software descriptions is used to convert a query into
a free text of an internal representation. The set of

frames generated for the query are used by the research
process to match similar frames in the Knowledge-
base. An approximate comparison distance is adopted
by comparing the internal representation of the query
with the software components descriptions in the
Knowledge-Base. The research style is automatically
indexed. The system uses a functional information to
describe components.

The neural network technology was the most used
in the mid 1990’s in the search process. It was used
to structure a library of re-usable software according
to their semantic similarities in order to facilitate the
search and to optimize the retrieval of similar repetitive
queries. Neural networks are considered as associative
memories in some approaches in support of imprecise
queries.

The work of Clifton and Li [14] can be consid-
ered as instances of information retrieval methods. In
this approach, conventional abstractions are used to de-
scribe software. Clifton and Li use design information
as abstraction and propose neural network technology
to accomplish the match.

The approach [15] employs neural network to ex-
tend and to ameliorate the traditional methods where
the query should contain exact information about the
component in the library. The motivations behind us-
ing neural networks is to use relaxation and retrieving
component based on approximate matches to optimize
the search of similar repetitive queries and to retrieve
component(s) from a large library.

Zhiyuan [16] proposes a neural associative mem-
ory and bayesien inference technology to locate com-
ponents in a library. For each component, there are ten
facets to represent a component(Type, domain, local
identifier, etc.). The neural associative memory stores
the relationship between components and facets values.
During the search stage, the described component rep-
resentation is mapped into facets. The value of each
facet is fed into its dedicated associative memory to re-
call the components that have the same value for this
facet. In this approach, the comparison distance is ex-
act and the information type is functional.

5 Discussion

In most of the approaches, the description of the non-
functional aspects is neglected. The functional and

4

the non-functional aspects must be considered during
the specification, the design, the implementation, the
maintenance and the re-use. In the phase of the re-use,
and if our research is based only on the functional as-
pects, the selected component can not support the non-
functional constraints of the environment. In several
cases, the non-functional constraints play a decisive
role in the choice of the most powerful component(s).

In agent technology, the agent runs continuously in
the background of a development environment, which
weighs down the execution of the system and causes a
wasting of the resources. Moreover, the agent can be
integrated only into one environment of development.

The majority of approaches use neural network
technology to optimize the retrieval of similar repeti-
tive queries and to retrieve components from a large
library. Although this method is fast, it has disadvan-
tages for the developers and especially the beginners.
In fact, the system requires much time to apply to be-
ginner actions.

The problem with AI-based approaches is the dif-
ficulty of getting enough knowledge about a given do-
main. The graph nature classification of components
can be computationally expensive. Therefore, the poor
response times are one of the major problems with this
technology.

Compared to other retrieval systems, our approach
is unique in the following aspects:

(1) The first attempt to locating components is
based on a software component.

(2) The developed system can be integrated in
many software development environments.

(3) The whole system (The software development
environment, the application and the search tools)is
software component-oriented.

6 Conclusion

Software component retrieval research has been ad-
vancing very quickly over the past few decades. Re-
searchers have experimented techniques ranging from
AI-based approach to the neural network-based ap-
proach and the recent Agent techniques. At each step,
significant insights regarding how to design and imple-
ment more useful software component search systems
have been gained.

In this paper, we present a persistent component
for discovery of software component library that de-

livers re-usable components into the current working
environment of developers so that they can readily
access task-related and user-specific reusable compo-
nents. The query contains non-functional constraints
and functional information.

In the future, we plan to evaluate CSCLD and to
use it in our teaching so that our students can easily
integrate the components they need in their different
tasks. We also plan to extend this approach to exploit
the search and the description of web services. In fact
we will develop a web service to web service library
discovery with the same presented architecture system.
In addition, we plan to use WSDL as a language to de-
scribe web services and introduce other important non-
functional constraints like response time.

References

[1] A. Ben Hamadou and F. Gargouri.
Développement de logiciels: l’approche ob-
jet. Ed.CPU, Tunisia, 1998.

[2] C. D. T. Cicalese and S. Rotenstreich. Behav-
ioral specification of distributed software compo-
nent interfaces.IEEE Computer, July 1999.

[3] J. Chauvet.Corba, ActiveX et Java Beans, pages
63–65. Eyrolles, 1998.

[4] B. Morel and P. Alexander. SPARTACAS:
automating component reuse and adaptation.
IEEE Transactions on Software Engineering,
30(9):587–600, September 2004.

[5] L. Bellissard. Construction et configuration
d’application reparties. PhD thesis, Institut Na-
tional Polytechnique de Grenoble ENSIMAG,
1997.

[6] S. Lionel. Distributed Component Object Model
DCOM. Software Engineering Environments,
2000.

[7] H. Chen. Machine learning for information re-
trieval: Neural networks, symbolic learning and
genetic algorithms.Journal of the American So-
ciety for Information Science (JASIS), 46(3):194–
216, 1995.

5

[8] Y. Yunwen and G. Fischer. Context-aware brows-
ing of large component repositories.Proceed-
ings of 16th International Conference on Auto-
mated Software Engineering (ASE’01), Coronado
Island, CA, pages 99–106, Nov 2001.

[9] C. Drummond, D. Ionescu, and R. Holte. A learn-
ing agent that assists the browsing of software li-
braries. Technical Report TR-95-12, Computer
Science Dept, 1995.

[10] R. Seacord, S. Hissam, and K. Wallnau. Agora:
A search engine for software components.
IEEE Internet Computing, pages 62–70, Novem-
ber/December 1998.

[11] S. Henninger. An evolutionary approach to con-
structing effective software reuse repositories.
ACM Transactions on Software Engineering and
Methodology, 6(2):111–140, 1997.

[12] P. Devanbu. Lassie: A knowledge-based soft-
ware information system.Communications of the
ACM, 34(5):34–49, 1991.

[13] R. Girardi and B. Ibrahim. A similarity measure
for retrieving software artifacts.Proceedings of
Sixth International Conference on Software Engi-
neering and Knowledge Engineering (SEKE’94),
pages 478–485, June 21-23 1994.

[14] C. Clifton and L. Wen-Syan. Classifying software
components using design characteristics.Pro-
ceedings. The 10th Knowledge-Based Software
Engineering Conference (Cat. No.95TB100008),
pages 139–146, 1995.

[15] K. Srinivas D. Eichmann. Neural network-based
retrieval from software reuse repositories.Neu-
ral Networks and Pattern Recognition in Human
Computer Interaction, pages 215–228, 1992.

[16] W. Zhiyuan. Component-Based Software Engi-
neering. PhD thesis, Faculty of New Jersey Insti-
tute of technology, May 2000.

6

