
Experiments Results and Large Scale Measurement Data for Web Services
Performance Assessment

Riadh Ben Halima(1,2), Emna Fki(2), Khalil Drira (1) and Mohamed Jmaiel(2)

(1) LAAS-CNRS, University of Toulouse, 7 avenue de Colonel Roche, 31077 Toulouse, France
{rbenhali,khalil}@laas.fr

(2) University of Sfax, National School of Engineers, B.P.W, 3038 Sfax, Tunisia
fkiemna@yahoo.fr, Mohamed.Jmaiel@enis.rnu.tn

Abstract

Service provisioning is a challenging research area
for the design and implementation of autonomic service-
oriented software systems. It includes automated QoS man-
agement for such systems and their applications. Monitor-
ing and Measurement are two key features of QoS manage-
ment. They are addressed in this paper as elements of a
main step in provisioning of self-healing web services. In a
previous work [1], we defined and implemented a generic
architecture applicable for different services within differ-
ent business activities. Our approach is based on meta-level
communications defined as extensions of the SOAP envelope
of the exchanged messages, and implemented within han-
dlers provided by existing web service containers. Using the
web services technology, we implemented a complete pro-
totype of a service-oriented Conference Management Sys-
tem (CMS). We experienced our monitoring and measure-
ment architecture using the implemented application and
assessed successfully the scalability of our approach under
the French grid5000. In this paper, experimental results are
analyzed and concluding remarks are given.

1 Introduction

Internet progress has enabled data exchange between re-
mote collaborators and the multiplication of on-line ser-
vices. Several platforms of services are available today to
support the design, the deployment and the implementation
of these services in reduced scales of time. However, users
require more exigencies. They dislike to encounter prob-
lems while using a service. Such as, waiting for a long time
in order to book a room, checking whether the crashed rent
car service is restored, searching for services with improved
QoS. Therefore, we have to deal with these problems at the
design time, and provide a strategy for recovery in order to

satisfy users requirements. Such systems, have to inspect
their behavior and change it when the evaluation indicates
that the intended QoS is not achieved, or when a better func-
tionality or performance is required. This implies the need
of deploying entities for supervising traffic between web
service providers and requesters in order to act for healing
or preventing [3].

Three main steps are distinguished in the self-healing
process [1]: Monitoring to extract information about the
system health (using knowledge about the system config-
uration),Diagnosis & Planningto detect degradations and
generate repair plans, andRepair to enforce reconfigura-
tion actions in order to heal the system. In this paper, we
focus on QoS monitoring of a web service-based applica-
tion. We are achieving experiments on the cooperative re-
viewing system which is developed in the framework of the
WS-DIAMOND European project. We carry out experi-
ment on the ”conference search” web service. The moni-
toring is carrying out while using monitors-based approach.
We present the performance measurement values and ana-
lyze experiment results. The measurement is fulfilled under
the grid5000 which is an experimental grid platform gath-
ering 3000 nodes over 8 geographically distributed sites in
France.

This paper is organized as follows. Section 2 describes
our self-healing architecture. Section 3 presents the moni-
toring framework. Section 4 details experiments and gives
concluding remarks. Section 5 presents related works. The
last section concludes the paper.

2 Self-Healing Architecture

Figure 1 shows the different self-healing modules inter-
action within the dynamically reconfigurable web services
bus. The bus offers a flexible framework for invoking ser-
vices and managing QoS.

In the following, we describe the self-healing compo-

WS

Requester 2

WS

Requester 1

WS

Provider 1
WS

Provider 2…. ….

Requester-Side

Monitoring

Requester-Side

Monitoring
….

1: M1 4: M1 5: RespM1

6: M4:= (RespM1,

QoSP1, QoSP2)

8: RespM1

Provider-Side

Monitoring
Reconfiguration

Enforcement2: M2:= (M1, QoSP1)

3: M3:= (M2, QoSP2)

7: M5:= (M4, QoSP3)

8: L1:= (QoSP1, QoSP2, QoSP3, QoSP4)

Diagnostic
Decision Planner

Logging

Dynamically Reconfigurable Bus for Substitutable WS

12: Decision11: Report

9:ReqMes
g

Engine
Decision PlannerLog

Interception/Forward of Req/Resp messages

Keys:

gg g

Manager

Logging, Measurement & Diagnosis, Planning Services
Req/Resp WS invocation

p
10:RespMes

Interception/Forward of Req/Resp messages

SequenceNumber: MessageName:= Contentn:M:=(C1..Ck)

Figure 1. QoS-Oriented, Monitoring-based self-healing ar chitecture

nents [1]:

- Monitoring & Measurement: It observes and logs
relevant QoS parameters values. It is composed
of Requester-Side Monitoring(RSM), Provider-Side
Monitoring (RSM),andLogging Manager.

- Diagnostic Engine & Decision Planner:It detects degra-
dation and defines repair plans.

- Reconfiguration Enforcement:It enforces repair plans by
rerouting requests to the suitable web service provider.

In the sequel, we present the interaction messages ex-
changed between the web services and the self-healing
components. TheWS Requestersends a request message
M1. This message is intercepted by theRSM. MessageM1
is then extended by the first QoS parameter value (QoSP1)
in the output messageM2. For example,QoSP1may rep-
resent the invocation time of the service by the requester.
MessageM2 is intercepted by thePSM for a second time.
M2 is extended by the QoS parameter value (QoSP2) in the
output messageM3. To illustrate this,QoSP2may repre-
sent the communication time spent by the message to reach
the provider-side network. The current boundWS Provider
executes the request. The message responseM4 is inter-
cepted by thePSMfor a third extension by the QoS param-
eter value (QoSP3) in the output messageM5. For example,
QoSP3may represent the execution time associated with
the request. MessageM5 is intercepted by theRSM. It is
then extended by the fourth QoS parameter value (QoSP4).
For example,QoSP4may represent the time spent by the
response to reach the requester-side. The QoS data is ex-
tracted at this connector-level and sent to theLogging Man-
agerwhich is a web service responsible of saving data in a

log. TheDiagnostic Enginequestions periodically theLog-
ging Manager, analyzes statistically QoS values (Messages
ReqMesand RespMes), and sends alarms and diagnostic
reports (MessageReport) to theReconfiguration Decision
Planner. When a QoS degradation is detected, theRecon-
figuration Decision Plannerplans a reconfiguration and so-
licits RECfor enforcement (MessageDecision). For exam-
ple, theReconfiguration Decision Plannercan ask for leav-
ing WS Provider 1and binding requesters toWS Provider 2.
Consequently, requests will be routed toWS Provider 2in-
stead ofWS Provider 1.

3 QoS Monitoring Framework

3.1 Monitoring Approach

Our Monitoring approach is based onMonitor which is
a software entity used to intercept and to enrich SOAP mes-
sages with QoS information. A SOAP message is encapsu-
lated in a SOAP Envelop which is divided into two parts:
The Header and the Body. The SOAP Body element pro-
vides a mechanism for exchanging mandatory information
like method name, parameters, and invocation result while
the SOAP Header allows extension of SOAP messages [2].
The Monitor intercepts a SOAP message and enriches its
Header with QoS information.

In the following:

• t1 represents the time at which the request has been
issued by the service requester. It denotes the value of
QoSP1,

• t2 represents the time at which the request has been
received by the service provider. It denotes the value

2

of QoSP2,

• t3 represents the time at which the response has been
issued by the service provider. It denotes the value of
QoSP3, and

• t4 represents the time at which the response has been
received by the service requester. It denotes the value
of QoSP4.

We interrogate the log and measure QoS values, namely:
Execution Time, Communication Time, Response Time,
Throughput, Availability andScalability, according to for-
mulas shown below:

Execution Time: The time spent by the service to execute
a request;Texec = t3 − t2

Response Time: The time from sending a request until re-
ceiving a response;Tresp = t4 − t1

Communication Time: The transport time of the request
and the response;Tcomm = Tresp − Texec

Throughput: The number of requests served in a given pe-
riod [4] which is calculated through this formulas;
Throughput = Number of requests/period of time

Availability: This parameter is related to the number of
failures of a service in a time interval [4]. It is calcu-
lated through this formulas:
Availability = Number of successful responses/Total
number of requests)

Scalability: A web service that is scalable, has the ability
to not get overloaded by a massive number of parallel
requests [6] (see table 3).

3.2 Conference Management System

The Cooperative Management System is concerned with
a multi-services application involving massively cooperat-
ing web services. Its architecture aims to ensure data ex-
change flexibility between system components. It includes
three tiers composed of the following components:

Requesters: They are composed of system actors
namely: administrators, authors, reviewers and chairmen.

The self-healing components: They manage QoS
degradation between each pair of requester/provider.

Web services: They include requester-side and
provider-side web services. The requester-side web services
are used by requesters to dynamically explore and invoke
specific services. Provider-side web services offer function-
alities related to cooperative reviewing.

The cooperative reviewing process starts by searching
a suitable conference for authors. So, they send requests

to theConfSearchweb service across the bus looking for
appropriate conferences (topics, publisher, deadline, etc.).
In this paper, we monitor QoS of the web service based
Conference Management System. We interest mainly in
the measurement and evaluation of QoS presented in sec-
tion 3.1 for theConfSearchweb service.

4 Experimental Environment

To perform QoS tests of theConfSearchweb service, we
used the French grid5000. The deployment architecture is
shown in figure 2. The grid5000 is composed of several
nodes operating with fedora linux (see table 1).

T l Sit P id WS

WS

Toulouse Site Provider WS

WS

Log
Lille SiteDynamically Reconfigurable

Substitutable WS Bus

WS

Substitutable WS Bus

R
E

C

P
S

M

Logging

Manager

Requester nodes

g

Grid5000 Lyon Site

Figure 2. Infrastructure of experiments

The network configuration for the experimental environ-
ment is illustrated in table 1. We reserved nodes located in
different sites. We run two nodes for servers. The first for
CMS web services and the second for the Logging Man-
ager web service. We reserve and run respectively 1, 3, 5,
10, 25, 50, 75, 100, 200, 350, and 500 requesters1. We use
Apache Tomcat5.5 as a web server, Axis1.4 as a SOAP en-
gine, Java1.5 as a programming language, and MySQL5 as
a database management system.

Using unix shell scripts, we can build and run multiple
requesters at the same time. Each requester sends SOAP
requests to theConfSearchweb service. The requester con-
tinuously invokes the services during 10 minutes. The ex-
periments are carried out more than 10 times. Each request
will be intercepted four times in order to enrich it with QoS
values. Before the response reaches the requester, theRSM
runs a thread which logs QoS values. Based on formulas
shown in section 4, we interrogate log and compute the
response and execution times, as well as availability and
throughput.

Table 2 shows experiment results of theConfSearchweb
service. The first line shows that 1 requester invokes the

1Experiment data are available at
http://www.laas.fr/˜khalil/TOOLS/QoS-4-SHWS/index.html

3

Site Name Toulouse Sophia Bordeaux Lyon
Azur (cluster1) Helios (cluster2)

Model Sun Fire V20z IBM eServer 325 Sun Fire X4100 IBM eServer 325 IBM eServer 325
CPU AMD Opteron 248

2.2 GHz (dual core)
AMD Opteron 246
2.0 GHz (dual core)

AMD Opteron 275
2.2 GHz (dual core)

AMD Opteron 248
2,2 GHz (dual core)

AMD Opteron 246
2.0 GHz (dual core)

Memory 2 GB 2 GB 4 GB 2 GB 2 GB
Network speed Gigabit Ethernet 2 x Gigabit Ethernet 4 x Gigabit Ethernet Gigabit Ethernet Gigabit Ethernet

Table 1. Grid5000 nodes configuration.

Requesters
Number

Request
Number

Succeeded
Requests

Failed
Requests

Experiment
duration

Execution Time (ms) Communication Time (ms)

Min Max Avg Min Max Avg
1 6464 6193 271 10Min 10 222 18,163 40 1253 59,767
3 16285 15368 917 10Min 10 654 22,795 35 2447 71,895
5 18218 16903 1315 10Min 9 638 28,496 35 155917 99,683
10 29783 25528 4255 10Min 9 964 55,076 27 5454 128,297
25 35304 26337 8967 10Min 9 2989 79,059 33 5700 310,039
50 39087 25563 13524 10Min 9 4903 87,033 35 21554 737,783
75 42227 24554 17673 10Min 9 6052 95,330 31 185258 1352,367
100 43118 24380 18738 10Min 9 6021 97,900 39 211162 1780,646
200 44072 24084 19988 10Min 9 5626 116,434 34 245921 1653,905
350 44243 24869 19374 10Min 9 6271 116,985 24 489053 1735,029
500 47981 25736 22245 10Min 9 5919 117,739 24 217436 1660,850

Table 2. Performance.

ConfSearchweb service for 6193 times in 10 minutes. At
500 concurrent requesters, about 50% of requests failed. We
remark that the growth of requesters number leads to over-
load the server and to turn down the performance. However,
The execution time value is monotonically increasing while
the communication time is varying due to the traffic injected
by other users of grid5000.

Figure 3.a displays the communication time variation ac-
cording to the requester number growth. The curve keeps
growing until the level of 100 requesters. After that level,
it stills around 1,7 second. The communication time varies
between about 100ms for 10 requesters to about 2000ms
for 100 requesters. It increases highly with the number of
requesters showing the importance of this parameter in re-
sponse time observed by the requesters. Such information
is being analyzed and modelled to support a correct moni-
toring and diagnosis for this application.

Figure 3.b shows the evolution of the execution time
while increasing the requester number. It increases continu-
ously from about 20ms at 1 requester to 120ms at 500 con-
current requesters. The growth of requesters number over-
loads the service and turns down the performance.

Figure 3.c presents the throughput variation from 1 re-
quester to 500 requesters. It allows us to conclude that the
web service can respond at the maximum of about 40 re-
quests per second. This threshold is reached with 25 con-
current requesters and remains stable while the requesters
number increases.

We have registered the number of triggered exceptions
and erroneous service response. After that, we have drawn

up the service availability (see figure 3.d). We point out that
the 1 requester continuous invocation during 10 minutes
may trigger 271 exceptions. The service responds to less
than 80% of requests if the simultaneous requesters num-
ber exceeds 100. We notice that most error responses were
related to ”connection refused” exceptions, which means
that the application server capacity is exceeded in term of
scheduling.

We classified the response time in table 3 into different
intervals (in seconds): [0, 1] contains requests that took less
than 1s, [1, 2] includes requests that took between 1 and 2 s,
etc. We divided the number of requests of each interval by
the total number of succeeded requests to get the result of
the percentage in different time slots. Those percentages de-
pict the scalability of theConfSearchweb service. The first
three lines of table 3 show the execution result of 1, 5 and
10 concurrent clients. Approximately, 100% of requests are
served in a response time less than 1 second. When we ex-
ceed 50 clients, the web service suffers from the big number
of concurrent requests and slows down its response time.
For instance, about 80% of requests are completed in a re-
sponse time more than 1 second at 100 and 200 concurrent
requesters. We notice that the performance degrades when
the number of requesters growth and the availability turns
down to about 20% (see figure 3.d).

In figure 4, we drew up two curves of the response time.
In the first curve, the measurement is achieved with mon-
itors. In the second one, the measurement is done in the
client code and without using monitors. Less than 50 con-
current clients, both curves are similars and the load of con-

4

0

500

1000

1500

2000

1 3 5 10 25 50 75 100 200 350 500

Requeters number

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e
 (

m
s

)

(a)

0

20

40

60

80

100

120

140

1 3 5 10 25 50 75 100 200 350 500

Requesters number

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

(b)

0
5

10
15
20
25
30
35
40
45
50

1 3 5 10 25 50 75 100 200 350 500

Requesters number

T
h

ro
u

g
h

p
u

t
(r

e
q

/s
)

(c)

0

0,2

0,4

0,6

0,8

1

1 3 5 10 25 50 75 100 200 350 500

Requesters number

A
v
a
il

a
b

il
it

y

(d)

Figure 3. QoS parameters variation

Load level
Requesters
num-
ber

<1sec <2sec <3sec <4sec <5sec <6sec <7sec <8sec <9sec <10sec ≥10sec

1 99,97% 0,03% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
5 99,96% 0,02% 0,02% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
10 99,24% 0,63% 0,13% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
25 93,94% 3,84% 2,07% 0,15% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
50 54,27% 35,90% 6,82% 2,30% 0,55% 0,15% 0,01% 0,00% 0,00% 0,00% 0,00%
75 26,98% 57,63% 9,38% 4,44% 0,81% 0,29% 0,36% 0,09% 0,02% 0,00% 0,00%
100 18,37% 50,80% 15,99% 9,25% 4,01% 1,24% 0,24% 0,06% 0,03% 0,01% 0,00%
200 18,22% 51,86% 11,52% 8,55% 6,32% 0,86% 0,56% 0,68% 0,44% 0,30% 0,69%
350 11,98% 50,60% 22,48% 7,97% 2,72% 1,02% 0,54% 0,60% 0,41% 0,53% 1,15%
500 11,06% 45,43% 24,93% 6,01% 2,76% 1,46% 0,34% 0,25% 0,08% 0,09% 7,59%

Table 3. Scalability of the ConfSearchweb service.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 3 5 10 25 50 75 100 200 350 500

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
) With Monitors

Without Monitors

1 3 5 10 25 50 75 100 200 350 500

Number of concurrent requesters

Figure 4. Load of connectors

nectors is unimportant and about zero. The delay comes
to half second when we exceed 50 concurrent clients. This
implies that our architecture is very suitable for a service

invoked by less than 50 concurrent requesters at the same
time and we have to take into account the added load when
we exceed 50 concurrent requesters.

5 Related Work

El Saddik [7] addresses the measurement of the scalabil-
ity and the performance of a web services based e-learning
system. He carries out experiments on web service based
e-learning system under LAN and DSL environment. He
uses multi-clients system simulator which runs concurrent
threads requesters. El Saddik interprets collected moni-
toring data. As a conclusion, he suggests a proxy-based
approach for scheduling a massive flow of concurrent re-
quests. But, this delays the problem from the server level to
the proxy level.

5

[8] [7] [5] [6] Our Work
Response Time x x x x x

Measured Throughput x x x
QoS Scalability x x

Availability x x
Technics SOAP Engine Library

modification
Use TestMaker tool to
run concurrent clients

Analyse IP/TCP &
HTTP protocols

Aspect Oriented Pro-
gramming

SOAP Message Inter-
ception

web service (i) Google web API,
(ii) Amazon Box, (iii)
webserviceX.net

Own developed service
: e-learning services

Own developed ser-
vice: not provided

(i) Google web API,
(ii) CaribbeanT, (iii)
Zip2Geo

Own developed ser-
vice: Reviewing
process services

Deployment Cable connection + In-
ternet ADSL 512Kb/s

LAN 100 Mb/s + Inter-
net ADSL 960Kb/s

LAN 100 Mb/s Grid5000

Points in
favour

Automatic measure-
ment

Use of two connection
methods

No modification of
client and service code

Separate Measurement
from client code

Large-scale experiment

Points
against

Implementation depen-
dency

The clients are run
from only one machine

Great CPU load Implementation depen-
dency

Grid is closed, no con-
nection to google, etc.

Table 4. Synthesis of the related work

The work proposed in [5] presents an approach for mon-
itoring performance across network layers as HTTP, TCP,
and IP. It aims to detect faults early and reconfigures the
system at real time while minimizing the substitution cost.
But, the parsing of many layers takes enough time and con-
sumes resources which will affect the performance. In addi-
tion, the experiment is fulfilled only under two nodes which
will not reflect the behavior of such system in a large scale
use.

Authors of [8] propose a framework for QoS measure-
ment. They extend SOAP implementation API in order to
measure and log QoS parameters values. The API modifica-
tion have to be done in both sides: client and provider sides.
This automates the performance measurement values. Also,
it allows continuously updating information about QoS of
services. An experiment is achieved with available services
under the net. They run about 200 requests per day during
6 days and measure only the response time. However, this
approach is dependent on the SOAP implementation. The
extension have to be set up on the provider SOAP imple-
mentation which is difficult.

In [6] the authors propose both an evaluation approach
for QoS attributes of web service, which is service and
provider independent, and a method to analyze web service
interactions and extract important QoS information with-
out any knowledge about the service implementation. They
implement their monitors using the Aspect Oriented Pro-
gramming (AOP). They alter the behavior of the code base
by applying additional behavior at various join points in the
program. However, the aspect language is dependent to the
used programming language.

6 Conclusion

In this paper, we presented our experimental results of
a large-scale web service-based application implementing
the conference management and the cooperative reviewing

process. This experiment aims to validate the self-healing
architecture that we developed in the context of the IST WS-
DIAMOND project. The performance measures how QoS
vary under many load conditions, and how to prevent ser-
vice from QoS degradation.

The monitors load come to 0,5 second when we exceed
50 requesters. Also, when we exceed 50 requesters, the
service availability turns down to less than 50%. Conse-
quently, we have to limit the number of concurrent requests
addressed to a service to less than 50 requesters.

References

[1] R. BenHalima, M. Jmaiel, and K. Drira. A qos-oriented
reconfigurable middleware for self-healing web services.
In IEEE International Conference on Web Services (ICWS
2008), pages 104–111, Beijing (Chine), 2008. IEEE CS.

[2] M. Gudgin, M. Hadley, J.-J. Moreau, and H. F.
Nielsen. Simple Object Access Protocol (SOAP). W3C,
http://www.w3.org/TR/2001/WD-soap12-20010709/, 2001.

[3] J. O. Kephart and D. M. Chess. The vision of autonomic
computing.Computer, 36(1):41–50, 2003.

[4] C. Patel, K. Supekar, and Y. Lee. Provisioning resilient, adap-
tive web services-based workflow: A semantic modeling ap-
proach. InProceedings of the IEEE International Conference
on Web Services (ICWS’04), page 480. IEEE CS, 2004.

[5] N. Repp, R. Berbner, O. Heckmann, and R. Steinmetz. A
cross-layer approach to performance monitoring of web ser-
vices. InProceedings of the Workshop on Emerging Web Ser-
vices Technology. CEUR-WS, Dec 2006.

[6] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping per-
formance and dependability attributes ofweb services. InPro-
ceedings of the IEEE International Conference on Web Ser-
vices (ICWS’06), pages 205–212. IEEE CS, 2006.

[7] A. E. Saddik. Performance measurements of web services-
based applications.IEEE Transactions on Instrumentation
and Measurement, 55(5):1599–1605, October 2006.

[8] N. Thio and S. Karunasekera. Automatic measurement of
a qos metric for web service recommendation. InProceed-
ings of the Australian conference on Software Engineering
(ASWEC’05), pages 202–211. IEEE CS, 2005.

6

