
QoS PrototypeQoS Prototype

Riadh BEN HALIMA & Khalil DRIRA
LAAS-CNRSLAAS CNRS

Toulouse meeting: 4‐6 June 2008

IntroductionIntroduction

• QoS management in WS-DIAMOND
• Objective: QoS-oriented self-healing for WSj Q g
• Approach: Class-level Monitoring and repair based on

statistical analysis of QoS values (response time
i l) mainly)

• Implementations:
• Prototype V1 (demo review1) • Prototype V1 (demo review1)
• Prototype V2 (demo review2)

• Experiments: p
• Integration with Polimi Foodshop implementation (V1,V2)
• Integrated With UNITO Logger (V2)

2

Prototype V1 vs Prototype V2Prototype V1 vs Prototype V2

Requester

Connector

Virtual WS

Header’
WS Provider

HeaderP t t V1
Stub Java

Connector

Body

St
ub

Ja

va

Header

Body

SOAP

Header

Body

SOAP

Prototype V1

SOAPSOAP

R t

HTTP

Requester

HTTP Proxy

HTTP et

WS Provider

Header

B d

HTTP’
Header

B d

Prototype V2

Socket HTTP
msg So

keBody

HTTP

Body

HTTP

3

QoS Manager: Q g
Evolution in Prototype V2
• Main characteristics: Management at the HTTP level

• Low level programming, Socket-based
• HTTP proxies, handling of HTTP messages(including SOAP part)

• HMM based degradation detection
• Provides events for chronicles

• Act at communication-level
• Handle WS as a black box
• Appropriate for asynchronous WS because SOAP Header

information (MessageId, RelatesTo, Source) is not affected by
i i t di t (HTTP P i) b t t d using intermediates (HTTP Proxies) between requesters and

providers
• Appropriate for stateful WS because the intermediate reroutes

HTTP by modifying IP address of the destination without affecting HTTP by modifying IP address of the destination without affecting
the SOAP Envelop (Header and Body)

4

Considered QoS parametersConsidered QoS parameters
Requester Provider t1

t2

t
Texec Tresp Tcomm+ =

Request

Response

Time

t3

t4

Response

• Response Time : The time between sending a request and receiving
the response:

• Tresponse = t4 – t1 (RTT: Round Trip Time)

• Execution Time: The time that the provider needs to achieve the
processing of the request:

• Texecution = t3 – t2 (Has been considered for the prototype V1)Texecution t3 t2 (Has been considered for the prototype V1)

• Communication Time: The time that the SOAP message needs to
reach its destination:

• Tcommunication = Tresponse – Texecution (Has been considered for
other scenarios)

5

other scenarios)

Implemented functions (1/2)Implemented functions (1/2)
• Automatic and dynamic discovering of all • Automatic and dynamic discovering of all

involved parties for any applications (application
profile):

dd f h d l• IP address of the deployment computers
• Names of the communicating WSs
• Names of the operations, their kinds Names of the operations, their kinds

(synchronous/asynchronous) and their execution
durations

• Automatic and dynamic building and graphical • Automatic and dynamic building and graphical
visualization of:
• Which deployment computer hosts which WSs
• Which operation being executed by which WSs
• Sequences of invocation between operations

6

Implemented functions (2/2)

• Two application independent parts:

Implemented functions (2/2)

• Two application-independent parts:
• HTTP Proxy (1144 Java code lines)

• Monitoring, logging, and rerouting requestsg, gg g, g q
• 2 DB tables are maintained and used: WS_LOG, ROUTING

• QoS Analysis & Graphical monitoring window (1326 Java code
lines)lines)

• Extract logs, build and show application profile
• Analyze and show WSs status (using QoS values)
• 1 DB table is maintained and used: STATUS

• Two application-specific parts:
• Th WS i l ti th F dSh (P li i i l i)• The WSs implementing the FoodShop (Polimi implementation)

• A request generators (randomly and permanently generation of
requests, instead of SoapUI)

7

Logs: logged information extracted g gg
from traffic monitoring

Application level
information useful
for building
application profile

QoS related added
information useful information useful
for the analysis

8

Analysis: compute WSs y p
status by operation

WSs operation WSs operation
Status: probabilities
indicating the current indicating the current
estimation of the WS
status following a
HMM

Computed QoS
values used as
inputs for the
estimation process

9

Repair: rerouting requests by p g q y
operation

Services and
operations names and operations names and
their substitutions
according to the according to the
reconfiguration
decision

10

Example of the logged traffic p gg
monitoring values

11

Foodshop with centralized QoS p
Manager

C t fi ti d f th d t ti• Current configuration, used for the demonstration
• Configure Tomcat (add the following line in the catalina.sh file):

JAVA_OPTS= "-Dhttp.proxyHost=192.168.2.210 -Dhttp.proxyPort=8080 -DproxySet=true"

« Computer » « Computer » « Computer »« Computer »

Java client Tomcat: 192.168.2.201 Tomcat: 192.168.2.203 Tomcat: 192.168.2.202

Requester Shop SupplierWarehouse

« Computer »

QoS Mgr

QoS Analysis &
Graphical

monitoring window
QoS Mgr

192.168.2.210ROUTINGWS_LOGSTATUS
Include UNITO

Loggers

12

Distribution of prototype and p yp
application WSs

• Five Deployment computers (associated to
five independent virtual machines: VMware)five independent virtual machines: VMware)
• M1: Shop, M2: Warehouse, M3: Supplier
• M4: Additional Warehouse (for substitution)• M4: Additional Warehouse (for substitution)
• M5: QoS Manager

• Additional execution computer(real machine) • Additional execution computer(real machine)
• A request generators (Periodic invocation)

G hi l it i i d (t t f th WS)• Graphical monitoring window (status of the WSs)

13

Graphical monitoring windowGraphical monitoring window

Application profile (computed
dynamically from the log)

Statistics of operations
inside a service

14

dynamically from the log)

The application profile = pp p
Conversation sequences

192.168.2.1 192.168.2.201 192.168.2.202 192.168.2.203

Rectangle in red: the
selected WS operation

Requester Shop SUP WH

p
for analysis

Rectangle in blue:
synchronous operations

Ti
m

e Rectangle in gray:
asynchronous operations

1 Column= 1 operation’s
executions

1Line= 1 message
between operations 1 Swimlane=

1 deployment computer

15

1 deployment computer

Analysis of QoS values for y
state estimation
• Statistics

Round-Trip Time (RTT) =
response time

Operation name

Last measured RTT
response time
Average RTT:

iii RTTSRTTSRTT .).1(1 αα +−= −

Acceptable Round -Trip
Time (ARTT):
Retransmission Timeout

2.
2 iii
KSRTTARTT σ+=

(RTO):

• Model States
• Working PartiallyWorking

2. iii KSRTTRTO σ+=

• Working, PartiallyWorking,
NOTWorking

• Hidden Markov Model statistics model

16

State = WorkingState = Working

• A Web service operation in
Working state:
• is working normally (green highest)
• RTT < ARTT

Shop: CalculateTotalPrice()

17

State = PartiallyWorkingState = PartiallyWorking

• A Web service
operation in
PartiallyWorking state: PartiallyWorking state:
(yellow highest)

• After some times with
ARTT ≤ RTT < RTO

• W b i i ki • Web service is working,
but shows some
disagreements with the
expected QoSexpected QoS

Shop: receiveOrder()

18

State = NOTWorkingState = NOTWorking

• A Web service operation
in NOTWorking state:
(red highest)(red highest)

• RTT > RTO
• Web service does not work

or frequently disagrees
with expected QoS

Shop: receiveOrder()

19

Reconfiguration (1/2)Reconfiguration (1/2)

• New plan for reconfiguration
• Substitution of a serviceSubstitution of a service
• Substitution of an operation

• 1 plan= 1 sql-request
• INSERT INTO PLAN SET SERVICE=“old wsdl address” • INSERT INTO PLAN SET SERVICE= old_wsdl_address ,

ACTION=“old_operation”,REALSERVICE=“new_wsdl_add
ress”, REALACTION=“new_Operation”;

20

Reconfiguration (2/2)Reconfiguration (2/2)

N d l t tNew deployment computer

Requester Shop SUP WH New-WHq p

Before substitution

Invocation of the
operation (Red
rectangle) is rerouted g)
towards a New-WH
on the new
deployment computer After substitution

21

Summary (1/2): QoS y
prototype implementation

• Prototype V1: [IEEE ISWS/WETICE’07]
• SOAP-level management:

• Dynamic connector based architecture• Dynamic connector-based architecture

• Prototype V2: [ICEIS’08]
• HTTP Proxy : Monitoring and Reconfiguration• HTTP Proxy : Monitoring and Reconfiguration

• Integrated and experimented with the FoodShop WS-based
application

• May be adapted for other WS based applications• May be adapted for other WS-based applications
• QoS analysis & Graphical monitoring window

• Draw application WSs interaction and show status
• Applied to the FoodShop application log
• May be integrated with other loggers (as UNITO log)

22

Summary (2/2): QoS‐related y
studies and models

• Algorithms and frameworks:
• Local/Global detection algorithms of QoS

deg d tion [IEEE ICADIWT’08]degradation [IEEE ICADIWT’08]
• Reconfiguration algorithm and framework: [IEEE

ICWS’08]ICWS 08]
• Models

• Degradation detection and source identification • Degradation detection and source identification
chronicles [D3.2]

• Hidden Markovian Model for QoS-based estimation
of WS status [ICEIS’08]

• Self-healing ontology [DMVE/DEXA’08]

23

PublicationsPublications

[IEEE ISWS/WETICE’07]• [IEEE ISWS/WETICE’07]
• Riadh Ben Halima, Mohamed Jmaiel, and Khalil Drira. A QoS-driven reconfiguration

management system extending Web services with self-healing properties.
• [D3.2][]

• Specification of execution mechanisms and composition strategies for self-healing
Web services. Phase 2

• [IEEE ICADIWT’08]
• Riadh Ben Halima Karim Guennoun Mohamed Jmaiel and Khalil Drira Non-• Riadh Ben Halima, Karim Guennoun , Mohamed Jmaiel, and Khalil Drira. Non

intrusive QoS Monitoring and Analysis for Self-Healing Web Services.
• [IEEE ICWS’08]

• Riadh Ben Halima, Mohamed Jmaiel, and Khalil Drira. A QoS-Oriented
Reconfigurable Middleware For Self-HealingWeb ServicesReconfigurable Middleware For Self-HealingWeb Services

• [ICEIS’08]
• René Pegoraro, Riadh Ben Halima, Khalil Drira, Karim Guennoun, and Joao Mauricio

Rosrio. A framework for monitoring and runtime recovery of web service-based
applicationsapplications.

• [DMVE/DEXA’08]
• O. Nabuco, R. Ben Halima, K. Drira, M.G. Fugini, S. Modafferi, and E. Mussi. Model-

based QoS-enabled self-healing Web Services.

24

Thank youThank you

25

