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Requirements Validation

Requirements Validation

Requirements Management

?? Validation, Verification, Accreditation !!

• Check if evrything is OK
• With respect to what ?
• Mesurement associated with requirements

• Dont get lost with terminology problem
• Some definitions 

• IEEE SRS
• EIA-632

Content
• What the standards say
• Techniques and methods
• Well established techniques
• Case study

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

What the standards say (*)

• Main standards
• IEEE P1220
• EIA 632
• DoD 2167A

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Correctness and completeness

• A correct, complete set of requirements is 
one that correctly and completely states the 
desires and needs of the sponsor. 

• If the requirements are incorrect, the
software may meet the requirements as 
stated, but will not do what the sponsor 
wants it to do.

• If the requirements are incomplete, the
software may do only part of what the 
sponsor hoped it would do.

•'Validation: Are we building the right product'  'Verification: Are we building the product right'
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Consistent

• Consistency is obtained if the requirements
do not contradict each other. 

• Inconsistency results when one requirement 
contradicts another.

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Unambiguous
• If a requirement is subject to more than one 

interpretation, it is ambiguous. 
• Requirements should be stated simply and

completely so that they are unambiguous. 

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Functional
• Requirements should state what the sponsor 

desires : the functions and activities to be 
performed by the system.

• They should not state how the problem is to
be solved or what techniques are to be used. 

• Such decisions should be left to the system
designers.

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Verifiable
• The requirements must be verifiable in two ways: 

* do the requirements satisfy the sponsor's needs ?
* does the system satisfy the requirements?

• In the first case, the requirements must be 
compared to the sponsor's desires and needs. Do
the requirements correctly and completely specify 
the sponsor's desires and needs? 

• In the second case, once the system has been 
developed, it must be compared to the 
requirements. Does the system meet the 
requirements as they are stated?

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Traceability
• Traceable and easily changed.
• The requirements should be organized and

written in a segmented, top down manner 
that allows for easy use (traceability) and
easy modification. 

• A numbering system is useful to label the 
paragraphs and parts of the manual for 
cross referencing, indexing, and easy 
modification

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Techniques and methods
• Inspection
• Model Checking
• Simulation
• Prototyping
• Others

•'Validation: Are we building the right product'  'Verification: Are we building the product right'
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Inspection
• Most common simple et pragmatic method and 

can be 
• Manual : Human sense principal instrument
• Automatic (CAI tool) : for measurable issues

• Most evident errors/faults can be detected

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Inspection (example)

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• This presentation shows how to carry out a one-half hour inspection with senior 
managers. The purpose is to show to make managers aware that they play a key-role 
in creating project delays by approving poor quality of requirements documents.

• The inspection results shown in this real-life example successfully predicted a 
project delay of 2 calendar years.

• Poor quality marketing requirements documents prove time and again to be a good 
predictor of project delays. 

• The clue is that requirements documents with a high defect density are an indicator 
of a truly unprofessional engineering culture.

Inspection (example)

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Three Rules for Requirements:
– 1. Unambiguous to intended Readership
– 2. Clear enough to test.
– 3. No Design (how to) mixed in 

• with Requirements (how well)

• MARK Design as “D”

Rules
Introduce the following three rules for inspecting a requirements document:

Inspection (example)

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• A Defect is a violation of a Rule

• Note: If there are 10 ambiguous terms in a 
single requirement then there are 10 defects!

Defect
Explain the definition of a Defect:

Inspection (example)

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• Major: a defect severity where there is 
potential of
– high (x lost engineering hours) loss
– later downstream (test, field).

Severity
Explain:
• the definition of Major Defect
• the checkers must focus on finding Major Defects

Inspection (example)

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• Exit Conditions: (Requirements can go to Design, 
Test etc with little risk)

– Maximum 1 Major  Defect/ (Logical) Page

Logical Page = 300 Non commentary words.

Exit?
Agree with the management team on a numeric exit condition
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Inspection (example)
The Job

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• You have up to 30 minutes for checking 
One requirements Logical page from an 
82 pages document

• Count all Rule Violations = Defects
• Classify Major and minor

Inspection (example)

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• Page 81: 120 majors/p
• Page 82: 180 Majors/p
• Average  150 Majors/page x 82 page = 12,300  

Majors in the document.
-----------------
• If a Major has 1/3 chance of causing loss
• And each loss is avg 10 hours then total project 

Rework cost is about 41,000 hours loss.
• (This project was over a year late)

– 1 year = 2,000 hour  10 people

Inspection (example)
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Boss!
We have 2 options for the 82 page Requirements document.
Our sample shows that we have 180 Majors/Page.
We can spend  180 hours per page removing them with Inspection
We can rewrite the pages at a cost of 10hours each.
Or we can suffer 30% of these as bugs and fault, at an average removal cost of about 10 hours each 

(test and field debugging and re-testing), 1/3 of 180 x 10 = 600 hours per page if we do not rewrite 
(10 hours /Page) or remove before test (180 hours/Pages).

We suggest rewrite (changing something to avoid defect injection rate). But you have said you are 
against this. So we have to tell you that your option will delay our project by  600 hours x 82 = 
49,200 hours. 

Our project has 10 people on it, and they can do about 2,000 hours per year. So that is 20,000 work 
hours per year for our team. The approximate delay for your decision not to rewrite is this about 
2.5 years worse Time To Market.

We will of course do what you say, but we wanted to be sure that you understood what your boss will 
blame you for later.

Your Loyal Servant,    Tom

Letter to Your Boss
Simulation

• Abstract model of either requirements or the 
design solution

• Coverage of most scenarios 

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Model Checking
• Model checking is a method for formally verifying

finite-state concurrent systems
• Specifications about the system are expressed as

temporal logic formulas, and efficient symbolic 
algorithms are used to traverse the model defined by 
the system and check if the specification holds or not

• Extremely large state-spaces can often be traversed in
minutes

• The technique has been applied to several complex 
industrial systems 

• Site :  http://archive.comlab.ox.ac.uk/formal-methods.html

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Model
Checker FALSE

(with counterexample)

TRUE

Boolean
encoding

Behavioral
Property

Spec

(with simple
abstraction)
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Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Models of a System

Physical Prototypes Abstractions
Representations (Working Models)

Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• A mathematical model is an abstract 
representation of a system employing 
mathematical entities and concepts

• Model should be expressive enough to capture 
the essential characteristics of the system being 
modeled

• If the model is intended for deductive reasoning 
about the underlying system, it should provide 
sufficient analytic power for this purpose

Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Abstraction

Analysis

Concrete & detailed Abstract and generalized

Capable of detailed analysis Analysis of essential 
characteristics

Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• Model is more concise and precise than 
natural language, pseudo-code, and 
diagrammatic representations

• Model can be used to calculate and predict 
system behavior

• Model can be analyzed using mathematical 
reasoning -- proving properties, deriving 
new behaviors, etc.

Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Categories of 
Discrete Modeling 

Techniques

Moderate Level 
of Rigor

High Level 
of RigorInformal Models Structural Models

(Employ Formalisms)
Formal Models

(Employ Formal Semantics)

Natural Language

Diagrams

Charts

Tables

etc.

Object Models

Data Flow
Diagrams

Entity
Relationship

Diagrams

etc.

Function
Models

State
Machine
Models

Formal 
Specifications

Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Categories of 
Discrete Modeling 

Techniques
Moderate Level 

of Rigor

High Level 
of Rigor

Categories of 
Discrete Modeling 

Techniques
Moderate Level 

of Rigor

High Level 
of Rigor

Informal
Models

Structural
Models

Formal
Models

Two-stage Approach
(perhaps more robust)

Direct Approach

(difficult to accomplish)
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Model Checking and Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

A Simple String Parser: Given an input string of 0’s 
and 1’s, determine if the string starts and ends with a 1.

S1

S2

D

1

0 1

S0 0

“dead” 
state

1

“accept” 
state

0, 1

start

State Transition Function

current state

input
0

1

D    S1 S1 D

S1 S2 S2 D

S0   S1 S2 D

next state

0

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Methods for Formal Analysis

Theorem          Proof Model Animation &
Proving        Checking     Checking      Simulation

L 5

Formal analysis refers to tool-based techniques used 
to explore, debug, and verify formal specifications.

our focus here

Formality-Properties

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• Consistent -- means it is not possible to derive a statement and
it’s negation within the system

• Complete -- means every true statement within the system is 
provable

• Decidable -- means there is an effective algorithm (e.g. 
computer program) for determining whether any statement 
formed within the system is true

• A system must be consistent to be useable in formal methods 
(or any other area). While decidability and completeness would 
be nice, these can not be achieved in most interesting formal 
systems. However, this does not prevent the effective use of 
these systems.

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• A sequent is written � |- �, which means /\ � implies 
\/ �, where � is a (possibly empty) list of formulas 
{A1, …, An} and � is a (possibly empty) list of 
formulas {B1, …, Bn}
– the formulas in � are called the antecedents
– the formulas in � are called the succedents or 

consequents
• To restate, � |- � means

A1 /\ … /\ An implies B1 \/ … \/ Bn

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• A sequent calculus proof is a tree of sequents whose root 
is a sequent of the form  |- T where T is the formula to be 
proved and the antecedent is empty

• The proof tree is then generated by applying inference 
rules of the form:

�1 |- �1 … �n |- �n

� |- �
• Intuitively, this rule replaces a leaf node in the proof tree 

of form � |- � with the n new leaves specified in the rule.  
If n is zero, that branch of the proof tree terminates.

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• The Propositional Axiom (Prop_Axiom) is one of the rules 
of inference in the sequent calculus.  It has the following 
form form:

��, A� |- (A, ��

• Intuitively, this rule indicates that a proof branch is 
complete when the sequent above is derived.  Note that the 
consequent means the following:

� /\ A implies A \/ �
which is obviously true.

Prop_Axiom
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Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• The Rule for Conjunction on the Right (And_Right) is 
another of the rules of inference in the sequent calculus.  It 
has the following form:

� |- A, ������������� |- B, �

� |- (A /\ B, ��

• This rule is typical of many sequent calculus inference 
rules which divide, but simplify, a branch of the proof tree.  
Note that the consequent is replaced by two simpler 
formulas which will be easier for a mechanized theorem 
prover to deal with.

And_Right

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• The Rule for Conjunction on the Left (And_Left) is another
of the rules of inference in the sequent calculus.  It has the 
following simple (non-branching) form:

A, B, � |- �

(A /\ B, �� |- �

• This rule is typical of several sequent calculus inference 
rules which simply restate the “obvious,” thereby 
providing a form easier for a mechanized theorem prover
to deal with.

And_Left

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• The Rule for Implication on the Left (Implies_Left) is 
another of the rules of inference in the sequent calculus.  
It has the following form:

� |- A, ���������B, � |- �

(A => B, �� |- �

• Similar to the And_Right rule, this rule again splits the 
proof into two cases, each of which will be easier for the 
mechanical prover to deal with.

Implies_Left

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• The Rule for Implication on the Right (Implies_Right) is 
another of the rules of inference in the sequent calculus.  
It has the following form:

���A  |- B, �

��|- (A => B, ��

• This rule does not branch, but provides a form easier for 
a mechanized theorem prover to deal with.

Implies_Right

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

• The following example proof in the sequent calculus 
(taken from NASA Guidebook: NASA-GB-001-97, Release 1.0, 
pp. 97-101) will use only the five sequent calculus 
inference rules we define earlier -- Prop_Axiom, 
And_Left, And_Right, Implies_Left, and Implies_Right.

• The theorem (assumed to be named “Theorem 1”) to be 
proved is the following:

Theorem 1: (P => (Q => R)) =>  ((P /\ Q) => R)

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Theorem 1: (P => (Q => R)) =>  ((P /\ Q) => R)

We begin the proof by forming the requisite sequent:

Antecedents:
none

Consequents:
Formula 1: (P => (Q => R)) =>  ((P /\ Q) => R)
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Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

As our first step we apply the rule Implies_Right.  This rule will 
decompose the entire formula. Remember there is an implied “implies” 
in the sequent.  In other words this sequent could be written  |- (P => 
(Q => R))   =>   ((P /\ Q) => R).  Hence, the implies we apply the rule 
to is the outside implies on the right of the sequent

Antecedents:
Formula 1: P => (Q => R) 

Consequents:
Formula 1: (P /\ Q) => R

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

A second application of the rule Implies_Right will decompose the 
formula below the line in a similar way.  Remember that rules applying 
to the “left” part of the sequent work on formulas above the bar; rules 
applying to the “right” part of the sequent work below the bar.

Antecedents:
Formula 1:  P => (Q => R)
Formula 2:  P /\ Q

Consequents:
Formula 1:  R

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

We next apply the rule And_Left -- this rule will modify (rewrite) 
Formula 2 above the line.  Remember that all formulas above the line 
are connected by AND’s; formulas below the line are connected by 
OR’s.

Antecedents:
Formula 1:  P => (Q => R)
Formula 2:  P 
Formula 3:  Q

Consequents:
Formula 1:  R

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

We next apply the rule Implies_Left -- this rule will modify Formula 1 
above the line.  Remember that Implies_Left splits the proof tree into 
two branches.  We show and deal with Case 1 first, then move to Case 
2 later.

Case 1:
Antecedents:

Formula 1:  Q => R
Formula 2:  P 
Formula 3:  Q

Consequents:
Formula 1:  R

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

To modify Formula 1 above the line, we next apply the rule 
Implies_Left again.  Again this splits the proof tree into two branches.  
We show and deal with Case 1.1 first, then move to Case 1.2 later.

Case 1.1:
Antecedents:

Formula 1:  R
Formula 2:  P 
Formula 3:  Q

Consequents:
Formula 1:  R

Case 1.1 will now 
yield to an 
application of 
Prop_Axiom

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

As noted, an application of Prop_Axiom (Step 5) completes Case 1.1.
We now move to Case 1.2.  This is the second case resulting from the 
application of Implies_Left on the Case 1 sequent.  Another application 
of Prop_Axiom (Step 6) completes Case 1.2 (and in turn Case 1 itself).

Case 1.2:
Antecedents:

Formula 1:  P
Formula 2:  Q 

Consequents:
Formula 1:  Q
Formula 2:  R

Case 1.2 will also 
yield to an 
application of 
Prop_Axiom



9

Formality

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

Having completed the proof for Case 1, we now move to Case 2.  
Recall that this is the second case resulting from our first application of 
Implies_Left.  Another application of Prop_Axiom (Step 7) completes 
Case 2 (and in turn the entire proof).

Case 2:
Antecedents:

Formula 1:  P
Formula 2:  Q 

Consequents:
Formula 1:  P
Formula 2:  R

Case 2 will also 
yield to an 
application of 
Prop_Axiom

Prototyping
• Oriented to design model
• Dont confuse with simulation
• Some consider functional requirements only.
• Can be a partial implementation of 

requirements
• Can be an executable specification

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

The Two V‘s and techniques
• V&V in order to avoid what is >verifivation 

and validation : an eternal debate
• In either case : We check with respect to 

something.
– Consider a Petri net model of list automation
– Verifying Properties of Petri nets does not mean 

the user is satisfied

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

V&V in EIA 632

Requirement 25 - Requirement Statements Validation

Requirement 26 - Acquirer Requirements Validation

Requirement 27 - Other Stakeholder Requirements Validation

Requirement 28 - System Technical Requirements Validation

Requirement 29 - Logical Solution Representations Validation

Requirements
Validation
Process

Requirements

•'Validation: Are we building the right product'  'Verification: Are we building the product right'

V&V in EIA 632

Requirement 30 - Design Solution Verification

Requirement 31 - End Product Verification

Requirement 32 - Enabling Product Readiness

System
Verification

Process
Requirements
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Conclusions
• Many techniques
• Many tools
• Notation oriented in some cases (formal and 

semi-formal methods)

•'Validation: Are we building the right product'  'Verification: Are we building the product right'
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Next lecture

Standards and Case Studies 

Verification and Validation

•'Validation: Are we building the right product'  'Verification: Are we building the product right'


