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Abstract:

formal methods, they have yet to achieve wide industrial

In spite of the growing importance of

acceptance for several reasons, among which the fact that
most of the works about formal specifications have dealt
mostly with the notations, not with the elicitation process.
This paper is a contribution to the adaptation of formal
methods for industry with an emphasis on discrete em-
bedded control systems. A framework is proposed for the
integration of semi-formal and formal notations in order
to produce a formal specification of systems. We used two
models, a discrete event model as statecharts and a model
oriented method as VDM for the continuous (discrete
time) apects of the system. The approach relies on two
steps: the first step consists in using adequately Statemate
to guide the analyst’s understanding of the system and
produce a preliminary document. The second step consists
in generating a VDM specification from the preliminary
document on the basis of predefined rules. A tool support
is proposed to assist (possibly) the second step. The notion
of “Control kernel” is introduced, as a means to take into
account explicitly the control information in the final VDM

specification.

Keywords: formal methods, semi-formal methods,discrete

event, discrete time, VDM, Statecharts.

1 Introduction

One of the most challenging issue nowadays in
software community concerns the developpement
of systems providing a certain level of quality
at reasonable cost and time delay. This fact is
emphasized by the fact that many important
application areas such as aeronautics, nuclear
energy, telecommunication or medical applications
require a high level of reliability and safety.

For instance, in the aeronautics industry, the
current trend is to develop avionics that pro-
vide more functionality and high performances.
Consequently, they are facing the high cost of
making avionics. Nowadays, the whole avionics
represents roughly 10% of the cost of an aircraft
[Sahraoui et al.,1996], [Traoré et al.,1998]. This is
why it is important to reduce it at each develop-
ment step, from the avionics system specification
to the test of computers.

To do so, it is necessary to increase both verifica-
tion and validation of a system specification, and
the amount of automatically produced software,
and consequently to reduce testing. This can
only be envisaged by the use of formal languages
which provide a semantics to which is attached
a mathematical theory allowing only one single
possible interpretation [Arago,1997].



In fact, the use of formal methods in soft-
ware development improves the insight into and
understanding of requirements, help clarify the
customer’s requirements by highliting or avoiding
contradictions and ambiguities in the specifica-
tions, enables rigorous verification of specifications
and their software implementations, and easier
the passage from specification and design to
implementation [Fraser et al.,1994], [Wing,1990].
In spite of these benefits, the utilisation of formal
methods in indutry was relatively restricted, due
to a certain number of reasons such as the high
memory and processing time required, the esoter-
ism and the lack of friendliness of the formalisms,
the insufficient broadcasting of knowledge and
tools etc [Bowen,1995].

Given these difficulties, a number of strate-
gies have been proposed for incorporating
judiciously formal methods into the developpe-
ment process [Andrews,1988], [Kemmerer,1990],
[Babin et al.,1991], [Miriayala,1991].  With the
proliferation of such strategies, Fraser et al. have
identified in [Fraser et al.,1994] throughout a
classification, their commonalities, their differences
and their applicability to different context. This
classification relies mainly on two aspects:

1. the formalization process which consists either
in a direct process or in a transitional process.
In the transitional strategies, semi-formal
notations are used as intermediate steps
in the production of a formal specification,
while direct strategies are characterized by the
absence of any intermediate use of semi-formal
notations.

2. the formalization support which concerns the
computer support that a strategy use for pro-
ducing formal specifications.

., From this principles, they identified four generic
strategies:  direct unassisted, direct computer-
assisted, transitional unassisted and transitional
computer-unassisted. It appeared on the first
hand that the transitional strategies are best suited
for large or ill-structured systems than the direct
strategies, thanks to the structuring and elicitation
features of semi-formal methods.

On the other hand, the computer-assisted strate-

gies are, naturally, superior to the unassisted ones,
which requires an important manpower and could
lead to many errors. So this kind of strategies are
the best-suited for the penetration of formal meth-
ods into the industry.

The purpose of this paper is to propose a computer-
assisted strategy taking into account the limitations
of the existing strategies.

We propose an approach combining the features
of semi-formal methods (friendliness, communica-
bility etc.) and formal methods (rigor, precision
etc.) We use statemate notations (especially stat-
echarts and activity-charts) [Harel,1996] and the
Vienna Development method(VDM) [Jones,1990],
[Fitzgerald,1997], as surrogates for the informal and
formal specification languages, respectively.

The proposed approach, consists in giving struc-
tural guidance for the construction of a formal spec-
ification of the system which should then be used
as a starting basis for the rest of the developement
process.

The paper is structured as follows. Section II jus-
tifies our strategy throughout an overview of exist-
ing strategies and highlights the reasons underlying
the choice of the used methods. Several case stud-
1es were developped with the proposed approach;
we introduce in this section an avionics case study
proposed by AEROSPATTALE Aircraft, in order to
illustrate the key aspects of the approach. Section
IIT outline our approach for integrating statemate
and VDM. Section IV deals with the control as-
pects, the main weakness of the existing strategies;
the process of translation from statecharts to VDM
is detailed througout the introduction of the notion
of Control Kernel. Section V reports upon the au-
tomation of the translation process. Finally section
VI discusses to what extent the work presented in
this paper is of significance to software development
community.

2 Context of the Work

2.1 State of the Art

Most of the reported examples of strategies inte-
grating formal and semi-formal specification tech-
niques, could be classified in two kinds.

The philosophy behind the first kind of strategy
consists in developing first a specification of the



system using a structured method, and then de-
riving a formal specification on the basis of a set
of translation rules. The semi-formal method will
just serves in this case in giving structural guidance
for the construction of a formal specification of the
system.

For instance in the case of the strategies proposed
in [Conger et al.,1990] and in [Larsen et al.,1991],
first Structured Analysis heuristics are used to de-
velop a top-down hierarchically partitioned data-
flow diagram. Then formal specifications are de-
rived according to the overall architecture provided
by the DFD set: data-flows and data stores are de-
scribed in the abstract syntax and a VDM speci-
fication is produced for each data transformation
process in the DFD set.

The main limitation of these strategies concerns the
fact that most of them are function-oriented, and
so far tend to obscur the control aspects.

The second kind of strategies consists in exploit-
ing the best features of many different specifi-
cation techniques to specify a complex system
[Traore,1997]. 1In this context, formal methods
could be used for example just for the description
of the critical aspects of the system. Therefore the
global specification will consists in several partial
specifcations expressed in different languages.

For instance in [Ledru,1996], an approach is pro-
posed where formal techniques are inserted into
classical specification formalisms (Entity-Relation,
State Transition Diagram and DFD): semi-formal
notations are translated or annotated with formal
notations (DFD with Z). This permits to look at
the specification into finer details and then improve
precision.

The case study developped in [Bussow,1996] is
closely related to this work. It proposes a sepa-
ration of concerns throughout multiple views and
derives proof obligations for systematic relation-
ships between views: data are descibed with the
information model of OMT, the control view is de-
scribed with statecharts and the functional view is
described with Z [Spivey,1989], [Spivey,1992)].

The main problem with this kind of strategies con-
cerns the integration of the partial specifications
written in different notations. These partial speci-
fications should be integrated in such a way that we
obtain a consistent global specification which could
serve as a basis for further development.

Several works dealing with this issue have been car-

ried out [Hailpern,1986], [Reiss,1987], [Wile,1992],
[Zave,1993], [Nuseibeh et al.,1994] etc.

In the approach proposed by Zave in [Zave,1993],
[Zave,1996] and [Zave,1997], all specification lan-
guages are assigned semantics in the same domain
(first-order predicate logic). The semantics of the
composition will be the composition of the corre-
sponding specificand sets. One of the main limi-
tation of this approach concerns the complexity of
the translation of specification languages into first-
order predicate logic.

2.2 Motivations of our Work

In the context described above, it appears that it
is necessary to define another kind of strategy tak-
ing into account the different aspects of a complex
system and proposing a simple format of validation
of the global specification.

The best way to achieve this objective consists in
using a unified format for the integration of the
partial specifications. The global specification ob-
tained, should also take into account all the dif-
ferent aspects induced by the requirements (so the
control aspects when relevant).

The work developped in this paper is based on these
considerations. The approach proposed consists in
the combination of two structured approaches:

e a top-down approach with Satemate
[Harel,1996] which highlights the structure of
the problem;

e a bottom-up approach, consisting in a system-
atic translation of the previous semi-formal
specification into a global formal specification

using VDM [Fitzgerald,1997].

2.8 Selection of the Formalisms

2.3.1 Statecharts/Activity-charts

Statecharts and activity-charts are both notations
belonging to the statemate approach [Harel,1996].
Statecharts are dedicated for the modeling of re-
active views and activity-charts for the functional
view.

Activity-charts can be viewed as a multi-level data-
flow diagrams. They describe functions or activi-
ties, as well as data-stores, all organized into hier-
archy and connected via the information that flows



between them. The behavior of a non-basic activity
1s described by an associated sub-activity, refered
to as its control-activity. Each control-activity is
described by corresponding statecharts in the con-
trol view.

Statecharts represent an extensive generalization
of state-transition diagrams. They are based on
multi-level states, decomposed in and/or fashion,
and provide constructs for dealing with concur-
rency and encapsulation.

Additional nongraphical information related to the
views and their flows of information are given in a
Data Dictionary.

2.3.2 VDMS-SL [Fitzgerald,1997]

We retain VDM-SL as the common format because
it has proven to be sufficiently expressive for mod-
elling complex components and it has become one
of the most widely used formal notations in both
academia and industry. VDM-SL is the specifica-
tion language associated to VDM ( Vienna Devel-
opment method), a model-oriented formal method
suitable for the development of transformational
systems. VDM-SL provides powerful constructs to
deal with complex data structures and to describe
the transformations of the system. There is also
a module-based mechanism which help in tackling
complex systems. But, originally, the language was
designed mainly for the description of abstract data
types and sequential systems. Thus the language
is poor in constructs dealing with control aspects
such as time, concurrency etc.

To overcome these limitations, we introduce the no-
tion of control kernel as a means to define explicitly
the control aspects in a VDM specification.

2.4 Presentation of the Case Study

The case study involves the FANS (Future Air Nav-
igation System), an avionics project of AEROSPA-
TIALE Aircraft [Boyer,1997].

The main purpose of the FANS is the improvement
of the Alr traffic management. Among the main
Data Link applications of the FANS, there are the
CPDLC (Controller/Pilot Data Link Communica-
tion), the AFN (Air traffic facilities Notification)
and the ADS (Automatic dependant Surveillance).
In this case study, we are interested especially in

the AFN.
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Figure 1: AFN messages



The CPDLC allows aircrafts and ATC center (Air
Traffic controller) on ground, to communicate by
Data link (instead of vocally). Before the commu-
nication is iniated, connexion should be established
throughout the AFN.

The AFN allows an ATC center (Air Traffic Con-
troller), to obtain informations about the data link
capabilities of an aircraft and to exchange commu-
nication addresses. The AFN operates through two
main phases:

1. The Log-On: this phase covers the connexion
between an Aircraft and a ground ATC center (see
figure 1 (a)). Tt is iniated either on request of the
pilot or automatically, by giving the address of the
ATC center. A message FN_CON (contact) is then
sent to the center, which should reply with another
message labelled FN_ACK (acknowledgement).

2. Address Changing: when the aircraft reachs
the limits of of the area covered by the current cen-
ter, this latter will send to the pilot, the message
FN_CAD (contact advisory), in order to ask him to
contact a next center (see figure 1 (b)).

At the reception of this message, the aircraft
should reply with a first message labeled FN_RESP
(response) and later, with a second message
FN_COMP (complete), on the completion of the
contact with the next center.

3 The Approach

3.1 Approach Overview

The approach proposed in this paper starts with
the preliminary specification of the system using
statemate, followed by the progressive translation
of the obtained specification into VDM-SL.

The approach best detailed by fig 2, consists of the
following steps:

1. Specification with Activity-charts: the
requirements analysis starts with the functionnal
specification with Activity-charts. This will con-
sist mainly in the definition of the context dia-
gram, composed by the top-level activity, the ex-
ternal processes and the information flows between
the system and the environment.

2. Decomposition: the context diagram is then
refined in a number of subactivities , data-stores
and a control activity. This process is repeated for
every subactivity until an acceptable level of detail

V

1. Specification with
Activity-charts

v

context diagra

V
non-basic
activities

2. decomposition
\V

control activities

3. Specification with
Statecharts

control model

4. Tranlation into
VDM-SL

v

global VDM spes

Figure 2: The General Approach
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is reached.

Finally, we obtain a hierachy of activities includ-
ing a set of non-basic activities (activities which
require further decompositions), a set of basic ac-
tivities (activities which don’t require other decom-
positions) and a set of control activities (activities
describing the control behavior of their parent ac-
tivities).

In our approach, the definition of data and basic
activities will consists only of the graphical infor-
mations provided. It will not be necessary to give
textual information through the Data dictionnary
as 1t is normally the case with Statemate.

3. Specification with Statecharts: for each
control-activity, we give a corresponding State-
charts description.  Textual information about
these statecharts are also given in the Data-
Dictionnary.

4. Translation into VDM-SL: the statemate
specification obtained during the previous step is
then translated into a VDM-SL specification. At
the end of this step, we obtain global formal spec-
ification which is used as the basis of the formal
design.

3.1.1 Example
' Aircraft
| —_—
| database
ac_(lata
'ATC |
control :
: panel ! icao_id +cde
E———
oo AFN
|
| ATC : ctr_addr +cde
: ground———— =
|
l/ indication
N /

indicator

Figure 3: The AFN context diagram

We start the analysis of the case study by giv-

ing the context diagram of the AFN system (see
figure 3). The environment is composed of several
external activities such as the onboard ATC control
panel (for typing addresses), the aircraft database
(references of onboard AFN applications, aircraft
position etc.), a ground ATC center and onboard
indicators (presenting the success or failure of mes-
sage exchange).
We refine the top-level activity AFN during suc-
cessive steps, so that an acceptable level of detail
is reached. This will give rise to a hierarchy of ac-
tivities composed of basic activities, non-basic ac-
tivities and control activities. Figure 4 gives an
overview of this hierarchy.

The first level of refinement leads to two non-basic
subactivities BPROCESS AND GPROCESS, and a
control activity afn_sc. BPROCESS describes the
data transformations onboard, while GPROCESS
corresponds to the ground transformations.

The activity BPROCESS is refined in two non-basic
activities, CONTACT and BCHECK, a basic activ-
ity, COMPLETE and a control activity bp_sc.

e The purpose of CONTACT is to generate the
message FN_CON on request of either the pilot
or the ground ATC center; in the latter case,
the message FN_RESP is also generated.

e The purpose of BOCHECK is to check the va-
lidity of the message received onboard (i.e.
FN_AK and FN_CAD) and to give to the pilot
an indication concerning the success or failure
of the process of message exchange.

e The purpose of COMPLETE s to generate the
message FN_COMP.

The activity CONTACT is refined in four basic
subactivities: DSP (transformation of the OACI
code typed in by the pilot into a seven characters
center address), CNORM (generation of message
FN_CON on pilot request or automatically), CADV
(generation of message FN_CON on a ground ATC
center request) and RFESPONSE (generation of
message FN_RESP).

The control activities defined in the preceeding
models should be described with statecharts. The
statechart corresponding to con_sc, the control ac-
tivity of CONTACT is represented by figure 5. The
activity starts in state inet; the generation of event
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Figure 4: The AFN hierarchy
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Figure 5: Statecharts describing control activity
CON_SC

send_fncon starts the execution of activity DSP in
state d_processing, followed by the execution of ac-
tivity CNORM in state norm_con, and then the de-
activation in state 7. The generation of event cad
(contact advisory), when state init is active, leads
to the execution of activity RESPONSE in state
responding, followed by the execution of activity
CADV in state adv_con.

3.2 The Translation Process

The translation into VDM is performed, bottom-
up, in a structured manner. The translation relies
on the definition, for each non-basic activity, of a
corresponding VDM module. Each module consists
of the following kinds of elements:

e a set of data types corresponding to the trans-
lation of the data associated to the relevant
activity;

e a set of VDM functions and operations corre-
sponding to the basic subactivities;

e a set of VDM data types, functions and oper-
ations corresponding to the translation of the
control subactivity.

The translation of control activities relies on the
definition of what we refer to, in this work, as the
control kernel. The control kernel is the set of the
different elements which synchronise the different
processes of the system. Deriving from the transla-
tion of the statecharts associated to control activ-
ities, it i1s composed of a predefined VDM module



named module CK (for control kernel) and of a set
of elements (data types, operations, state and val-
ues definitions) specific to each control activity, so
to the module correponding to its parent activity.
Instead of giving textual definitions (in the data
Dictionnary) for the data involved by a non-basic
activity, a direct translation is given as VDM data
types definitions.

The basic functionnalities involved by a non-basic
activity, are also directly defined as VDM functions
or operations. By basic functionnalities, we mean
the basic subactivities as well as the actions at-
tached to the transitions and to the static reactions
associated to the statecharts corresponding to the
control subactivity.

The VDM module associated to a non-basic activ-
ity describes the different elements resulting from
its refinement, but in order to be able to handle eas-
ily its representation in VDM, we introduce another
operation, identified as TRANSFER operation, as
the definition of its global behavior.

The translation process is performed algorithmi-
cally through the following steps:

1. Definition of module CK (which is predefined)

2. Tranlation of non-basic activities which have
only basic subactivities, in the following way:
(i) translation of the data involved, directly
into VDM data types;

(ii) definition of the basic functionnalities in-
volved, directly in VDM notation;

(iii) translation of the control subactivity by
introducing the specific elements of the con-
trol kernel.

3. Translation of non-basic activities which non-
basic subactivities have already beeen trans-
lated, in the following way:

(i) importation (by the relevant VDM mod-
ule) of TRANSFER operations corresponding
to the non-basic subactivities;

(ii) step 2.

4. Tteration of step 3 until the top-level activity

1s translated.

3.2.1 Example

If we consider the activity-charts hierarchy given
in figure 4, the translation step corresponding

module afn

BPROCESS GPRQCESS

module bprocess module gprocess
-COMPLETE -

A

module CK
exports al

CONTACT

modul e contact
-CADV
-CNORM
-DSP
-RESPONSE

Figure 6: The translation process

to GPROCESS, starts with the definition of the
modules corresponding to the non-basic activities
CONTACT and BCHECK, in either order, because
all their subactivities are basic activities.

For instance, for the translation of CONTACT, a
VDM module named module contact is defined.
This module will contain the definitions of the data
types corresponding to the data-items of activity
CONTACT. The basic subactivities of CONTACT
(i.e CADV, CNORM, DSP and RESPONSE) are
directly defined as VDM operations or functions in
module contact (see figure 6). The control activity
con_sc 1s also translated throughout the control
kernel.

A similar way 1s followed for the activities derived
from the refinement of GPROCESS.

The next step will concern the activities GPRO-
CESS and BPROCESS, in either order, since all
their non-basic subactivities (i.e. CONTACT etc.)
have already been translated, during the previous
step.

For activity BPROCESS, a VDM module bprocess
will be defined in the same way as in the previous
step, except the fact that its non-basic subactiv-
ities (i.e. CONTACT and BCHECK), should be
represented in this module, by the importation of
their corresponding TRANSFER operation.

Thus subactivity CONTACT is represented in
module bprocess, by the importation from module



contact of the operation TRANSFER renamed
CONTACT (see figure 6).

Finally,the last steps will concern the top-level
activity AFN, for which, a module labelled afn is
defined. This module will imports the TRANSFER
operations corresponding to activities BPROCESS
and GPROCESS from the rtelevant modules.

In the end, the VDM global specification will con-
sist of the modules corresponding to the non-basic
activities and module CK, which is predefined and
belongs to the control kernel.

3.3 Data Translation

ACTO

ACT1

f2 h

Figure 7: Internal data/Interface data

In this approach, in order to be able to take ad-
vantage of the rich set of mechanisms offered by
VDM for data modelling, we propose a direct defi-
nition in VDM notation.

Given a non-basic activity, we consider two kinds
of data:

1. Internal data which are produced and con-
sumed locally (e.g. by the subactivities). For
instance in the case of activity ACT1 ( in fig.
7), f1,f2 and h are the internal data.

2. Interface data which are either produced lo-
cally and consumed externally, or produced
locally and consumed externally. In fig. 7,
¢,g and i are examples of external data (for

ACTI).

Data translation will be performed in this setting
under the following rule:
Rule 1

There are two cases for data definition:

1. If the relevant activity s not the top-level ac-
tivity, the data types corresponding to the in-
ternal data are defined in its corresponding
VDM module while the data types correspond-
g to the interface data are tmported from the
parent activity.

2. For the top-level activity, the data types cor-
responding both to internal and interface data
are defined in the corresponding module.

3.3.1 Example

The data involved in activity CONTACT are
the following (see figure 4): oaci_addr, ctr_addr,
ac_data, ac_position, ac_application, ac_reason,
fn_con, fn_resp, fn_cad. There is only one internal
data: ctr_addr which corresponds to a seven
characters ATC center address.

So, module contact should define the data type
n_address corresponding to ctr_addr and imports
the data types corresponding to the other data.
We give in the following an overview of this module:

module contact

wtmports  from CK all
from afn types address;
ac_data;
position;
application_con;
msg-_con;
msg-_resp;
msg_cad
from bprocess types  reason
exports
definitions
types
n_address = seq of char
v na == len na = 7;

end contact



4 The Control Kernel

The control behavior of a non-basic activity is rep-
resented by its control activity which in its turn, is
described by a statechart. So the translation of the
control data will consist in the translation of the
related statechart.

The rationale behind the translation consists in
defining in VDM, generic data types and opera-
tions corresponding to the basic semantic features
of Statechart notation, such as state, event, tran-
sitton ete. The translation of a specific statecharts
will then consist in the adaptation of these generic
elements.

We give, in this study, the name of control kernel
to the sum of these generic elements.

The elements of the control kernel are shared
among a predefined module identified as module
CK and the different modules corresponding to the
translation of the non-basic activities.

There are four kinds of elements: data types, state
variables; functions/operations and values defini-
tions.

4.1 Data Types

We map the basic features of statecharts with VDM
data types; this give rise to the following defini-
tions:

4.1.1 Data types deriving from basic fea-

tures

We define a token type for events, conditions and
transformations (this include all kinds of transfor-
mations):

event = token; condition = token; action = token
In order to be able to access to the value of con-
ditions, we define a map type relating condition to
their truth value:

condition_value = map condition to bool

4.1.2 Static reactions

The reactions attached to a state in the data Dic-
tionary are called static reactions. Associating the
reaction {rigger/action with state sin the data Dic-
tionary means that as long as the system is in state
s, the action is performed whenever the trigger oc-
curs.

We define a composite type labeled reaction, as fol-

lows:

reaction :: act: action
trigger: [event]
where act represents the associated action and trig-

ger, the triggering event.

4.1.3 States

we translate the notion of state as a composite
data type called state_type:
state_type ::  direct_substate: set of state_type
wnstate: condition
P_activity_T': set of action
P_activity_W: set of action
P_static_R: set of reaction
my s == s not wn set s.direct_substate.
with

o direct_substate: the set of direct substates of
the considered state;

e instate: a condition corresponding to the stat-
echart primitive in(state), indicating the acti-
vation status of the state;

e P_activity_T: the set of activity defined
“throughout” the state;

e P_activity ' W: the
“within” the state;

set  of activity defined

o P_static_R: the set of static reactions associ-
ated to the state.

4.1.4 Configuration

The configuration is defined in Statemate as the set
of maximal states where the system resides simul-
taneously. We define a corresponding VDM type

as follows:
configuration = set of state_type

inv C' == (root in set C) and

(forall s in set C &

(if Andstate(s)

then s.direct_substate subset C

elseif Orstate(s)

then card (C inters.direct_substate) = 1

else s.direct_substate = {} ))
root 1s the identifier of the root state; the previous
definition means that a configuration is a set C of
states obeying to the following rules:



e (' contains the root state;

e If C'contains an OR-state A, then it must con-
tain exactly one of A substates;

e If C contains an AND-state A, then it must
contain all the substates of A.

4.1.5 System status and executions

step step step
status status status status
(initial)

Figure 8: System execution

The behavior of a system described with state-
mate is a set of possible executions, representing
system responses to a sequence of stimuli from the
environment.

An execution consists in a sequence of detailed
snapshots or status of the system. The first ele-
ment in the sequence is the initial status; the other
elements are deduced from their predecesor by ex-
ecuting a step (see fig. 8).

A sytem status is composed, in statemate, of the
following elements:

e the system configuration
e the actual data values

the truth value of the conditions

e the set of the events generated internally and
the set of scheduled actions and events

the system history informations

We define the corresponding data type in VDM,

as follows:

status ::  di: data_typel

dn: data_typen

INT: set of event
C_value: condition_value
conf: configuration

where fields dI to dn corresponds to the data
involved, INT is the set of event generated in-
ternally, Cl_value describes the correpsondence

between the relevant conditions and their truth
values, conf is the current configuration of the
system.

We define another type corresponding to system
executions, as a sequence of status:

run = seq of status

Example: We give in the following the definition
of type status corresponding to module contact; the
above skeleton is adapted by including the fields
corresponding to the different data involved.
module contact

definitions

types

n_address = seq of char

v na == len na = 7;

status ::  di:afn’ address

d2: n_address
d3: afn’acdata
d4: afn’position
d5: seq of afn’application_con
d6: bprocess’reason
d7: afn’msg_con
d8: afn’msg_resp
d9: afn’msg_cad
INT: set of CK’event
C_value: CK’condition_value
conf: configuration ;

run = seq of status;

configuration = ...

end contact

4.1.6 Transitions

Transitions are represented in Statemate by the

following syntax: efc]/A, where ¢ is the triggering

event, ¢ 1s the triggering condition and A is the

implied action.

We define a composite data type as the representa-

tion framework of transitions in VDM, as follows:
transition ::  trig_ev: [event]

trig_cond: [condition]

source: set of state_type

target: set of state_type

Paction: set of action

t.source <> {} and

ttarget <> {}

mvt ==

with {rig_ev the triggering event, {rig_cond
the triggering condition, source the set of depart



states, target the set of target states and Paction
the set of actions associated to the transition.

4.1.7 Abstract representation of a state-
charts corresponding to a control ac-
tivity

The main objective of the control kernel is to
represent, in VDM notation, the control informa-
tion which is carried by control activities. We
have introduced above, the different elements of a
statechart individually. We propose to integrate
these different elements in a global data structure
which could be considered as an abstract data type
representation of a statechart describing a control
activity. Abstract data types have been formally
defined by Guttag and Horning in [Guttag,1978].

We define the following composite type:

se_structure ::  Pstat: set of state_type
Pevent: set of event
Pcondition: set of condition
Paction: set of action
Preaction: set of reaction
Pactivity: set of action
Ptransition: set of transition

inv mk_sc_structure(Ps, Pe, Pc, Pa, Pr,Pav, Pt} ==

(forall srin set Pr & (sr.trigger in set Pe

and sr.act in set Pa)) and (forall s in set Ps

& ((s.direct_substate subset Ps)

and (s.instate in set Pc) and

( (dunion {s.P_en_action,s.P_ex_action,

s.P_activity_T,s. P_activity_ W} ) subset Pa)

and ({s.P_static_R} subset Pr))

and (forall t in set Pt &

((t.trig_ev in set Pe} and (t.trig_cond in set Pc)

and ((dunion {t.source,t.target}) subset Ps)

and (t.Paction subset Pa))}))

With Pstat the set of states, Pevent the set
of events, Pcondition the set of conditions, Paction
the set of actions, Preaction the set of static reac-
tions, Pactivity the set of actions and Ptransition
the set of transitions.

4.2 State Definition

For each module correponding to the translation of
a non-basic activity, we define a global state com-
posed of three fields:

History: in order to capture the history of the sys-
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tem, we define a generic state variable labelled
ST representing the execution of the corre-
sponding non-basic activity; ST is of type run.

Occured events: we define the state variable oc-
cur as the set of all the events generated (in-
ternally and externally) at the beginning of a
step.

External events: we represent the set of external
events by a state variable labelled EXT.

So we can give the following template for state def-

inition within the modules:
state ... of

ST: run

occur: set of event
EXT: set of event
end

mit s ==s= ...

4.3 Predefined Functions and Oper-
ations

Besides the data types definitions, we define
a number of functions and operations for the
description of statecharts.

There are three main operations labeled
EXEC_action, EXFEC_step, TRANSFER and
several auxiliary functions/operations used in the
definitions of the main operations.

4.3.1 Operation EXEC _action

We encapsulate the set of basic functionnalities
of a non-basic activity (e.g. basic subactivities
and actions) in a VDM operation, in order to be
able to handle them as a whole. We label this
operation as EXEC_action and give the following
template, which should be adapted according to
the non-basic activity:



EXEC_action :
EXEC_action(A,sta) ==
(del i: status := sta ;

if A <>{}

then ( for all a in set A do

( cases a:

mk_token( “OP1”) — > ... := OP1{...)
e — > L

mk_token( “OPn”) — > ... := OPn(...)

others — > skip
end ) )

else skip;
return i )

The OPi representing the VDM operations
corresponding to the basic functionnalities.
Example: we give in the following, the definition
of EXEC _action corresponding to module contact.
The basic transformations involved are DSP,
CNORM, CADV, RESPONSE (see figure 4).

module contact

definitions

operations
CNORM: n_address*afn’acdata*afn’position
*seq of afn’application_con ==> afn’msg_con

CNORM(ad,ac_d,pos,app) ==
(del i: msg_con;

— message d’entéte
t.head.mfi := < B0 >;
t.head.ctr_addr := ad;
v.head.imi := < AFN >;
v.head.mti := < FMH >;
t.head.ac := ac_d;

— corps du message
vtal.mt ;= < FPO >;
v.tail.curr_pos := pos;
wtail.act fl .= 1;
w.tail.con_app := app;
return i )

pre app(len app).ap_name = mk_token(”AIF”);
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set of action*status ==> status

EXEC_action :
==> status
EXEC_action(A,sta) ==

(del i: status := sta ;

if A <>{}

then ( for all a in set A do

( cases a:

mk_token( “dsp”) — > i.d2 := DSP(i.d1)
mk_token( “cnorm”) — >

i.d7 := CNORM(i.d2,i.d3,i.d/,i.d5)
mk_token( “cadv”) — >

i.d7 := CADV/(i.d9,i.d},i.d5)

mk_token( “resp”) — >

i.d8 := RESPONSE(i.d9,i.d6)

others — > skip

end ) )

else skip;

return i )

set of CK’action*status

end contact

4.3.2 Operation EXEC _step

The execution of steps could be considered as the
basic units describing the behavior of a system in
Statemate. So we introduce the VDM operation
labelled EXEC _step as the description of step exe-
cution. The following definition is given:

EXEC step : set of event ==> status

EXEC step(oc) ==

(del i: status, j:status,s: status,

S: set of state_type, H:set of transition;

s:= ST(lenST);

H :={t| tin set SC.Ptransition

& enable(t,s,oc) };

s INT :={};

if (H<> {} oroc<>{})

then (i := TRANSIT(s,0c,H);

;= t.conf inter s.conf;

J:= STATIC _reaction(i,oc,S);

ST := ST[j])

else skip;

return ST(len ST) };
Step execution is function of the current status and
of the set of events (internal and external) available
at the beginning of the step.
There are two phases: firstly the transition from
a configuration to another, described by the auxil-
iary operation labelled TRANSIT and secondly the
execution of static reactions, described by the aux-
iliary operation STATIC _reaction.



The transition step is based on the set H of the en-
abled transitions chosen among the global set of the
transitions associated to the control activity which
is represented by the value SC' (see section 4.4).
The enabling status of a transition is described by
another auxiliary operation denoted enable.

The definitions and details of these operations

could be found in [Traore,1998].

4.3.3 Operation TRANSFER

Operation EXEC_step describes the behavior of a
non-basic activity only during a step; in order to
have a representation of its global behavior, we in-
troduce an operation labelled TRANSFER which
is built from the definition of EXEC_step and the
structure of the corresponding control activity. The
structure of a control activity depends on the ter-
mination type of its parent activity.
There are three kinds of activities according
to the termination type: activities that have
self-termination, activities that have controlled-
termination, activities that have both and which
are considered as self-terminating.
The control activity associated to a self-termination
activity has a T-connector, which is equivalent to a
basic state that we label T transition towards this
connector, stops the statecharts and the activity is
deactivated.

The controlled-termination activities are stopped

e .
A
—€n = e

Figure 9: Building of operation TRANSFER

externally, most of the time, by the generation of
an event that we label stop. We give a different
template as the definition of TRANSFER for each
kind of activity. Consider (see figure 9) a non-
basic activity A with el,...,ep the input data, of
respective types F1,...,Ep and s1,...,sn the output
data, of respective types S1,...,5n. As, we saw in
the definition of type status, each data has a corre-

sponding status field. We consider that these fields
are d1,...,dn+p with dI to dp corresponding respec-
tively to el,...,ep and dp+1 to dn+p correspoding
respectively to s1,...,sn.
We give in the following, the template correspond-
ing to self-terminating activities, which is a combi-
nation of the other two cases.

TRANSFER: E1*...*Ep ==> S1*...*Sn

TRANSFER(el,...,ep) ==

(del i: status, j1: S1,....gn: Sn;

ST(len ST).dl := el;

ST(len ST).dp := ep;

while ( (stop not in set EXT) or

(T not in set ST(len ST).conf ) do

( occur := EXT union ST(len ST).INT;
i := EXEC_step(occur) ;

occur := {})};
jl:=ddp+1

jn = i.dn—+ p;

return mk_(j1,...,jn) )
Input data are processed in an execution loop,
througout successive steps. The loop is exited only
if the final state T is reached or if the event stop
is generated. The templates corresponding to the
other kinds of control activity, could be found in

[Traore,1998].

4.4 Values Definitions

We define a parameter labelled SC representing the
abstract representation of the statechart asociated
to a control activity; this parameter is of type
sc_structure.

The definition of the specific part of this statechart
will consist in giving the value definition of SC
in the relevant VDM module.  Consequently,
we should also give values definitions for all the
elements (states, transitions, reactions etc.) used
in the value of SC. We give in the following, an
overview of the value section of module contact,
the corresponding statechart, i.e. con_sc, is given
in figure 5.

module contact

values

init C K’state type

mk_C K'state_type({},in_init, {},{}, {});
d_processing : C'K'state type
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mk_CK'state_type({},in_d_proc, {DSP}, {},{});  We define data types and operations corresponding
to these features; more informations could be found

t1 : CK'transition = in [Traore,1998].

mk_C K'transition(send_fncon, nil, {init},

{d_processing}, {}); 4.6 Pratical Use
2 : C K'transition =

mk_C K'transition(cad, nil, {init}, {responding}, {}/The different definitions that were given above be-
long to the control kernel. The elements of the

SC : CK'sc_structure = control kernel are distributed among a VDM pre-
mk_CK'sc_structure({con_sc, init, defined module labelled CK and the different mod-
d_processing, ules corresponding to the non-basic activities. We

norm_con, responding, adv_con, T}, {send_fncon, cadive 1n figures 11, 12 and the fig:template2 the tem-
sp_DSP,sp_RESPONSE,sp_.CADV, sp_.CNORM }plates of module CK and of a standard module cor-
{in_con, responding to a non-basic activity.

n_nit, in_d_proc, in_norm, in_resp,

m_adv,in_ T}, {},1}, .

(DSP, CNO}R% EESPONSE’ CADVY, 5 Automated Translation
{t1,12,12, 3,14, 15,16})

end contact r'il StmyY DM

The definition of SC' is composed of the set

of states, the set of events, the set of conditions File F'rl;'_:l_iECt QL.IIt HEl[:I

etc. We give also the definitions of the different

elements invoked in the definition of SC. For .
instance, we define state wnit with the set of |5tEltEI’T'IEltEI Translation VOM-5L

its direct substates which is {} (i.e. empty),
its associated condition in_init, the set of the Errur
activities defined throughout which 1s empty etc.
Other example is transition ¢! which is defined by I:
its triggering event send_fncon, by its triggering
condition which is nil, by its source states {init} |
by its target states {d_processing} and by the set
of 1ts associated actions which is empty.

4.5 Optional Elements

In order to simplify our translation model, we de-
fine some features provided by Statemate as op-
tional elements, since these elements are not sys-
tematically relevant.

A

As optional elements; we consider the following: I I"'-I |-

El

e timing features which are represented by state-

mate primitives for timeout event or scheduled ] ] ]
Figure 10: Stmvdm: graphical user interface

action;
e conflicting transitions; We develop a tool supporting the translation
process; the main window of StmVDM the cor-
e history connectors responding environment is represented by figure
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10. This tool is interfaced with the STATEMATE
environment of i-Logix [Statemate,1987] and with
the VDM-SL environment of IFAD [IFAD,1996].
These environments could be started indepently
by clicking on the corresponding buttons.

The translation process is started by clicking on
the button Translation: the user should create
a project by giving the path (workarea) and
name of the STATEMATE project containing the
initial specification. The translation carried out
interactively, will lead to a file containing the
global specification in VDM.

6 Concluding Remarks

Several case studies were successfully developped
with the proposed approach (see [Traore,1998] for
the case study of an access control system). This
shows the approach is practical for realistic systems
development and is capable of dealing with appli-
cations in a convenient fashion.

One of the main advantage of this approach is that
it helps reduce the complexity of formal specifica-
tion and provide a comprehensible structure. The
existence of an effective tool support extends the
applicability of the approach to large scale projects.
The different definitions proposed in the approach
were checked by simulation with the VDM-SL tool-
box of IFAD. For highly critical system, it is some-
times required to check the system by genertating
proof obligations. In [Traore,1997], we have already
defined the different kinds of proofs obligations in-
volved in the process of translating a statecharts
specification to a VDM one. Future research will
concern the adaptation and the extension of these
proof obligations to the approach.

Another advantage of the approach concerns the
fact that important features of Statemate such as
concurrency, synchronisation, visibility and time
are preserved by the translation process. A num-
ber of approaches have been proposed for handling
concurrency in VDM [Jones,1983b], [Stolen,1991],
none of these have yet achieved the level of use
needed to make it part to ISO standard VDM-
SL. In systems where part of the state might
be changed by several processes, classical post-
conditions aren’t enough to fully express an op-
eration’s functionality; this applies also to other
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formal methods as well. We refer the reader to
[Traore,1998] for more about how concurrency or
synchronisation are described in the resulting VDM
specification.

The concept of control kernel is not an extension
of VDM but rather an adaptation, since instead of
adding new constructs, we proceed by using judi-
ciously existing constructs. Future works will con-
cern, also, the simplification of the structure of the
control kernel; 1t may be possible to define all the
elements of the control kernel in a unique VDM pa-
rameterized module, instead of distributing them
as it 1s actually the case.
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module XX

imports form CK all,
-- importation of data types corresponding to
-- parent activity YY

fromYY typesTL,..;Tp,

-- importation of operations corresponding .
-- to non-basic subactivities SUbACt1...

from ZZ1 operations TRANSFER: ... ==> ...
from ZZr operations TRANSFER: ... ==> ...
from ...
exports

-- exportation of types corresponding to
- interface data of subactivities

typesTi;..;Tj. . )
- exportation of the opération corresponding
-- to the current non-basic activity XX

operations TRANSFER: ... ==> ...
definitions

types
-- definition of internal datatypes
Tp+l...;

Tp+n ...
-- definitions of type status and run

run = seq of status
configuration = ...;
values
-- value definition of the control statecharts

SC: sc_structure = mk_sc_structure(....);
-- definition of the initial status
sti: status = mk_status(...)

state XX of
ST: run
occur: set of CK' event

EXT: set of CK‘event
inits==s=mk XX([«ti].{..}.{---})

Figure 11: Template of a module corresponding to
a non-basic activity
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functions
Andstate: state_type -> bool
Orgtate: state type -> bool

operations
-- definitions of operations corresponding
-- to basic subactivities

OPL: ...==> ...

OPq: ... ==> ...
-- definitions of predefined operations
EXECUTE_step: set of event ==> status

STATIC_reation: status* set of event
*set of state_type ==> status
TRANSIT: status* set of event* set of transition
==> gtatus
enable: transition* status* set of event ==> bool
INstate: state type ==> bool
-- definitions of optional operations

-- definitions of semi-predefined operations
EXEC_action: set of CK' action* status
==> status
TRANSFER: ... ==> ...

end XX

igure 12: Template of a module corresponding to
non-basic activity



module CK

exports al

definitions
types

transition :: ...
event = token;

condition = token;
condition_value = map [condition] to bool;
action = token;

time = nat;

mtimeout = map event*time to event;
mhistory = map transition to Htransition;
Htransition :: ...;

Htype = <H> | <H*>

functions
Substate: state type -> state type
Lower: set of state type -> state type
low: state type*state type -> bool
Conflict: transition* transition -> bool
Priority: transition* transition -> [bool]
operations

Nonconflictset:set of transition ==> set of transitior

end CK

Figure 13: Template of module CK
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