
CREWS Report Series 99 - 11

FROM CONCEPTUAL MODELLING TO REQUIREMENTS ENGINEERING

Colette Rolland*, Naveen Prakash+

* Université de Paris 1 Sorbonne
Centre de Recherche en Informatique (CRI)

90, rue de Tolbiac. 75013 Paris – France

+ Dehli Institute of Technology
Kashmere Gate

110006 Dehli, India

* rolland@univ-paris1.fr
+ np@dit.ernet.in

Submitted to : Annals of Software Engineering, Special Volume on

Comparative Studies of Engineering Approaches for Software

Engineering, 1999

1

From Conceptual Modelling to Requirements Engineering

Colette Rolland Naveen Prakash
Université Paris 1-Sorbonne Delhi Institute of Technology

17, rue de la Sorbonne Kashmere Gate
75231 Paris Cedex 5 110006 Delhi, India

rolland@univ-paris1.fr np@dit.ernet.in

Abstract

Conceptual modelling is situated in the broader view of information systems requirements
engineering. Requirements Engineering (RE) explores the objectives of different stakeholders
and the activities carried out by them to meet these objectives in order to derive purposeful
system requirements and therefore lead to better quality systems i.e. systems that meet the
requirements of their users. Thus RE product models use concepts for modelling these instead of
concepts like data, process, events etc. used in conceptual models. Since the former are more
stable than the latter, requirements engineering manages change better. The paper gives the
rationale for extending traditional conceptual models and introduce some RE product models.
Furthermore, in contrast to conceptual modelling, requirements engineering lays great stress on
the engineering process employed. The paper introduces some RE process models and considers
their effect on tool support.

1. Introduction

A number of studies show [Lubars93], [McGraw97], [Standish95] that systems fail due to an
inadequate or insufficient understanding of the requirements they seek to address. Further, the
amount of effort needed to fix these systems has been found to be very high [Johnson95]. To
correct this situation, it is clearly necessary to address the issue of requirements elicitation,
validation, and representation in a relatively more focussed manner. The expectation is that as a
result of this, more acceptable systems will be developed in the future. The field of requirements
engineering has emerged to meet this expectation.

The traditional way of engineering information systems is through conceptual modelling which
produces a specification of the system to be developed. This specification concentrates on what
the system should do, that is, on its functionality. Such a specification acts as a prescription for
system construction.

Of the assumptions on which conceptual modelling is based, we find three very important ones :

• System requirements are highly stable, i.e., they do not change with time. As a consequence
the conceptualised system is itself stable.

• System requirements are given. Users have just to be questioned about their requirements.
Thus, the interesting problem is that of specifying the system to meet these requirements ;
and system analysts are the right persons to do it.

2

• Validation of system requirements can be done with reference to system functionality. In
other words, the conceptual schema is the appropriate support for communicating,
negotiating and reaching an agreement with users and system stakeholders.

Today, it is becoming clear that these assumptions do not hold any longer. Due to economic
pressure and emergence of new technologies, organisations change much faster than before. As
a consequence, expectations from information systems also change much faster which, in turn,
implies that requirements are no longer stable [Harker93]. The issue of understanding the effect
of business changes and recording decisions made about their impact on requirements is noted
by Lubars et al [Lubars93] as an issue which has not been solved yet. It is also known that
requirements even change during development and cause considerable problems during
development as reported by Curtis et al [Curtis88]. Since requirements change, it is no longer
possible to treat them as given. Rather, it is necessary to determine new requirements for legacy
systems and to carry requirements models through the entire systems life cycle. Further the
central role of system analysts shall be replaced by the participation of a large variety of
stakeholders bringing their various view points on what the system should do [Finkelstein90].
Finally, requirements validation must now be rooted in organisational change rather than in
system functionality : if requirements models are to be validated then, this validation must be
with reference to organisational needs rather than system functionality. It is only then that
computer based systems will be able to adapt to changing organisational needs.

In tackling these problems, the area of requirements engineering tries to go beyond the
functionality based view of conceptual modelli ng. We highlight here two dimensions along
which this attempt is made :
• Requirements engineering extends the ‘what is done by the system’ approach with the ‘why is

the system like this’ view. This why question is answered in terms of organisational objectives
and their impact on information systems supporting an organisation. In other words,
information systems are seen as fulfilli ng a certain purpose in an organisation and
requirements engineering helps in the conceptualisation of these purposeful systems. This has
two implications (a) elicitation and validation of the requirements of a system are done with
respect to their purpose in organisations and (b) only organisationally purposeful systems are
conceptualised.

• requirements engineering does not treat the functionality of a system, what is done by the
system, as abstracted by system analysts from a set of given requirements. Rather, it considers
that the potential users of the system are most suitable to provide useful and realistic view
points on the system to be developed. Therefore, a detailed exploration of the various ways the
system might be used and the activities it shall carry out is performed. This can be done, for
example, by looking at typical interactions that are expected to occur with the system (use
cases). This exploration leads to the identification of ‘normal’ and ‘exceptional’ activities,
whose integration models the full system behaviour. In this sense, the determination of what
the system must do is itself an interesting question in requirements engineering.

To deliver the foregoing, an appropriate way of doing requirements engineering must be found
and supported by computer based environments. First, changing requirements imply that the
assumptions made, the decisions taken, and the alternatives explored must all be recorded and be
made available for future use. Second, requirements engineering is known to be a complex task
and advice/guidance on which activities are appropriate in given situations as well as on how
these activities are to be performed must be provided. Finally, considerable freedom in deciding
which activity is to be done next must be made available to the requirements engineer.

3

The foregoing indicates that there are three interesting aspects of requirements engineering,
namely, conceptualisation of purposeful systems, modelling of system usage, and the process
support needed for doing requirements engineering. We will highlight these in the rest of this
paper. The attempt will be to show that these three aspects represent a basic departure from
conceptual modelling.

In the next section we review the area of conceptual modelling. Thereafter, we turn our attention
to requirements engineering and consider separately the three issues of conceptualising
purposeful systems, modelling system usage and the process support.

2. Conceptual Modelling

Traditionally information system engineering has made the assumption that an information
system captures some excerpt of world history and hence has concentrated on modelling
information about the Universe of Discourse [Olle88]. Thus conceptual modelling can be treated
as the first phase of the two-phase organisation of the information system life-cycle shown in
figure1. It aims at abstracting the specification of the required information system i.e. the
conceptual schema, from an analysis of the relevant aspects of the Universe of Discourse about
which the user community needs information [Dubois89]. The succeeding phase, that of system
engineering, uses the conceptual schema to design and implement a working system which is
verified against the conceptual schema.

Design

Correction

Domain knowledge
acquisition and modelling

Validation

CONCEPTUAL MODELLING

SYSTEM ENGINEERING

CONCEPTUAL
SCHEMA

INTERNAL
SCHEMA

Universe of
Discourse

Figure 1 : Two-phase organisation of system life-cycle

2.1 Classification framework of conceptual models

The conceptual schema plays a central role in this organisation of the information system life
cycle and the information systems community has developed a large number of conceptual
models, systems of concepts, for representing conceptual schemata. This variety has arisen
because of the need to capture as many aspects of real world semantics as possible. Given this
plethora of models, it has been found necessary to develop frameworks for classifying and
understanding these. One framework which classifies models based on the perspective adopted to
view the Universe of Discourse was developed by [Olle88]. It organises models into the classes
of process-oriented, data-oriented, and behaviour-oriented models. In figure2, this framework
has been shown as defining a three-dimensional space within which conceptual models can be
positioned.

4

Data

E/R

NIAM

DADES

CIAM

ERAE

MERISE

SSADM

SADT

IE Process

PETRI Nets

Cartesian
approaches

Behaviour

Business Class

REMORA

TEMPORA

SART

Systemic approaches
"state oriented"

Systemic approaches
"change oriented"

Framework of understandinhg
(Olle et al - Addison Wesley)

Object oriented
approaches

Figure 2 : The three dimensional framework for classifying conceptual models

The three dimensional framework highlights the fact that information systems can be looked
upon in three different ways. When seen as process-oriented, an information system is a function
in an organisation which returns some information; when seen as data-oriented, information
systems are viewed as mirroring the information contents of organisations and it is expected that
the information system would be a supplier of this information ; when seen in the behavioural
perspective, an information system is an artefact which handles interesting events that occur in
the organisation by performing one or more functions. These functions modify the information
contents of the information system which are again available for manipulation through events.

These different views naturally lend themselves to specific kinds of treatment. Thus, when the
information system is viewed as a function in the Universe of Discourse, then during analysis, the
components of this function are discovered. This is because the function may be very complex
and needs to be broken down into its functional elements to understand it better. If any of the
functional components are themselves complex then, they are decomposed recursively til l simple,
well understood functions are reached. Clearly, this results in a hierarchy of functions rooted in
the original function. Such a hierarchy identifies the functional components of the information
system function but does not establish an inter-relationship between these components, i.e.,
which function receives data from which function and sends data to which one is not yet
articulated. This is done by using conceptual models for building data flow diagrams.

It can be seen that the process-oriented perspective views information systems as processors of
information and this leads quite naturally to the data processing approach. In contrast, the data
oriented approach looks at an information system as mirroring the information contents of the
real world, as a storehouse of information. Therefore, an identification of this information is of
the essence. Since information is to be kept about real l ife things, an identification of all these
relevant ‘ things’ coupled with their abstraction as information carrying entities is carried out. The
abstracted entities and their inter-relationships are then represented as a conceptual schema. As
the mirrored world changes, so the information system must reflect these changes. Therefore the
information system is seen as a data manager, maintaining and delivering information at all
times.

Finally, in the behavioural perspective, the attempt is to identify the interesting events that occur
in the real world, the information affected by their occurrence and the functions that cause this
effect to be felt. For this, three things are done (a) Real events are abstracted into information
bearing events, (b) Real world things are abstracted (as in the data perspective) into information
bearing entities and relationships, and (c) Functions to be invoked to carry out the effect of the
event are identified and associated with it. It can be seen that the behavioural view promotes a
transaction management view of an information system.

5

Over the years, the usefulness of having three completely different perspectives with littl e
integration in them has come to be questioned. Two distinct trends towards integration emerged.
The first was the development of object-oriented conceptual models, the majority of which
integrated together the process and data-oriented perspectives, though some conceptual models
that also integrated the behavioural one were developed [Brunet90], [Desfray94], [Martin92].
The second was a trend towards ‘ loosely connected’ conceptual models which consisted of a set
of conceptual models, each according to a different perspective. Therefore, the Universe of
Discourse was conceptualised as individual but connected conceptual schemata. This inter-
connection was seen in the Yourdon approach [Yourdon89] in mid-eighties which loosely
connected the data flow, ER modelli ng and state transition diagram techniques. It was also seen
later in OMT [Rumbaugh91] which integrated an object-oriented model with data flow diagrams
and event modelli ng.

2.2 Conceptual modelling process

The conceptual modelli ng community emphasised the product aspects of systems at the expense
of the process employed to deliver the product. Thus, the structure of the conceptual schema, its
completeness, and consistency etc. was more important than how it was developed. Early
process models were activity based. They looked upon the process as consisting of a set of
activities which could be decomposed into simpler ones and which were linearly ordered. Every
successive activity was to be performed after the completion of the previous one. Such process
models are known to be restrictive [Wynekoop93] because they assume
(a) that it is possible to pre-define the development path that can be taken through the activities of

a process model. Thus, they restrict the creativity of the developer in choosing a path specific
to a given situation.

(b) that each conceptual schema is built afresh and therefore there is no need to keep track of
previously developed conceptual schemata or the processes that built them.

(c) the ‘upon completion’ rule which prohibits movement to an activity later in the order or
backtracking to one earlier in the order.

(d) that the relationship between an activity and the product built by it was not interesting.

Later, a number of other more flexible process models were buil t. Yet, by and large, conceptual
modelli ng continued to follow the activity based approach to process models i.e. the Waterfall
model [Royce70].

To sum up

(1) It was felt that every information system served a purpose in the organisation. However, it
was not always possible to articulate this purpose. Thus, for example, in the process oriented
approach the purpose of the information system was to carry out a function. In small systems it
was possible to precisely identify this function but as systems grew in complexity, it became
more and more difficult to do so. Since the purpose was not clear, it was difficult to determine
the boundaries of the information system.

(2) It can be seen that conceptual modelling specifies in the conceptual schemata, the functions
expected from the system to be engineered. This specification is expressed in a formal way
and is driven by the technologies available for system development. Finally, it focuses on the
view of the system that is held by system analysts. In contrast, requirements belong to users
[Macaulay93], [Harker93]. Requirements specifications express objectives, goals, intentions
of users. This is done in an informal manner and the drive is not technology-oriented but

6

usage-oriented. Finally, the requirements specification reflects the views of the users and
stakeholders of the system rather than of the system analysts.

As a consequence of these differences between conceptual schemata and requirements
specifications, relating requirements to conceptual schemata is difficult. Thus for example, it is
problematic to check whether or not the conceptual schema meets the requirements and to reflect
changing requirements in conceptual schemata.

In order to deliver accurate, valid and complete specifications, requirements engineering has to
address three main issues, those of :

- extending conceptual modell ing in order to establish a conceptual link between
requirements and system functions. As a result, the purpose of systems shall become
evident. This shall ensure that purposeful systems shall be built at all times.
- deriving system functionality from the multiple view points of users such that systems
are adapted to the usage that stakeholders envision for them. This shall lead to better
system acceptabil ity in organisations.
- modelling the requirements engineering process in order to provide the methodological
guidance for requirements elicitation, requirements description, and requirements
refinement activities, as well as for transformations of requirements into system
specification.

These three issues affect both the product and the process aspects of requirements engineering
that we consider in turn in the two following sections. The ‘Requirements Engineering Models’
section deals with the product aspects whereas the ‘Requirements Engineering Process Support’
deals with the process aspects.

3. Requirements Engineering Models

In the view of requirements engineering being proposed here, we consider that requirements
come from two sources, users on the one hand, and the domain environment on the other hand.
The first source provides informal statements of goals and users’ intentions expressed in natural
language. The second source provides requirements reflecting real world facts and constraints on
the designed system implied by laws of physics independently of any user’ need or wish. Hence
requirements may occur into two sub-types :

- user-defined requirements which arise from people in the organisation and reflect their
goals, intentions and wishes,

- domain-imposed requirements which are facts of nature and reflect domain laws.

This implies that the Universe of Discourse has to be partitioned into two, the usage world and
the subject world [Jarke93]. The usage world describes the tasks, procedures, interactions etc.
performed by agents and how systems are used to achieve work, including stakeholders who are
system owners, direct and indirect users. It can be looked upon as containing the objectives that
are to be met in the organisation and which are achieved by the activities carried out by agents.
Therefore it describes the activity of agents and how this activity leads to useful work.
The second part of the Universe of Discourse, the subject world, contains knowledge of the real
world domain about which the proposed system has to provide information. It contains real world
objects which are to be represented in the conceptual schema.

7

There is a third world, the system world which is the world of system specifications in which the
requirements arising from the two worlds must be addressed. The system world holds the
modelled entities, processes, events of the subject and usage worlds with some mapping from
these conceptual specifications to the design and implementation levels of the software system.

All these worlds are interrelated as shown in Figure 3. User-defined requirements (sub-type 1
above) are captured by the two relationships between the usage and the system world, namely
the intentional relationship and the usage fit relationship. Domain-imposed requirements (sub-
type 2 above) are captured by the domain genericity relationship in the Figure.

Subject
World

System
World

Usage
World

Usage fit relationship

Intentional relationship

Domain genericity relationship

Representation relationship

���������
	�������
��������
��	���

Figure 3 : The relationships between the usage, system and subject worlds

Finally, it shall be noticed that there is a representation relationship between the subject world
and the system world which relates the domain to its representation in the system. This
relationship has been the only focus of conceptual modelli ng whereas requirements engineering
highlights the importance of the three other relationships, namely the intentional, usage fit and
domain genericity relationships. All three relationships address the ‘why’ question and
therefore provide the rationale for system development. We consider these relationships in more
detail i n the subsequent part of this section.

3.1 Relationships between the usage world and the system world

The usage world consists of individuals, social groups and organisational settings in which the
system is intended to function [Goguen93]. The individual, pragmatic relationship with the
system world is provided by the usage fit relationship of Figure 3 whereas the social, semiotic
relationship is provided by the intentional relationship.

 The usage world provides the rationale for building a system. The purpose of developing an
information system is to be found outside the system itself, in the enterprise, or in other words, in
the context in which the system will function. The social relationship between the usage and
system world addresses the issue of the system purpose and relates the system to the organisation
goals and objectives. This relationship explains why the system is developed. Modelli ng this
establishes the conceptual li nk between the envisaged system and its changing environment. This
suggests an augmentation of conceptual modelling to deal with the description of the context in
which the system will function and will be used. In the area of requirements engineering, goal-
driven approaches have been developed which directly model organisational objectives and
relate them to system functions. These approaches address the semiotic, social link between the
usage and the system world.

8

As brought above, the usage world is the world of the system users who will individually work
with the system to meet the objectives assigned to them by the organisation. Additionally, each of
them has his/her own view point and requirements regarding the system to be constructed.
Taking these into account helps in the construction of relatively more acceptable systems. This
suggests another augmentation of conceptual modell ing, to include the role of individual thereby
enabling the derivation of system functionality from the integration of users’ view points. In
requirements engineering, the areas of scenario modelling and use case development take this
into account.

 As indicated earlier, goal driven approaches model organisational objectives so as to relate
them to the functions of the system. In this sense, they aim at the conceptualisation of
purposeful systems only. They contribute further information for the interpretation of
requirements before they become understood and can be transformed into system function
specifications and therefore, aim to support conceptualising purposeful systems. Scenario based
approaches by focussing on the users’ view points help modelling purposeful system usage
from which useful system functions can be derived. The latter provides dynamic meaning to the
former whereas the former provides the intentional setting within which the usage world finds
meaning.

In the foregoing, we have presented our view of requirements engineering, namely that it is
concerned with the relationship between three worlds. In terms of Figure 3, conceptual
modell ing approaches have focused on the representation link to the exclusion of the others.
This practice provides an answer of sorts to the fundamental question : what does the
information handled by my system means ? However, it also tends to draw attention away from
a number of equally fundamental questions concerning other type of knowledge required to
engineer an information system. Looking more carefully to these helps in understanding how to
engineer purposeful systems, and leads to systems fitting the constraints and laws of the domain
as well . Distinguishing the subject world and the usage world therefore, helps in making explicit
the relationships which were ignored by traditional conceptual modelling.

3.1.1 Goal driven approaches

The broader view of a requirements specification that we advocate here is one that goes beyond
the classical conceptual schema describing system functionality. It includes enterprise modelli ng
which represents the why part of system requirements. This part complements the what part
provided by conceptual functionality modelli ng.

Enterprise modelli ng has been developed for example, in the F3 project [Bubenko94a],
[Bubenko94b] to provide a set of models for understanding the requirements and bridging the
gap between ill -defined problems and application situations on the one hand and specification of
the formal, precise definition of requirements of the information systems on the other hand. The
requirements specification is represented as a structured description of five interrelated sub-
models (see Figure 4) which provide the context within which the requirements are elicited. Each
sub-model represents a particular concern or view in requirements acquisition, and these sub-
models help separating the different concerns in a workable way. The sub-models are not
developed in a linear, sequential manner. Although the process usually starts with an objectives
model and progresses through actor and activity models to information systems requirements this
is not always the case. For instance, with an existing systems the activity and concepts models
may be developed first by reverse engineering previous designs.

9

The objectives sub-model describes the why component of a requirements specification. It is a
graph with components such as goals, problems, opportunities and weaknesses as nodes
connected through relationships of the type ‘motivates’ . The objectives sub-model is related to
rationale models such as IBIS [Potts89] but it contains a goal decomposition hierarchy close to
other proposals such as [Dardenne91], [Rolland93],[Yu94b].

The concept sub-model is used to define the Universe of Discourse that concerns requirements
engineers. It may serve as a dictionary of user and customer defined concepts.

 The actors sub-model is used to define the actors in the domain and their relationships with
activities and objectives. Actors may be individuals, groups, roles, organisational units, systems,
etc. Actors in sub model are related to goals in the objectives sub-model and therefore represent
stakeholders who are responsible for achieving goals through activities described in the activities
sub-model.

The activities sub-model describes the organisational activities, i.e. the processes and tasks of the
enterprise. Components in this sub-model are created to achieve goals in the objectives sub-
model, referring to components of the concepts sub-model, and resources required to carry out
these activities described in the actors sub-model.

The information system requirements sub-model is meant to be derived from the other models. It
includes both functional and non functional requirements. The former typically indicate needs for
establishing objects, defining operations and services in the Object Oriented terminology or
functions in top-down decomposition such as Structured Systems Analysis [Yourdon89]. The
latter are related to the environment, performance and quality of the required system.

Objectives Model

Concept Model Activities and Usage Model Actors Model

Information System Requirements Model

motivates
motivates

motivates
motivates

motivates

concerns concerns

concerns

1 2

1 "deals-with"
2 "performed by"

Figure 4 : The sub-models of the F3 approach

Enterprise modelli ng offers a set of interrelated models, each constructed with a set of predefined
components types and relationships to address the ‘why’ question and understand where the
‘what’ requirements come from. The semantic links from the set of interrelated sub-models and
the information system requirements model are established for reflecting the rationale, the
motivation, for designing a specific information system. Enterprise modelli ng was one of the first
attempts to understand goals, the primary ‘needs’ expression of users in context of a problem
domain. Early experiences have shown [Kirikova94], [Will ars92] that the use of a goal driven
approach leads to improved understanding of the problem realm for decision makers,
requirements holders and customers as well as for developers.

10

 Since then there is convergence on the view that goal modelling is an effective way to identify
requirements [Potts97], to elicit high-level goals to be achieved by the envisioned system
[Dardenne93], [Anton96], [Bubenko94b], to help in the refinement of these goals [Dardenne93],
[Yu94a], [Yu94c],[Rolland 98a] and their operationalisation into system requirements specifying
how goals should be accomplished by the proposed system [Anton96].

Enterprise modelli ng was further refined in the EKD method to support change management
[Loucopoulos98], [Rolland97b], [Kardasis98], [Rolland98b].The focus here is on the evaluation
of alternative scenaria for change and the selection of the most appropriate one [Nurcan99a],
[Nurcan99b]. In the KAOS approach [Dardenne91], [Dardenne93], the emphasis is directed
towards supporting formal refinement of high level goals into system constraints meant as
functional requirements. Although generic models are advocated, goal modelli ng and refinement
have supplied simple guidance via heuristics [van Lamsweerde95]. The I* approach [Yu94a],
[Yu94b], [Yu94c] create models of the environment of the system that emphasises modelli ng
agents and their relationships. Their strategic dependency and rationale models allow tracing of
dependencies between agents, the goals and tasks and support reasoning to identify trade-off
between functional requirements and non functional requirements[Mylopoulos92] (referred to as
‘soft goals’)[Chung96]. Similarly emphasis on agents and their relationships is underlying the
Albert language aiming at formally specifying requirements [Dubois94] in order to ease their
validation through scenario generation. The GBRAM method [Anton 96] that is built over the
Inquiry Cycle [Potts94] draws our attention on the nature of the elicitation process that is viewed
as a deliberation process among the various stakeholders involved with requirements
engineering.

Although goal modelli ng has proved to be useful for specifying purposeful systems, practical
experience tends to show that there are stil l a number of difficulties. First, even it is often
assumed that systems are constructed with some goals in mind [Davies93] in reality [Anton96],
[Elektra98] goals are not given and therefore the question as to where they originate from
[Anton 96] acquires importance. In addition, enterprise goals which initiate the goal discovery
process do not reflect the actual situation but an idealised environmental one. Therefore,
proceeding from this may lead to ineffective requirements. Eliminating uninteresting and
spurious goals is necessary and difficult [Potts97]. Thus, goal discovery is rarely an easy task.
Additionally, it has been shown [Anton96] that the application of goal reduction methods
[Dardenne93], to discover the components goals of a goal, is not as straight-forward as literature
suggests. Finally it seems to be diff icult to deal with the fuzzy concept of a goal. This was
apparent when we applied the goal driven approach as embodied in the EKD method to several
domains air traff ic control, electricity supply, human resource management, tool set
development [ELEKTRA97], [Loucopoulos94]. This led to some formalisation of the goal
formulation [Prat97],[Rolland97a]. Yet, domain experts need to discover the goals of real
systems.

It is thus evident that help has to be provided so that goal modell ing can be meaningfully
performed. This help must (a) facil itate the work of the domain expert by getting over the
problem of the fuzzy nature of goals (b) help discover goals and (c) aid in the task of goal
reduction.

3.1.2 Scenario based approaches

11

Independently of goal modelling, an alternative approach to RE, the scenario-based approach,
has been developed. By capturing examples, scenes, narrative descriptions of contexts, use cases
and illustrations of agent behaviours, scenarios have proved useful in requirements elicitation in
a number of ways : to elicit requirements in envisioned situations [Potts 94], to help in the
discovery of exceptional cases [Pots94], [Rolland 98a], [Sutcliffe98], to derive conceptual
object-oriented models [Dano97], [Rumbaugh91], [Jacobso95], [Rubin92], to understand needs
through scenario prototyping [Hsia94] and animation [Lalioti95] to reason about design
decisions [Caroll95], [Young 87], create context for design [Kyng95] and so on. The underlying
reason for the popularity of scenario-based approaches seems to be that people react to
descriptions of real happenings and real things. This reaction helps in clarifying requirements
expected of systems. Thus, the scenario school argues, that typical scenarios are easier to get in
the first place than goals. Goals can be made explicit only after deeper understanding of the
system has been gained. The industrial practice survey conducted by the CREWS consortium
confirms that scenarios are useful in particular when abstract modelling fails [Weidenhaupt98].
In addition, since scenarios describe concrete behaviours, they capture real requirements.
However, because they deal with examples and illustrations, scenarios are inherently partial and
only provide restricted requirements descriptions which need to be generalised to obtain
complete requirements.

Scenarios have been developed [Rolland98c] for different purposes with different contents,
expressed in different levels of abstraction and with different notations.

In so far as their purpose is concerned, scenarios can be descriptive, explanatory or exploratory.
Descriptive scenarios [Potts94] capture requirements by enabling the analyst and users to walk
through a process and understand its operations, actors, the events triggering the process etc.
Thus, descriptive scenarios aid in the clarification of how a process performs, who are the
involved parties and how the process is activated as well as the conditions under which it is
activated. Explanatory scenarios [Wright92] raise issues and provide rationale for these issues.
They identify why something happens in the real world, what leads to it, what are its causes,
what are commonly occurring events which require handling etc. Through this the attempt of
explanatory scenarios is to describe the desirable features of the system to be developed.
Finally, exploratory scenarios [Holbrook90] are useful when different possible solutions for
satisfying a given system required exist. These solutions are to be examined and evaluated to
arrive at the right solution. Such scenarios establish a direct link between requirements and
desired solutions.

As mentioned above, scenarios have different contents. This can be behavioural information
identifying the actions, activities, events carried out in the usage world; a description of the
objects of the subject world together with their attributes; events and event histories;
organisational information like the structure of the company, the groups, departments and agents
found in it etc.; or even stakeholder information including the characteristics of people, their
views and aspirations [Nardi92]. However, by and large scenarios concentrate on the functional
features required of a system [Firesmith94], [Glinz95], [Olle88], [Potts94], [Rubin92],
[Rawsthorme96], [Somé96].

Finally, scenarios have been expressed at three different levels of abstraction, instance, type
and mixed. In the former case [Caroll95], [Potts94], [Young87], a scenario uses specific names
or events with real argument values. These scenarios describe particular instances of use which
can form the basis for discussion of what happens, why and how. Type scenarios [Hsia94],
[Jacobson92] do not use individual entities but entity types. Thus they do not refer to Smith but

12

to customers. Each execution of a type scenario is an instance scenario. Finally, mixed scenarios
[Rolland98] are those that have some parts at the instance level and others at the type level.

Scenarios have been expressed in different notations ranging from the informal, semi-formal to
the formal. Informal scenarios use natural language [Rolland 97a], [Erickson95] , [Holbrook90],
videos [Wood94], [Haumer98] story descriptions etc. and are valuable in those cases where the
user community is unwill ing/unable to deal with formal notation. Semi-formal scenarios use a
structured notation like tables [Potts 94] and scenario scripts [Rubin92] in capturing real
activities. Finally formal scenarios are expressed in modelling languages based on regular
grammars [Glinz95]or state-charts [Harel87] . They are useful to run as simulations to present a
vision of what the future system will look like and to gauge user reactions to it.

3.1.3 Coupling goals and scenarios

In order to overcome some of the deficiencies and limitations of goal-driven and scenario-based
approaches used in isolation, some proposals have been made recently to couple goals and
scenarios together. In [Dano97], [Jacobson95], [Leite97], [Pohl97] goals are considered as
contextual properties of use cases whereas in [Cockburn95] they are used as a means to
structure use cases. The goal scenario combination has been used to operationalise goals
[Anton96], [Holbrook90], [Potts94], [Rolland98a], to check whether or not the current system
usage captured through multimedia scenarios fulfils its expected goals [Haumer98], to infer
goals specifications from operational scenarios [van Lamsweerde98] and to discover new goals
through scenario analysis [Rolland98a].

As an example of an approach which combines goal modelling and scenario authoring let us
consider the CREWS-L’Ecritoire approach [Rolland97a], [Rolland98a] developed within the
CREWS ESPRIT project. CREWS-L’Ecritoire uses a bi-directional coupling allowing
movement from goals to scenarios and vice versa. The complete solution is in two parts : when a
goal is discovered, a scenario can be authored for it and once a scenario has been authored, it is
analysed to yield goals. By exploiting the goal-scenario relationship in the reverse direction, i.e.
from scenario to goals, the approach pro-actively guides the requirements elicitation process. In
this process, goal discovery and scenario authoring are complementary steps and goals are
incrementally discovered by repeating the goal-discovery, scenario-authoring cycle. In order to
give some insights of the approach, we first present some of the key concepts and terminology
of the CREWS-l’Ecritoire approach and then provide a brief overview of its process.

(a) Concepts and terminology

• A Requirement Chunk (RC) is a pair <G, Sc> where G is a goal and Sc is a scenario. Since a
goal is intentional and a scenario is operational in nature, a requirement chunk is a possible
way of achieving the goal.

13

• A goal is defined as "something that some stakeholder hopes to achieve in the future"
[Plihon98]. In our approach, a goal [Prat97] is expressed as a clause with a main verb and
several parameters, where each parameter plays a different role with respect to the verb. A
detailed description of the goal structure can be found in [Rolland98a]. An example of a goal
expressed in this structure is the following :

Provide verb (efficiently) qual (electricity) tar (from PPC producer) so (to our non eligible
customer) ben (using the PPC network) means (in a normal way) manner

• A scenario is "a possible behaviour limited to a set of purposeful interactions taking place
among several agents". It is composed of one or more actions, an action being an interaction
from one agent to another. The combination of actions in a scenario describes a unique path.
A scenario is characterised by initial and final states. An initial state attached to a scenario
defines a precondition for the scenario to be triggered. A final state defines a state reached at
the end of the scenario. We distinguish between normal and exceptional scenarios. The
former leads to the achievement of its associated goal whereas the latter fails in goal
achievement.

• Requirement chunks classification and abstraction levels : We have introduced three levels
of abstraction called contextual, functional, and physical. The contextual level identifies the
services that a system should provide to an organisation and their rationale. The functional
level focuses on the interactions between the system and its users to achieve the needed
services. Finally, the physical level deals with the actual performance of the interactions.
Each level corresponds to a type of requirement chunk. As a result, we organise the
requirement chunks collection in a three level abstraction hierarchy.

• Relationships between requirement chunks: There are three types of relationships among
requirement chunks namely, the composition, alternative, and refinement relationships. The
first two of these lead to a horizontal AND/OR structure between RCs. These are extensions
of conventional AND/OR relationships between goals. AND relationships among RCs link
together those chunks that require each other to define a completely functioning system. RCs
related through OR relationships represent alternative ways of fulfilling the same goal. The
third type of relationship relates requirement chunks at different levels of abstraction. The
refinement relationship establishes a vertical link between requirement chunks.

14

(b) The requirements elicitation process

The CREWS-L’Ecritoire process aims at discovering/eliciting requirements through a bi-
directional coupling of goals and scenarios allowing movement from goals to scenarios and
vice-versa. As each goal is discovered, a scenario is authored for it. In this sense the goal-
scenario coupling is exploited in the forward direction from goals to scenarios. Once a scenario
has been authored, it is analysed to yield goals. This leads to goal discovery by moving along
the goal-scenario relationship in the reverse direction.

The exact sequence of steps of the process is as follows :
1. Initial Goal Identification
repeat

2. Goal Analysis
3. Scenario Authoring
4. Goal Elicitation Through Scenario Analysis

until all goals have been elicited.

It can be seen that goal elicitation and scenario authoring are complementary steps and
goals/requirements are incrementally discovered by repeating the goal-analysis, scenario-
authoring, goal-elicitation-through-scenario-analysis cycle. Each of the three steps of the cycle
is supported by mechanisms to guide the execution of the step.

The guidance mechanism for goal analysis is based on a linguistic analysis of goal statements. It
helps in reformulating a narrative goal statement as a goal template as introduced in the previous
section. The mechanism for scenario authoring combines style/content guidelines and linguistic
devices. The former advise authors on how to write scenarios whereas the latter provide semi-
automatic help to check, correct, conceptualise, and complete a scenario. Finally, for goal
elicitation through scenario analysis, we defined enactable rules offering three different goal
discovery strategies namely, refinement strategy, composition strategy, and alternative strategy.
The first of these discovers goals at a lower level of abstraction than a given goal ; the second
discovers goals ANDed to the original one ; the last discovers goals ORed to the original goal.

To sum up

To sum up the impact of the usage world and its relationships with the system world, it seems
that there is convergence for shifting from conceptual modelling to intentional modelling. This
permits to understand ‘why’ an information system is needed and therefore, helps avoiding to
specify a system which does not meet the expectations of the organisation. Further, in order to
relax the constraints posed by abstract notations traditionally used in conceptual modell ing,
informal narrative scenarios seem to be suitable to ease the communication with the users
community and get their points of view on how they envision and expect the system to behave.
Finally the recent attempts to combining goal modelling and scenario authoring seem to
overcome the difficulties encountered in practice when using each of the approaches in
isolation. However, there is no practical evidence yet, that the percentage of successful systems
will be significantly increased due to this move from conceptual modelling to enterprise
modell ing.

15

3.2 The domain genericity relationship between the subject and system worlds

As mentioned before, there is a representation relationship between the subject world and the
system world which has been pointed out a long time ago by researchers in information systems
[Rolland82], [Borgida84], [Brodie82] and temporal databases [Rolland79], [Bubenko77],
[Clifford83]. However the focus has been on objects, events, operations, etc., i.e. on the
functional aspects of the information system.

Non-functional quality criteria such as confidentiality, performance, accuracy and timeliness of
information can also be attached to this representation relationship. Non-functional requirements
modelling is a desirable feature of future requirements engineering methods which is rarely
integrated in current methodologies.

There is another modelling concern captured through the domain genericity relationship that is
the role and impact of domain knowledge [Jackson94]. Many new applications share the same
requirements with well known problems, so one possibility is to create generic domain models
of such problems as templates for requirements of certain classes of applications. Approaches
along this relationship between the subject and the system worlds attempt to add reuse to
requirements engineering by providing sets of predefined generic requirements for developing
system requirements specification. These sets can be reused to elicit the requirements of a
specific application or to validate a requirements specification. The hope is to increase the
efficiency of requirements engineers as well as to lead to a better quality specification

 Dependencies between systems and their environment have been analysed in detail by Jackson
[Jackson 94], and Jackson and Zave [Jackson93]. Jackson points out that domains impose
obligations on the required system. He formalises event dependencies between the system and
its environment that are inherent to the laws of physics e.g. obligations for the required system
in avionics and other real-time applications, and events that may arise in human failure, and
shall impose requirements on the system to design.

 The separate consideration of the subject world allows the development of so-called domain
ontologies which consider typical classes of object and activity abstractions as reusable
modelling patterns which can significantly reduce the requirements engineering effort
[Feather92]. A model library for the subject world has been for example, developed in the
NATURE project [Maiden94a], [Maiden94b], [Sutcliffe94]. A model is a problem abstraction
which defines in generic terms the structure and the behaviour of the problem space. It is a unit of
abstraction that aggregates objects linked by a purpose. The concepts used to define object
models are shown in figure 5.

16

has

link

link

isa isa isa

to/
from to/

from changes

has

undertakes

triggersenablesattain

object

structure
object

key
object

agentstate

semantic
relations

state transition

object
property

goal state stative
condition

event

Figure 5 : Meta-schema for domain modelli ng

Objects : there are key objects that undergo state transitions and agents who undertake behaviour
and hence cause change. Objects have properties and states.
Structure objects : model containment of objects for example a library contains books.
State transitions :model behaviour of objects and enable goal state to be achieved.
Events : model initiating ‘ triggers’ and time points.
Stative conditions are tests on objects’ states.
Goal states : describe a required state that should be satisfied.
Semantic relationships specify constraints between objects, state transitions and states.

Object models are structured in a class hierarchy. Models at different levels of abstraction are
distinguished using different types of knowledge. Object structure and purpose are the most
important constructs at higher levels because they discriminate effectively between different
problem classes. The top level in the hierarchy is defined by state transitions, agents, states and
semantic relations. Lower level object models are specialised by adding further knowledge such
as goal states, events, conditions and object properties. The highest levels of the object class
hierarchy are illustrated in figure 6.

Object
 Containment

object
Returning

object
Management

object
Hiring

Object
Placement

object
Allocation

...

object
composition

financial object
exchange

object
sensing

object
manipulation

objet structurel

agent

objet clé

transition d'état

Figure 6 : Hierarchy of object class models

17

The library is used in the NATURE toolset by the matcher to identify the models relevant for the
application at hand and therefore, identify the generic requirements inferred by the domain and
that must be part of the system requirements specification.

Several authors have proposed generic knowledge for requirements engineering e.g. clichés in
the Requirements Apprentice [Reubenstein91] and generalised application frames in the
ITHACA project [Fugini90]. In software engineering, libraries of abstractions have been
described at the level of design architectures [Shaw91] and reusable functions, although these
have limited success in practice [Pietro-Diaz91], [Harandi91]. Similar abstract classes have also
been proposed in Artificial Intelli gence, [Greuber92], [Chandrasekaran92]. Knowledge
engineering methods, notably KADS [Wilenga93] have also espoused the use of generic domain
classes, although only a small number of classes have been described in detail .

4. Requirements engineering process support

We now turn our attention to the third interesting aspect of requirements engineering namely, that
of providing suff icient process support for arriving at an accurate and complete requirements
specification. Whereas it was recognised in conceptual modelli ng that development had two
aspects, the product and process aspects, it was only the former that was really investigated.
Thus, methods for conceptual modelli ng are a maze of steps, guidelines, checklists, heuristics etc.
that are far to provide the help and guidance to build good products [Wynekoop93]. It was
assumed that the process of development was linear, Cartesian in nature. Therefore, it was quite
usual to base methods and tools on process models li ke the Waterfall model [Royce70].

In contrast, requirements engineering has explicitl y considered the issue of the process support to
be provided. This is because, as discussed earlier, requirements engineering is an exploratory
activity driven by the objectives and activities carried out by the stakeholders.

Two important issues arise :
1. How can attention be channelled to deal with the real productive tasks of requirements
engineering? In other words, it is necessary to guide the requirements engineering process to
concentrate on discovering goals, scenarios etc.
2. How can one learn from past practice? That is, if some decisions were taken in a given
situation in the past then how can one benefit from experience with that? Thus it is necessary to
keep a trace of past decisions.

These two aspects of the requirements engineering process, namely guidance and tracing must
be actively supported by computer assisted tools. We comment these three aspects of process
guidance, process tracing and tool support in turn.

4.1 Guidance

In so far as the issue of guidance is concerned, some experience exists in software engineering
where guidance was classified as active or passive [Dowson94]. The former was focussed on
ensuring that the development process employed was an instance of the process model and
consequently, guidance was directed towards process model enforcement. The latter was
concerned with an identification of what could be done next in the development process. In
[Feiler93] passive guidance has been defined as the generation and subsequent presentation of the
set of legal steps that were available at any moment in the development process. One out of these
could then be selected as the task to be done next.

18

The software engineering view is that active guidance should be provided. Thus, guidance cannot
be provided without an adequate process model. Existing process models do not seem adequate
to requirements engineering as they prescribe a predefined plan of actions. Current workflow and
software process models [Osterweil87], [Finkelstein94] are not directly applicable [Lehman87]
as they assume broad coverage and fairly strict control of the process. Activity-oriented process
models [Royce70] come from an analogy with problem-solving and provide a frame for manual
management of projects. This linear view is inadequate for methods which support backtracking,
reuse of previous designs, and parallel engineering. Product-oriented process models
[Humphrey89], [Finkelstein90], [Franckson91] represent the development process through the
evolution of the product. They permit design tracing in terms of the performed transformations
and their resulting products. Finally, decision-oriented models integrate more deeply the
semantics attached to evolutionary aspects. The notion of design decision facilit ates
understanding of the designer's intention, and thus better reuse of results [Potts89] but the
flexibilit y and situatedness of requirements engineering processes is not adequately covered in
existing decision-oriented models.

The importance of situatedness in process modelli ng is also acknowledged by the software
engineering community where it was soon found that a strict prescription of the process model
led to dissatisfaction. This was because, in actual practice, departures from the prescription
occurred [Russo95]. Therefore, a concerted effort was put in to allow process models to respond
to these departures. One approach was to assume prescriptive models and then, modify them to
accommodate real processes. This modification could be achieved in two ways. First the extent
of deviations from the prescription that could be allowed was modelled as constraints
[Cugola95], Cugola96], [Cugola98]. Any actual deviation that satisfied the constraints was
therefore manageable and the process enactment mechanism could handle it. This way of
handling deviations took the prescriptive approach to its logical conclusion : it prescribed the
deviations allowed in a prescription. The second way of handling deviations was to allow
changes to be made in the prescription as and when they are needed [Dowson94], [SiSaid96],
[Jacherri92], [Finkelstein94], [Bandinelli 93, [Belkhatir94]. Thus, a level of dynamicity is
superimposed on the basic prescription.

In contrast to this, the requirements engineering community recognised that the core of their task
was the generation and exploration of alternatives from which the right one is selected for the
situation at hand. Thus, efforts were made to avoid prescription of a process model and to focus
on alternative generation. Since real requirements engineering processes also need prescriptive
components, faciliti es to build these were provided. However, the focus was on alternative
generation. This can be seen in the IBIS process model [Potts89], [Ramesh93b] where a number
of alternatives for resolving an issue were generated. This process model is at a very high level of
abstraction and had to be buttoned down to real methods and tools. The contextual model
[Rolland91], [Rolland94], [Rolland95], [Polh96] attempted to do this. A context was defined here
as the application of an intention to a given requirements engineering situation. It organised
requirements engineering methods as a set of contexts of three kinds, executable, plan, and
choice contexts respectively. A Choice context groups together all possible alternative ways of
meeting its intention. These alternatives were themselves contexts thus leading to hierarchy of
alternatives. A plan context is a collection of simpler contexts such that their execution, in the
various possible orders prescribed in the plan context meets its intention. Finally, an executable
context is one which can be directly executed to meet its intention (and is atomic in this sense). It
can be seen that the contextual model attempted to reconcile process prescription with alternative
generation, the former through plan contexts and the latter through choice contexts.

19

Another attempt to root the notion of alternatives in methods was made in the decisional
approach [Prakash97]. There were decisions of three types, atomic, complex and abstract related
to each other by two different kinds of dependencies. The first of these identified which decisions
can be performed after a given one whereas the second one identified those that must be
performed after it, though not necessarily immediately. Recognising the crucial role played by
the product situation, the interest was in generating the set of decisions that were applicable to a
given product situation. Prescriptive capability was provided through the notion of complex
decisions which could be built out simpler decisions whose order of execution was prescribed.
Finally, abstract decisions could be built as abstractions and provided high level abstract choices
for application engineers.

Experience with the contextual and decisional models showed that a key discriminant factor in
real processes is the product situation. This situation has a strong bearing in selecting the task
best suited to handle it and also the strategy to be adopted in carrying out this task. These
strategies need to be reflected in the process model so that the right one can be dynamically
chosen. A recent attempt to model the strategic dimension of the requirements engineering
process through a set of strategies to select tasks adapted to situations was made in [Rolland99]
and [Ralyte99]. The process model is represented as a labelled directed graph called a map. The
map uses two fundamental notions, intention and strategy. An intention captures in it the notion
of a task that the requirements engineer intends to perform whereas the strategy is the manner in
which the intention can be achieved. The nodes of the map are intentions whereas its edges are
labelled with strategies. The directed nature of the map identifies which intention can be done
after a given one. The only way in which a process can be built is dynamically, through the use of
guidelines for selection among alternatives. Only after the intention and the strategy have been
decided is there a need for a guideline to achieve the intention. There are three guidelines
associated with the map :
- intention selection guidelines for determining all succeeding intentions of a given one,
- strategy selection guidelines for determining the strategies from which one is selected,
- intention achievement guidelines for defining the way in which an intention can be achieved.
Thereafter, the enactment mechanism is invoked to actually carry out the tasks.

It can thus be seen that the requirements engineering community has made a conscious effort
towards developing guidance to meet its two most basic needs :

(a) generating the set of alternatives applicable to a given product situation and
(b) reducing the amount of prescription to only those parts of the process where it is essential.

4.2 Tracing

In the requirements engineering community there is no longer the question whether traceability is
a useful thing or not. Capturing and maintaining traces is seen as an essential activity to be
performed during requirements engineering [Gotel94], [Polh94a], [Ramesh93a], [Wright91] and
standards such as [DoD-2167A], [IEE-830] mandate that requirements traceability be practiced.
A comprehensive overview of possible usage of trace information and the expected benefits can
be found in [Gotel94], [Ramesh93a] and [Pohl96]. Among others, these reports indicate that
requirement traceability is a vital component in implementing a quality system, essential for
consistent change integration, lead to less errors during system development, play an important
role in contract situations, and improve system acceptance.

20

Through experience one has discovered that there is a true need for RE processes which are
traceable. To make a process traceable means to capture knowledge during the progress of a
process in order to later be able to restore the entire or certain decided on aspects of this process.
The key issue is that in large projects, over time and with changing development groups, the
rationale for and the context of key decisions are confused and even lost [Curtis88]. Process
traceability can be divided in three parts [Pohl96] :

�
 Process execution traceability, i.e. the recording of data that enables the reassembly of
the sequence of steps that makes out the executed process.

�
 Product evolution traceability, i.e. the recording of data that enables you see how the
product has evolved during the process.

�
 Traceability of the relationships between process execution and product evolution.

The pivotal goal of process traceability is to enable tracing of the requirements produced during
the RE process. On one hand, traceability from the requirements specification down to design
and implementation and vice-versa is needed to understand the rationale of the implemented
system. On the other hand, the process leading to the requirements specification must be
traceable to understand the rationale for the requirements themselves. Thus, there is a
differentiation between these two kinds of traceability : the former is referred to as post-
traceability whereas the latter is called pre-traceability [Gotel94], [Davis90], [IEEE-830].

There exists some object oriented methods which recommend product traceability among others
Class/Relation [Desfray94], OOSE [Jacobson92] and rAdar [Bari90]. There are some approaches
[Alfort90], [Flynn90] and even some commercial tools (e.g. RT from Teledyne Brown
Engineering, RMT from Marconi Systems Technology , RDD100 from Ascent Logic
Corporation) which support post-traceability. In contrast there are only recent research
contributions [Gotel94b], [Kaindl93], [Pohl96], [Ramesh93b], [Ramesh95] and systems (e.g.
DOORS from QSS) focusing on pre-traceability. However, the results gained from the surveys of
[Ramesh93b], and [Gotel94] indicate that requirements pre-traceability is at least as important as
requirements post-traceability ; especially for systems which are embedded in a constantly
changing environment.

An interesting framework for requirements pre-traceability was provided by Pohl [Pohl94a]
which described the requirements engineering process in a three dimensional space (see Figure
7). The framework assumes that there are three major facets of the RE process, namely modelling
the requirements in a more complete manner, modelling with more formality, and more
consensus among stakeholders. These three facets lead to a three dimensions framework in which
the process of requirements engineering can be traced :

 -The complexity of the individual/cognitive aspect of the RE process leads to the
specification dimension which describes the degree of completeness of the requirements
specification.

-The social usage aspect leads to the agreement dimension which describes to what
degree the members of the RE team agree on the requirements specification.

-The system aspect leads to the representation dimension which describes how
requirements are technically described, e.g. their degree of formal semantics.

21

Specification

Agreement

Representation
informal formal

opaque

complete

perso
nal

vie
ws

common

view

semi-formal

initial
input

desired
result

Process
chunks

Figure 7 : The three dimensions of the RE process.

As shown in Figure 7 the trace of the requirements engineering process is modelled as a curve
within the three dimensions, starting from an initial incomplete, informal specification
representative of individual viewpoints and ending with the desired output which is a complete,
fully agreed and formally described specification of the intended system.

Capturing the RE process trace and thereby establishing requirements pre-traceabilit y means
recording information along each of the three dimensions, on the relationships between the three
kinds of information and relating those to the actual process performance i.e. to the process steps
and the agents by which it was produced.

Therefore it can be seen that the requirements engineering community has made a conscious
effort to understand the various facets of traceabilit y, to define the information that make a
process traceable and to identify the roles that trace can play in the development of systems.

4.3 Computer tool support

Conceptual modelli ng as part of system development is facilit ated by the use of automated
support in the form of CASE tools. A wide variety of CASE tools and CASE environments called
Integrated CASE (ICASE) or Integrated Project Support Environment (IPSE) have been built to
support specific methods. It has been pointed out [Norman92] that CASE tools have been
successful in automating many routine tasks of system development. Wijers [Wijers91] says that
though the possible li st of things that CASE tools can do is quite large, they have been essentially
successful in providing documentation and verification support. Today’s tools therefore have
excellent faciliti es for editing and maintenance of graphical specifications but they lack many of
the functional features as projected in CASE architectures like that of Bubenko [Bubenko92].
Some of these are to give support to distributed co-operative work, supporting integration in
CASE, guiding the process of application development, incorporating reusable specification
components etc. Huang [Huang98] has also suggested some possible features for the next
generation of CASE tools like process modelli ng, cross-platform portabilit y, learning,
standardisation, and access through the Internet.

Traditionally, each method came with its own CASE tool. Application engineers were expected
to select the method they wished to follow and used the associated CASE tool. If their application
required even minor modifications in the methods/tools they had selected then it was not possible
to make these changes. Thus, CASE technology was basically resistant to change.

22

To sum up, tool support has been lacking in two main directions :
(a) Providing process support
(b) Adapting to the needs of specific systems.

However, as brought out in this paper, requirements engineering lays emphasis on both process
and change management. It is evident that a new approach to computer based tools is needed to
support requirements engineering.

Figure 8 presents an architecture for process oriented RE support inspired from [Jarke94]. The
architecture is repository based. The repository extends the one advocated in Information
Resource Dictionary Framework Standard [IRDS90]. Similarly to the IRDS repository, it consists
of three levels. However, whereas the IRDS deals with levels of product description, the
repository deals with levels of product and process descriptions [Brinkkemper90].

process
repository

process meta-model

way-of-working
trace model

process traces

uses

defines

improves
uses

uses

creates

process control
& guidance

method
definition

learning
process

trace

application
engineer

method
engineer

uses

modifies

Figure 8 : Repository based and process-integrated environment support

The environment is composed of two sub-environments, the application engineering environment
in which the process is guided, executed, and traced, and the method engineering environment in
which the process is defined and improved. These two environments use the process repository
which contains the information necessary to provide the intended functionality.

Thus, it can be seen, that the architecture of Figure 8 provides process support to application
engineers and, additionally, establishes a link between application and method engineering
through the repository.

Tool support for requirements engineering is clearly a complex task. From the point of view of
application engineering, it involves a number of different problems such as guidance, tracing,
repository structuring and management, enactment mechanisms, efficient
interpretation/execution of process modelling languages, configuration management, view
integration, and co-operative development. The application engineering environment needs to
support an exploratory process in such a way as to automate all routine, repetitive tasks so that
attention can be devoted to exploring alternatives in elaborating the usage world. Additionally, it
must help in bringing together the different stakeholders so that the final requirements can be

23

arrived at in a collaborative manner. Finally, the environment must aid in the visualisation of the
future system. Only a few of these functions have been implemented in prototypes such as PRO-
ART [Pohl94b] to support pre-traceabilit y, MENTOR [SiSaid96] which is a generic tool in the
sense that it can function both as a method engineering tool and as a CASE tool depending upon
the nature of the process model, PRIME-CREWS [Haumer98] which offers a whiteboard editor
for creating fine-grained traceabilit y between goal models and multimedia artefacts, SAVRE
[Sutcli ffe98] which guides in the generation of requirements to deal with system exceptions and
the CREWS-L’Ecritoire [Tawbi98] RE environment which has been buil t to provide guidance
features as described in the goal-scenario coupling approach dealt with above.

Over the last decade, method engineering has arisen as a separate field of study in itself. A
number of CASE shells have been defined which consist of two parts, the Computer Assisted
Method Engineering (CAME) and CASE generator part [Martiin94]. A method is engineered by
appropriate instantiation of the meta-model used in the CAME part. The CASE part uses this
method to define the application engineering environment. Early CAME parts were organised
around product meta-models and MetaEdit [Kelly96] is an example of this. Efforts have been
made to include process aspects in CAME using activity meta-models. When these are
instantiated then the
activities, tasks etc. performed by methods are also defined for the CAME tool and Meta-Edit +
[Kelly96], is an example of that. More recently, a meta-model has been defined in terms of
method components. In [Harmsen93] there are two kinds of components called fragments,
namely product and process fragments whereas chunks in [Rolland96] realise a tight process and
product coupling. Method engineering is seen as a process of assembling together a method from
its different fragments [Harmsen93], [Plihon98], [Ralyte99]. From the point of view of method
engineering, tools must support the
- selection of situated methods i.e. methods meeting some contingency factors
- creation of new methods rapidly when a completely new situation occurs,
- modification of existing methods to handle minor changes in methods, and
- assembly of situated methods from off the shelf method components to gain from past
experience.
Finally, requirements engineering tools must support a feedback mechanism that allows
application engineers to influence method definition and tool construction.

5. Conclusion
.
The thrust areas in requirements engineering are :
- Embedding of systems in their larger usage context, and
- Change management
The former is made possible by stepping back from merely anticipating the functionality that a
system must provide (as done in conceptual modelli ng) to the determination of this functionality
in a systematic manner. This is done by identifying the aims and objectives of different
stakeholders and the activities they carry out to meet these objectives. This stakeholder driven
approach leads to better change management capabiliti es than found in conceptual modelli ng.
This is because the RE product keeps track of the conceptual link between objectives, activities
and system requirements.

As a consequence of the shift to objectives and activities performed to meet them, almost all
aspects of information systems engineering get affected. There is a new range of product models
to directly represent these. The engineering processes involved are less prescriptive thereby
supporting higher creativity and place an emphasis on learning from past experience. The
supporting tools are directed on one hand, towards automation of routine tasks and towards

24

providing direct guidance and support for discovering objectives and activities and on the other
hand, towards process tracing in order to benefit from past experience. Guidance and tracing
support needs to be provided in as transparent a way as possible, it should be effective without
being obtrusive. An environment is needed that provides a judicious mix of automated and semi-
automated tools that perform routine, humdrum tasks while leaving important decision-making
tasks to be done by the requirements engineer.

4. References

[Alfort90] : Alfort M.W., ‘Software Requirements Engineering Methodology (SREM) at the Age of Eleven :
Requirements Driven design’, in Modern Software Engineering, Van Nostrand Reinhold, 1990.
[Anton 96] : A.I. Anton, Goal based requirements analysis. Proceedings of the 2nd International Conference on
Requirements Engineering ICRE’96, pp. 136-144, 1996.

[Bandinelli93] S. Bandinelli, A. Fugetta, S. Grigoli, Process Modelling in the large with SLANG. Proceedings of
the 2nd International Conference on « Software Process », Berlin, GERMANY, 1993, pp 75-93.

[Bari90] : M. Bari. And C. Rolland "A Methodology for the Object-Oriented Design", in: Prakash, N. (ed.), Data
Management, Current Trends, Tata-McGraw-Hill, New-Delhi, Proc. of the Intern. Conf. on Management of Data, pp
244-259, 1990.

[Belkhatir94] N. Belkhatir, W. L. Melo, Supporting Software Development Processes in Adele2. The Computer
Journal, vol 37, N°7, 1994, pp 621-628.

[Borgida84] : Borgida, A., Mylopoulos, J., Wong, H.K.T., "Generalization/ specialization as a basis for software
specification". In Brodie/Mylopoulos/Schmidt (eds.): On Conceptual Modeling, Springer Verlag 1984, 87-114.

[Brinkkemper90] : S. Brinkkemper, "Formalisation of Information Systems Modelling ", Ph.D. thesis, University of
Nijmegen, Thesis Publishers, Amsterdam, 1990.

[Brodie.82] : M.L. Brodie, E. Silva, "Active and Passive Component Modell ing: ACM/PCM", in IFIP WG8.1
Working Conference on Information System Design Methodologies : a Comparative Review, North-Holland, 1982.

[Brunet90] : J. Brunet, Cauvet C., Lasoudris L., ‘Why using Events in a High-level Specification’, in Proceedings of
the International Conference on ‘Entity-Relationship Modelling’ , ER90, Lausanne, Switzerland, 1990.

[Bubenko77] Bubenko J. A., "The Temporal dimension in information modelling", Architecture and Models in Data
Base Management Systems, North Holland (pub), the Netherlands, pp.93-118, 1977.

[Bubenko92] : Bubenko J.A., and Wangler B., Research Directions in Conceptual Specification development in
Conceptual Modelling, Databases, and CASE, Loucopoulos P., and Zicari R. (eds.), 389 – 412, Wiley

[Bubenko94a] : J. Bubenko Jr., Marite Kirikova. ’Worlds’ in Requirements Acquisition an Modelling ” , 4th
European - Japanese Seminar on Information Modell ing and Knowledge Bases, Kista, Sweden, Kangassalo and
Wangler (Eds.), IOS (pub),1994.

[Bubenko94b] : Bubenko J., Rolland C., Loucopoulos P., De Antonnellis V., "Facilitating Fuzzy to Formal
Requirements Modelling", Proc. Int. Conf. on Requirements Engineering (ICRE), Colorado Springs, USA, 1994.

[Caroll95] : J. M. Caroll, "The Scenario Perspective on System Development", in Scenario-Based Design:
Envisioning Work and Technology in System Development, Ed J.M. Carroll, 1995.

[Chandrasekaran92] : Chandrasekaran B., Keuneke A., Tanner M., "Explanation in knowledge systems : The roles of
the Task Structures and Domain Functional Models", in Proc. of Workshop on Task Explanation, Samos, Greece,
University of Aegean, 1992.

[Chung96] : Chung L., Nixon B., Yu E., ‘dealing with Change : an Approach Using Non-Functional Requirements’,
The Requirements Engineering Journal, Vol 1, Nb 4, pp 238-260, 1996.

[Cli fford83] : Cli fford J., Warren D., "Formal semantics for time in databases", ACM Trans. on Database Systems,
Vol 6, N 2, 1983 .

[Cockburn95] A. Cockburn, Structuring use cases with goals. Technical report. Human and Technology, 7691 Dell
Rd, Salt Lake City, UT 84121, HaT.TR.95.1, http://members.aol.com/acocburn/papers/usecases.htm, 1995.

[Cugola95] G. Cugola, E. Di Nitto, C. Ghezzi, and M. Mantione, How to deal with deviations during process model
enactment. Proceedings of 17th International Conference on « Software Engineering » (ICSE17), Seattle,
Washington, USA, April 1995.

25

[Cugola96] G. Cugola, E. Di Nitto, A. Fuggetta, and C. Ghezzi, A Framework for Formalizing Inconsistencies and
Deviations in Human-Centered Systems. ACM Transactions on « Software Engineering and Methodology »
(TOSEM), vol. 5, num. 3, July 1996.

[Cugola98] G. Cugola, Inconsistencies and Deviations in Process Support Systems. Ph.D. Thesis Politecnico di
Milano, February 1998.

[Curtis88] : Curtis B., Krasner H. & Iscoe N., "A Field Study of the Software Design Process for Large Systems"',
Comm. ACM Vol 31,No11, 1268-1287, 1988.

[Dano97] B. Dano, H. Briand, F. Barbier, A use case driven requirements engineering process. Third IEEE
International Symposium On Requirements Engineering RE'97, Antapolis, Maryland, IEEE Computer Society
Press, 1997.

[Dardenne91] : Dardenne, A., Fickas, S., van Lamsweerde, A., "Goal-directed concept acquisition in requirements
elicitation", Proc. 6th IEEE Workshop System Specification and Design0 , Como, Italy, 1991, 14-21.

[Dardenne93] :Dardenne, A., A. v. Laamsweerde and S. Fickas, ”Goal Directed Requirements Acquisition” , Science
of Computer Programming, 20(1-2), pp3-50, 1993).

[Davies93] : Davies A.M. : "Object functions and states", Prentice Hall, Englewood Cliffs, NJ, 1993.

[Davis90] : Davis A.M. ,’The Analysis and Specification of Systems and Software Requirements’, in systems and
Software Requirements Engineering, Tayer R.H. and Dorfmann M. (eds), IEEE Computer Society Press, pp119-134,
Tutorial, 1990.

[Desfray94] : Desfray, P., "Object Engineering, the Fourth Dimension", Addison-Wesley/Masson, 1994.

[DoD-2667A] : Military Standard : Defense System Software Development, Department of Defense, 1988.

[Dowson94] : M. Dowson, C. Fernstrom, "Towards requirements for Enactement Mechanisms", Proc. of the th
European Workshop on Software Process Technology, 1994.

[Dubois89] : E. Dubois, J. Hagelstein, A. Rifaut, "Formal Requirements Engineering with ERAE", Philips Journal of
Research, Vol 43, No 4, 1989.

[Dubois94] : Eric Dubois, Philippe Du Bois, Frédéric Dubru, Michaël Petit, “ Agent-Oriented Requirements
Engineering: A case Study using the ALBERT Language ”, Proc. of the Fourth International Working Conference on
Dynamic Modelling and Information System - DYNMOD-IV, A. Verbraeck, H.G. Sol, and P.W.G. Bots (editors),
Noordwijkerhoud, The Netherlands, september 28-30, 1994.

 [ELEKTRA97] ELEKTRA consortium, Esprit Program 7.1, Technologies for business processes, best business
practice pilots. Elektra : Electrical Enterprise Knowledge For Transforming Applications. (N°22927)
http ://www.singular.gr/elektra, January 1997 to June 1999.

[ELEKTRA98] : ELEKTRA consortium, DEMETRA : System Design Specification for PPC, ELEKTRA
deliverable, March 1998.

[Erickson95] : T. Erickson, "Notes on Design Practice: Stories and Prototypes as Catalysts for Communication", in
Scenario-Based Design: Envisioning Work and Technology in System Development, Ed J.M. Carroll, 1995.

[Feather92] : Feather M.S, Fickas S. : "Coping with requirements freedoms", Workshop notes, Int. Workshop on
development of Intelligent Information Systems, Niagara, Ontario, 1992.

[Feiler93] Feiler P.H. and Humphrey W.S., ‘Software Process Development and Enactment: Concepts and
Definitions’ , Proceedings of the. Second Intl. Conf. On Software Process, 1993.

[Finkelstein90] : Finkelstein A., Kramer J., Goedicke M., "ViewPoint Oriented Software Development", Proc. Conf
"Le Génie Logiciel et ses Applications", Toulouse, p 337-351, 1990.

[Finkelstein94] : A. Finkelstein, J. Kramer, B. Nuseibeh (eds), "Software Process Modelling and Technology", John
Wiley (pub), 1994.

[Firesmith94] : D. G. Firesmith, "Modell ing the dynamic Behaviour of Systems, Mechanisms, and Classes with
Scenarios", In Software DevCon '94, pages 73-82. SIGS Publications, NY, 1994.

[Flynn90] : Flynn R.F., Dorfmann D., 4The Automated Requirements Traceabilit y System (ARTS) : an experience
of eight years’ , in Systems and Software Requirements, Tayer R.H. and Dorfmann M. (eds), IEEE Computer
Society Press, Tutorial, PP423-428, 1990

[Franckson91] : M. Franckson, C. Peugeot, "Specification of the Object and Process Modeling Language ", ESF
Report n° D122-OPML-1. 0, 1991.

[Fugini90] : M.G. Fugini, B. Pernici I, "RECAST: A Tool for Reusing Requirements", Conf. CAISE'90, Stockholm,
May, 1990.

26

[Glinz95] : M. Glinz, "An integrated formal Model of Scenarios based on Statecharts", Lecture Notes in Computer
Science '95 , pages 254-271, 1995.

[Gotel94] : Gotel O., Finkelstein A., ‘An Analysis of the Requirements Traceabil ity Problem’ , in Proceedings of
the First Ont. Conf. On Requirements Engineering, Colorado Springs, CP, pp94-102, IEEE Computer Society
Press, 1994.

[Gotel94b] : Gotel O., Finkelstein A., ‘Modell ing the Contribution Structure Underlying Requirements’, in Proc. of
the first Int. Workshop on Requirements Engineering : Foundation of Software Quality’ , Utrech, The Netherlands,
1994.

[Gougen93] : Gougen J.A., "Social issues in Requirements Engineering", In Proceedings of IEEE Symposium on
Requirements Engineering, IEEE Computer Society Press 194-198.

[Greuber92] : Greuber T., "Ontolingua : A mechanism to support portable ontologies", version 3.9. Technical report,
Knowledge systems laboratory, Stanford University, CA, 1992.

[Harandi91] : Harandi S.D.P, Lee M.Y., "Acquiring software design schema : A machine learning perspective",
Proc. 6th Knowledge Based Software Engineering Conference, IEEE Computer Society press, 188-197, 1991.

[Harel87] : D. Harel, "Statecharts: a Visual Formalism for Complex Systems", Sci. Computer Program, 8, pp. 231-
274, 1987.

[Harker93] : Harker S.D.P., Eason K.D. & Dobson J.E., "The Change and Evolution of Requirements as a Challenge
to the Practice of Software Engineering", IEEE Symposium on Requirements Engineering, RE’93, San Diego, CA,
Jan. 4-6, 1993, 266-272.

[Harmsen93] : F. Harmsen, S. Brinkkemper, "Computer Aided Method Engineering based on existing Meta-Case
technology," Proc. of the fourth Workshop on the Next Generation of CASE tools, (NGCT93), Paris, France, 1993.

 [Haumer98] : Peter Haumer, Klaus Pohl, Klaus Weidenhaupt, Requirements Elicitation and Validation with Real
World Scenes, to appear in IEEE Transactions on Software Engineering, Vol. 24, No. 12, Special Issue on Scenario
Management, December 1998.

 [Holbrook90] : C. H. Holbrook, A scenario - based methodology for conducting requirements elicitation. ACM
SIGSOFT, Software Engineering Notes Vol. 15, N° 1, pp. 95-104. January 1990.

[Hsia94] : P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen, "Formal Approach to Scenario Analysis",
IEEE Software, pp. 33-41, 1994.

[Huang98] Huang R., Making Active CASE TOOLs – Towards the Next Generation of CASE Tools, Software
Engineering Notes, 23, 1, 47 - 50, 1998.

 [Humphrey89] : Humphrey W.S., Kellner M.I.; "Software Process Modeling: Principles of Entity Process
Models", Proc. 11th Int. Conf. on Software Engineering, 1989.

[IEEE-830] : Guide to Software Requirements Specification, ANSI/IEEE std 830, 1984.

[IRDS90] : Information Technology - Information Resource Dictionary System (IRDS) - Framework, ISO/IEC
International Standard.

[Jacherri92] L. Jacherri, J. O. Larseon, R. Conradi, Sotware Process Modelling and Evolution in EPOS. Proceedings
of the 4th International Conference on « Software Engineering and Knowledge Engineering » (SEKE'92), pp574-
589, Capri, ITALY, 1992.

 [Jackson 93] : Jackson M., Zave P., ‘Domain descriptions’ , IEEE symposium on requirements Engineering, IEEE
Computer Society press, 56-64, 1993

 [Jackson94] : Jackson M., Problems, Methods and Speciali sation. Contributions to the Special Issue of the SE
Journal on ‘Software Engineering in the Year 2001’, 1994.

[Jacobson et al., 1992] I. Jacobson, M. Christerson, P. Jonsson, G. Oevergaard, "Object Oriented Software
Engineering: a Use Case Driven Approach", Addison-Wesley, 1992

 [Jacobson95] : I. Jacobson, The use case construct in object-oriented software Engineering. In ‘’ Scenario-based
design: envisioning work and technology in system development’ ’ , John M. Carroll (ed.), John Wiley and Sons,
309-336, 1995.

[Jarke93] : Jarke, M., Pohl, K., "Establi shing visions in context: towards a model of requirements processes". Proc.
12th Intl. Conf. Information Systems, Orlando, Fl, 1993.

[Jarke94] : Jarke M., Pohl, K.,Rolland C ;, Schmitt J.R., ‘Experience-based Method Evaluation and Improvement : a
Process Modell ing Approach’, in Proceedings of the Intl. IFIP Conf. On ‘Methods and Associated Tools for the
Information Systems Life Cycle’ , pp 1-28, Maastrich, The Netherlands, 1994.

27

[Johnson 95] J. Johnson, Chaos : the Dollar Drain of IT project Failures. Application Development Trends, pp.41-
47, January 1995.

[Kaindl93] : Kaindl H., ‘The Missing Link in Requirements Engineering’, ACM SIGSOFT Software Engineering
Notes, 19(2) :30-39, 1993.

[Kardasis98] : P. Kardasis, P. Loucopoulos, "Aligning Legacy Information Systems to Business Processes".
Proceedings of the 10th Conference on Advanced Information Systems Engineering, CAiSE’98. Pisa, Italy, 8-12
June, 1998.

[Kelly96] : kell y S., Lyyttinen K., Rossi M., ‘Meta-Edit+ : a fully configurable, multi-user and multi-tool CASE
and CAME environment’, Proceedings of the CAISE’96 Conference, Springer Verlag, 1996.

[Kirikova94] : Kirikova M., Bubenko J., ‘Enterprise modelli ng : improving the qualit y of requirements
specifications’, Information Research Seminar, IRIS 17, Olou, Finland, August 1994.

 [Kyng95] : M. Kyng, "Creating Contexts for Design", In John M. Carroll, editor, Scenario-Based Design:
Envisioning Work and Technology in System Development, pages 85-107. John Wiley and Sons,1995.

[Lalioti95] : V. Lalioti and B. Theodoulidis, "Use of Scenarios for Validation of Conceptual Specification",
Proceedings of the Sixth Workshop on the Next Generation of CASE Tools, Jyvaskyla, Finland, June 1995.

 [Lehman87] : M.M. Lehman ; "Process Models, Process Programs, Programming Support "; Proc. 9th Int. Conf. on
Software Engineering ; 1987

 [Leite97] J.C.S. do Prado Leite, G. Rossi, F. Balaguer, A. Maiorana, G. Kaplan, G. Hadad and A. Oliveros,
Enhancing a requirements baseline with scenarios. In Third IEEE International Symposium On Requirements
Engineering RE' 97, Antapolis, Maryland, IEEE Computer Society Press, pp. 44-53, 1997.

[Loucopoulos94] : P. Loucopoulos, The F3 (From Fuzzy to Formal) view on requirements engineering. Ingénierie
des Systèmes d’I nformation, Vol. 2, N° 6, pp. 639-655, 1994.

[Loucopoulos98] : Loucopoulos, P., Kavakli, V., Prekas, N., Dimitromanolaki, I. Yilmazturk,C., Rolland, C.,
Grosz, G., Nurcan, S., Beis, D., and Vgontzas, G., The ELEKTRA project : Enterprise Knowledge Modelli ng for
change in the distribution unit of Public Power Corporation, 2nd IMACS International, Conference on Circuits,
Systems and Computers (IMACS-CSC' 98), Athens, Greece, 1998 , pp. 352-357.

[Lubars93] : Lubars M., Potts C., Richer C., "A review of the state of the practice in requirements modeling",. Proc.
IEEE Symp. Requirements Engineering, San Diego 1993.

 [Macaulay93] : Macaulay L., ‘Requirements capture as a cooperative activity’, IEEE symposium on Requirements
Engineering, IEEE Computer Society Press, 174-181, 1993.

[Maiden94a] : Maiden N.A.M., Sutcli ffe A.G., "Computational mechanisms for reuse of domain knowledge during
requirements engineering", ICSE-Workshop on research issues in the intersection between software engineering and
artificial intelligence, Sorrento, Italy, May 1994.

[Maiden94b] : Maiden N.A.M., Rugg G., "Knowledge Acquisition Techniques for Requirements Engineering", Proc.
Workshop on Requirements Elicitation for System Specification, Keele UK, 12-14 July, 1994.

[Martin92] : Martin J., Odell J., ‘Object Oriented Analysis &Design’, Prentice Hall, Englewoods Cliffs, NJ07632,
1992.

[Marttiin94] : P. Marttiin, "Methodology Engineering in CASE shells : Design Issue and current Practice ", PhD
thesis, Computer science and information systems reports, Technical report TR-4, 1994.

[McGraw97] : Karen Mc Graw, Karan Harbison, User Centered Requirements, The Scenario-Based Engineering
Process. Lawrence Erlbaum Associates Publishers, 1997.

 [Mylopoulos92] : Mylopoulos J., Chung, L., Nixon, B., "Representing and using non functional requirements: a
process-oriented approach", IEEE Trans. Software Eng. Vol 18, N 6, 1992.

[Nardi92] : B. A. Nardi, "The Use of Scenarios in Design", SIGCHI Bulletin, 24(4).

[Norman92] : Norman R. and Forte G.(eds.), CASE in the 90’s, Special section of the CACM, 1992.

[Nurcan99a] : S. Nurcan, J. Barrios, G. Grosz, C. Rolland, ‘Change process Modelli ng using the EKD-Change
management Method’ , in proceedings of the European Conference on information Systems, ECIS' 99, 1999.

[Nurcan99b] : Selmin Nurcan, Colette Rolland, ‘Using EKD-CMM Electronic Guide Book for Managing Change
in Organisations’ , Submitted to European-Japanese Conference 1999.

 [Olle88] : Olle, T.W., Hagelstein, J., MacDonald, I.G., Rolland, C., Sol, H.G., Van Assche, F.J.M., Verrijn-Stuart,
A.A., "Information Systems Methodologies: A Framework for Understanding", Addison-Wesley, 1988.

28

[Osterweil87] : L. Osterweil, "Software processes are software too"; Proc. 9th Int. Conference on Software
Engineering, IEEE Computer Society, Washington, DC, 1987, pp2-13, 1987.

[Pietro-Diaz91] : Pietro-Diaz R., "Implementing faceted classification for software reuse", Communications of
ACM, Vol 34, No 5, 88-97, 1991.

[Plihon98] : V. Plihon, J. Ralyté, A. Benjamen, N.A.M. Maiden, A. Sutcli ffe, E. Dubois, P. Heymans, A reuse-
oriented approach for the construction of scenario based methods. Proceedings of the International Software
Process Association’s 5th International Conference on Software Process (ICSP’98), Chicago, Illinois, USA, 14-17
June 1998.

[Pohl96] : K. Pohl,. ‘Process Centered Requirements Engineering’ , J. Wiley and Sons Ltd., 1996.

 [Pohl97] : K. Pohl, P. Haumer, Modelling contextual information about scenarios. Proceedings of the Third
International Workshop on Requirements Engineering: Foundations of Software Quality REFSQ’97, Barcelona,
pp.187-204, June 1997.

[Pohl94a] : Pohl, K., "The Three Dimensions of Requirements Engineering: a framework and its application",
Information Systems Vol 19, N 3, pp 243-258, 1994.

[Pohl94b] : Pohl K., Doemges R. Jarke M.; "PRO-ART: An environment for Enabling Requirements Traceability"
Technical Report, Informatik V, RWTH-Aachen, 1994.

[Potts 97] : C. Potts, Fitness for use : the system quality that matters most. Proceedings of the Third International
Workshop on Requirements Engineering: Foundations of Software Quality REFSQ’97 , Barcelona, pp. 15-28, June
1997.

[Potts89] : Potts C., "A Generic Model for Representing Design Methods", Proc. 11th Int. Conf. on Software
Engineering, 1989.

[Potts94] : C. Potts, K. Takahashi, A.I. Anton, Inquiry-based requirements analysis. In IEEE Software 11(2), pp.
21-32, 1994.

[Prakash97] : Prakash N., ‘Towards A Formal Definition of Methods’, the Requirements Engineering Journal, 23 –
50, Springer Verlag, 1997.

[Prat97] : N. Prat, Goal formalisation and classification for requirements engineering. Proceedings of the Third
International Workshop on Requirements Engineering: Foundations of Software Quality REFSQ’97, Barcelona, pp.
145-156, June 1997.

[Ralyte99] : Ralyte J., Rolland C., Plihon V., ‘ ’ , accepted for publication in the Proceedings of the 11th Intl. Conf.
On Advanced Information Systems Engineering (CAISE’99), Springer Verlag, 1999.

[Ramesh93a] : Ramesh B., ‘A Model of Requirements Traceabilit y for Systems Development’, Technical Report,
naval Postgraduate School, Monterey, CA, 1993.

[Ramesh93b] : Ramesh, B., Edwards, M., "Issues in the Development of a Requirements Traceability model", Proc.
IEEE Symp. on Requirements Engineering, IEEE Computer Society Press, San Diego, Ca, 1993.

[Ramesh95] : Ramesh, B., Powers T., Stubbs C. and Edwards, M., ‘ implementing Requirements Traceabil ity : A
Case Study’ , in Proceedings of the 2nd Symposium on Requirements Engineering (RE’95), pp89-95, York, UK,
1995.
[Rawsthorne96] : D. A. Rawsthorne, "Capturing functional Requirements through Object Interactions", in
Proceedings of ICRE ' 96, pages 60-67. IEEE, 1996.

[Reubenstein91] : Reubenstein H.B., Waters R.C., "The Requirements Apprentice : Automated assistance for the
requirements acquisition", IEEE Transactions on Software Engineering, Vol 18, No 3, 226-240, 1991.

[Rolland79] : Rolland C., Leifert S., Richard C, "Tools for information systems design and management", Proc. 5th
Int. Conf. on VLDB, 1979.

[Rolland82] : C. Rolland, C. Richard, "The REMORA Methodology for Information Systems Design and
Management", in IFIP WG8.1 Working Conference on Information System Design Methodologies : a Comparative
Review, North-Holland, 1982.

[Rolland91] : Rolland C., Cauvet C., "ALECSI : An Expert System for Requirements Engineering", Proc. 3th Int.
Conf. on Advanced Information Systems Engineering (CAISE' 91), Springer Verlag (Pub.).

[Rolland93] : Rolland C., "Modelling the Requirements Engineering Process", Information Modelling and
Knowledge Bases, IOS Press.

[Rolland94] : Rolland C., Prakash N., "A Contextual Approach for the Requirements Engineering Process", Proc.
Int. IEEE Conf. on Software Engineering and Knowledge Engineering (SEKE94), Riga, 1994.

29

 [Rolland95] : Rolland C., Souveyet C., Moreno M, "An Approach for Defining Ways-of-Working ", Information
Systems Journal, Vol. 20, No 4, pp337-359 ,1995.

[Rolland97a] C. Rolland, C. Ben Achour, Guiding the construction of textual use case specifications. Data &
Knowledge Engineering Journal Vol. 25 N° 1, pp. 125-160, (ed. P. Chen, R.P. van de Riet) North Holland, Elsevier
Science Publishers. March 1997.

[Rolland97b] : C. Rolland, S. Nurcan, G. Grosz "A way of working for change processes" in International Research
Symposium '97 - Effective Organisations, 4-5 Sep 1997, Dorset, UK, p.201-204

 [Rolland98a] : C. Rolland, C. Souveyet, C. Ben Achour. "Guiding Goal Modelling using Scenarios", IEEE
Transactions on Software Engineering, Special Issue on Scenario Management, Vol. 24, No. 12, 1055- 1071, Dec.
1998.

[Rolland98b] : C. Rolland, P. Loucopoulos, V. Kavakli, S.Nurcan "Intention based modelling of organisational
change", under publication

[Rolland98c] : C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.A.M. Maiden, M. Jarke, P.
Haumer, K. Pohl, Dubois, P. Heymans, "A Proposal for a Scenario Classification Framework". Requirements
Engineering Journal, Vol; 3, No. 1, pp. 23-47, 1998.

[Rolland 99] : Rolland C., Prakash N., Benjamen A., ‘A Multi-model View of Process Modelli ng’, The
Requirements Engineering Journal, (under communication).

[Royce70] : Royce W. W., "Managing the Development of Large Software Systems", Proc. IEEE WESCON 08.

[Rubin92] : Rubin K.S., Golberg A., Object Behavior Analysis, Communications of the ACM, 35(9), Sept 1992, pp
48-62.

[Rumbaugh91] : J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, ‘‘ Object-oriented modelling
and design’’ . Prentice Hall, 1991.

[Russo95] Russo, The use and adaptation of system development methodologies, Proceedings, 1995, International
Resources Management. Association Conference, Atlanta, USA, 1995

[Shaw91] : Shaw M., "Heterogeneous design idioms for software architecture", 6th International Workshop on
Software Engineering and Design, IEEE Computer Society Press, 158-165, 1991.

[SISaid96] : Si-Said S., Rolland C., Grosz G., "MENTOR : A Computer Aided Requirements Engineering
Environment", in Proc 8th Int. Conf. on Advanced Information Systems Engineering (CAISE'96), Springer Verlag,
1996 .

 [Some96] : S. Some, R. Dssouli , J. Vaucher, "Toward an Automation of Requirements Engineering using
Scenarios", Journal of Computing and Information, Special issue: ICCI'96, 8th International Conference of
Computing and Information, Waterloo, Canada,2(1) pp 1110-1132, 1996.

[Standish 95] : The Standish Group, Chaos. Standish Group Internal Report,
http://www.standishgroup.com/chaos.html, 1995.

[Sutcliffe94] : Sutcliffe A.G., Maiden N.A.M., "A theory of domain knowledge for requirements engineering",
Nature Report Deliverable D-D-2 August 1994.

[Sutcliffe98] : Sutcliffe A.G., Maiden N.A.M., Minocha S , Manuel D. : ‘Supporting scenario-based requirements
engineering’, IEEE transactions on Software Engineering, special issue on ‘Scenario Management’ , Vol 24, Nb 12,
pp 1072-1088, Dec.1998.

[Tawbi98] : M. Tawbi, C. Souveyet, C. Rolland, L’ECRITOIRE a tool to support a goal-scenario based approach
to requirements engineering, Submitted to Information and Software Technology journal, Editor : Martin Shepperd,
Publishers : Elsevier Science B.V, 1998

[van Lamsweerde95] : A. Van Lamsweerde, R. Dairmont, P. Massonet, Goal Directed Elaboration of
Requirements for a Meeting Scheduler : Problems and Lessons Learnt, in Proc. Of RE’95 – 2nd Int. Symp. On
Requirements Engineering, York, IEEE, 1995, pp 194 –204.

[van Lamsweerde98] : Van Lamweerde A., Willemet L., ‘ Inferring Declarative Requirements Specification from
Operational Scenarios’ , IEEE Transactions on Software Engineering, Special Issue on Scenario Management, Vol.
24, No. 12, 1089- 1114, Dec. 1998.

[Weidenhaupt98] : K. Weidenhaupt, K. Pohl, M. Jarke, P. Haumer, Scenario usage in system development : a
report on current practice. IEEE Software, March 1998.

30

[Wijers91] Wijers G.M.,’ Modeling Support in Information Systems development’ , PhD. Thesis, Thesis Publishers,
Ansterdam, 1991.

[Wilenga93] : Wilenga B., Van de Velde, Schreiber G., Akkermans H., "Expertise model definition document";
KADS project document KADS-II/M2/UvA, University of Amsterdam, 1993.

[Willars92] : Willars H., ‘Ampli fication of business cognition through modelling techniques’ 11th IEA Congress,
Paris, 1992

 [Wood94] : D.P. Wood, M. G. Christel, S. M. Stevens, "A Multimedia Approach to Requirements Capture and
Modelli ng", Proceedings. ICRE' 94, Colorado Springs, 1994.

[Wright92] : Wright P., "What' s in a Scenario", SIGCHI Bulletin, Volume 24, Number 4, October 1992.

[Wright91] : Wright S ;, ‘Requirements Traceabil ity : What ? Why ? and How ?’ , in Proceedings. of the
Colloquium on Tools and Techniques for Maintaining Traceabil ity during Design, IEEE Professional Group C1
(SE), London, UK, 1991.

[Wynekoop93] J. D. Wynekoop, N. L. Russo, "System Development methodologies: unanswered questions and the
research-practice gap,", Proc. of 14th ICIS (eds. J. I. DeGross, R. P. Bostrom, D. Robey), Orlando, USA, 1993, pp.
181-190.

[Young87] M. R. Young, P. B. Barnard, "The Use of Scenarios in Human-Computer Interaction Research:
Turbocharging the Tortoise of Cumulative Science", CHI + GI 87 Human Factors in Computing Systems and
Graphics Interface, Toronto, 1987.

[Yourdon 89] : Yourdon E.E, ‘Modern structured analysis’, Prentice Hall, 1989.

[Yu94a] Eric SK Yu, John Mylopoulos. “ Understanding ‘Why’ in Software Process, Modelling, Analysis, and
Design ”. In Proc. of the 16th International Conference on Software Engineering _ ICSE’94, Sorrento (Italy), May
16-21, 1994. IEEE & ACM.

[Yu94b] Eric SK Yu, John Mylopoulos. “ From ER to AR_ modelling strategic Actor Relationships for Business
Process Reengineering ” . In Proc. of the 13th International Conference on the Entity-Relationship Approach _
ER’94, Manchester (UK), December 13-16, 1994.

[Yu94c] Eric SK Yu, John Mylopoulos. “ Towards Modelling Strategic Actor Relationships for Information Systems
Development- with Examples from Business Process Reengineering ” . Proc. of the 4th Workshop on Information
Technologies and Systems (WITS’94), Vancouver, B. C., Canada, December 17-18, 1994.

