

The natural way

- Use natural language : many systems were developped and still being developped using natural language
- Everyday life and social activity is made through natural language
- BUT
- · No precise semantics
- No structuring
- No abstraction
- No Validation ... Except some exceptions

Content

- Requirements for a requirements notation
- Classes of languages, models, tools, methods, techniques
- Review of basic related aspects (seen in other courses)
- · Main methods used in industry
- · Formal notations and associated methods
- Case study and lab : Statecharts

Requirements for a requirements notation

- · Let's recall the main processes
 - Elicitation
 - Expression
 - Validation
 - Generation of specification
 - Hardware
 - · Software requirements
 - · Others systems specification

Requirements for such notation

- · Express Behaviour
- Data specification
- Functions (data transformation)
- Supports abstraction
- Executable (ideally)
- · Associated method/methodology

What to express

- Requirements that can be understood
- That can have a single meaning
- That can be refined when needed
- That can strcturerd for managing inconsistencies and changes

The modelling Issue

- Modelling can guide elicitation
- Modelling can provide a measure of progess
- Modelling can help to uncover problems (Inconsistencies)
- Central concepts
 - Abstraction
 - Process modelling
 - Data Modelling
 - Data Flow
 - Behaviour
 - Etc ...

Example

- The system must be reliable
 - 1. Not precise
 - 2. Qualitative attribute
 - 3. Add a quantitative attribute
 - · Context in which le system must be reliable
 - (the context means system internal context and environment)

Writing good requirements : syntax and semantics as any statement

Classes of languages, models, tools, methodes, techniques

- · Consider Software systems
- Any language can be a requirement language
- A programming language is a requirement language for the computer to execute what is required
 - Example : While {..} doIt is well specified and no ambiguity
- However in RE
 - There many stakeholders
 - Different cultures (not necessarily computer scientists or familiar with programming languages)
 - Requirements are of many types

Classes

- · Programming languages
- Specific notation
- General purpose Methods
 - Informal
 - Semi-formal : Used in industry
 - · Formal : Developped by academia
 - · Abstract : limited to specific issues (pure academia work)
- · Paradigms
 - · Function oriented
 - Object

Review of basic related aspects (seen in other courses)

- Control structure (behaviour) : seq; //, if .. Else
- Communication (shared data, synch, async, ..)
- Abstraction
- Encapsulation
- Properties
- Invariants

CRITERIA (CMU-DoD_SEI Taxonomy)

- Representation
 - → Concepts and techniques described using the technique
- Derivation
 - \rightarrow Methods to produce a specification from another
- Validation-Verification

 \rightarrow Properties that can be determined using the specification technique

REPRESENTATION

- Style
- Concurrency
- Communication
- Non-Determinism
- Fairness
- Modularity
- Time
- Data

DERIVATION

Transformation

→ Transformation rules from a specification technique to another (e.g multiformalism approach)

• Elaboration

 \rightarrow Same as above with a refinement process

• Composition

 \rightarrow Combination of various methods for a complex system

VERIFICATION-VALIDATION

- Equivalence
- Consistency
- · Safety and liveness

Criteria	VDM	RDP	Statemate	OMT	SART	LOTOS	SDL	Z	В	Estelle
Rigor	3	3	2	- 1	1	3	2	3	3	3
Data modeling	3	1	2	3	2	3	2	3	2	2
Function modeling	3	0	2	2	2	1	2	3	3	3
Control structures	2	3	3	2	2	3	2	0	2	3
TC expression	0	2	2	0	1	2	2	0	0	1
Exception handling	2	1	3	0	0	3	2	0	0	0
Verifiability	2	3	1	0	0	3	2	0	0	1
Validability	3	3	3	0	2	3	2	1	2	2
Modularity	2	1	3	3	2	2	2	2	2	1
Level of abstraction	3	1	3	2	2	2	2	3	3	1
Reusability	2	1	3	2	1	2	2	1	3	1
Implementability	2	2	2	2	1	2	3	1	2	3
Friendliness	1	2	3	3	3	1	3	2	1	2
Tool maturity	3	3	3	2	3	2	3	1	1	2
	0	3	3	2	1	3	3	1	1	2

Specific Notation

- Most are in house methods
- Often not available tools
- Do correspond to the needs
- · Difficulty to interface witth other notations

Informal

- Mostly based on natural language
- Template
- Simple to use by everybody
- Problem with validation
- Example : Volere template (Natural language)

Main methods used in industry

- Semi-formal
- General purpose and dedicated (example : SDL for communication)
- Validation
 - By Simulation
 - Inspection
- Often Graphical notation
- A semantic (very rarely formal, but precise)

Formal methods

- Formal semantics (still polemics on the issue mathematical equation and formal notation)
- Two types
 - Model oriented : VDM, Z, B, SCR, OBJ
 - Behaviour : Petri nets, "statecharts", Lotos, ..
- Formal validation
- Automated tool
- · Not well established in industry

Abstract oriented modelling

- These are based on agebra, logic
 - Logic
 - Temporal logic and extensions for reactive systems
 - · Process algebra

Semi-formal methods

- SADT
- SA-RT
- Statemate
- 00A
- OMT
- UML

Formal notations and associated methods

- See lectures
 - Petri nets
 - Statecharts and statemate (the statemate method)
 - VDM
 - Formal methods

Case study and lab : Statecharts

- · Consider the case study on
 - aeronautic application
 - Manufacturing
 - Communication protocols
 - Transportation

Conclusions

- · Many methods and tools
- · A need for taxonomy for such methods
- A need for a methology (as UML) for using a number of methods to covers all needs for requirement specification.

