
A Case for Priority
Classifying Requirements

Larry Fellows
Honeywell, Inc.

MS 2H29A3
21111 N 19th Avenue

Phoenix, AZ 85027-2708

Ivy Hooks
Compliance Automation, Inc.

17629 El Camino Real, Suite 207
Houston, TX 77058

ABSTRACT

Prioritizing requirements can play a significant
role in reducing requirement problems and
increasing customer satisfaction. This paper
describes our experiences in teaching requirement
prioritization, describes how to prioritize
requirements and the benefits of doing so, and
describes the responses of our students.

INTRODUCTION

Early in 1997, we began the development of a
two-day training program aimed at managing and
writing requirements. The original intent of the
course was to help Honeywell locations satisfy the
Software Engineering Institute’s Capability
Maturity Model Level 2 Requirements
Management Key Practice Area (KPA), and the
requirements aspects of the Level 3 Software
Product Engineering KPA. As the course
developed, it was expanded to apply to systems
engineers, software engineers, marketing
representatives, and test engineers.

An existing requirement training class formed
the basis of the Honeywell training package.
Literature searches were conducted to add new data
and emphasis to the requirement management
portion of the class.

One area researched was that of prioritization,
but very little was found on the subject. In (Down
1994) Risk Management for Software Projects,
prioritization was mentioned as a risk management
technique to ensure proper allocation of project
resources. In (Davis 1995) 201 Principles of

Software Development and (Davis 1993) Software
Requirements Objects, Functions, and States
prioritization was defined as determining the
relative necessity of requirements. (Pressman
1997) Software Engineering A Practitioner’s
Approach discusses establishing requirement
priorities from a phased delivery aspect. Finally,
(Wiegers 1996) Creating A Software Engineering
Culture urges prioritization as a means to eliminate
unnecessary requirements. Each of these books
discusses some aspect of requirement
prioritization, but lacks the detail concerning
techniques, benefits, and problems.

Before formally presenting the first class, a dry
run was conducted with managers, as well as,
senior systems and software engineers from
various Honeywell divisions. The Students were
particularly hostile when the concept of
prioritization was presented. Another literature
search uncovered a new book, (Sommerville 1997)
Requirements Engineering A good practice guide,
which provided some compelling points on the
subject. The following paragraphs describe the
events that led to the inclusion of prioritization,
student response to the subject, and
recommendations for incorporating prioritization
into a requirement management process.

BACKGROUND ON TEACHING
PRIORITIZATION

For the past seven years, the existing class had
included material on prioritizing requirements.
This material was based on personal experience in
managing programs.

Rarely does a customer get everything
requested. Trying to make a development activity

come in at a specific cost and on a schedule will
often mean that all requirements cannot be
included. Analysis frequently reveals that all
performance parameters cannot be met
simultaneously or that maintainability, reliability,
portability, and performance requirements cannot
all be met with a single solution. The fact that
trade studies must be done means requirements
must be compromised.

Customers have found that development
organizations do not, or cannot, view the
requirements from their perspective. When the
developers do trade studies, they invariably trade-
off the wrong requirements. Developer’s trade
studies often indicate priorities that are the exact
opposite of the customer’s. The result is wasted
time and effort along with the need to repeat the
studies when the customer priorities are defined.

It would save time and money if the customer
would indicate those requirements that have high
priority versus those with low priority from the
beginning. The developer would know what the
customer wants as opposed to deciding what the
customer wants by guessing or applying the
development organization’s priorities. If the
priorities were known up front, the trade studies
would not need to be repeated.

A similar situation exists for commercial
products. Marketing, as opposed to a specific
customer, may be defining the requirements, but
breakdowns in communication with developers can
occur. This breakdown can result in problems with
delivering the new or revised product on time and
on budget.

In seven years of these classes, students
seemed to grasp the concept of prioritization and
no objections were heard. However, there has been
no feedback that anyone was actually prioritizing
requirements.

The Class Dry Run – Prioritization – No Way!
Prioritization was covered in the first half-day

which specifically deals with requirements
management. Prioritization was covered in more
depth in the last half-day while covering how to
write good requirements.

Surprisingly, at the first mention of
prioritization the students were visibly upset. They
said, We can’t prioritize a customer’s
requirements, the customer would have to do that.
Our customers won’t do it. They want all the
requirements and they believe they are all equal.

They will know if we want to prioritize that we are
going to cut out some of their requirements and
that is not acceptable.

The discussion that ensued was lengthy and
frustrating for both instructors and students. Even
when exposed to the arguments in the later portion
of the class, the students still believed that
prioritizing with a customer was nearly impossible.
The students felt that the customer would assume
that the primary reason to prioritize requirements
was to reduce the requirement set. During the
debriefing, this subject was pointed out as one of
major concern.

The First Class – Prioritization – What a Good
Idea!

Feeling there was a major problem in this area,
another search was conducted to find additional
references. The recently published book,
(Sommerville 1997) Requirements Engineering A
good practice guide by Sommerville and Sawyer,
contained the details we needed. This material was
incorporated with the training material for the first
class. The major points discussed were:

• First set of requirements often a wish
list

• Too long and imprecise to be
practically implemented

• Refinements and clarifications are
negotiated during the course of a
project

• Additional requirements or changes
to existing requirements are identified
in the normal course of engineering a
solution

• Not all requirements are created equal

This was an attempt to gain agreement that not all
requirements are equal. This should be common
knowledge, but experience shows that some
students do not believe their customers understood
this concept.

There may actually be a case where some
customers do not understand the concept. Several
years ago, working with a client to put
requirements into a requirement management tool,
a requirement in the customer system specification
said, All requirements in this document shall be
equal. It was suspected that the use of shall,
denoting a requirement, was a mistake, until the
verification matrix was examined and showed this
requirement was to be verified by analysis.

In this class, prioritization was not discussed
until there was agreement that the first set of
requirements may consist of a wish list and not all
requirements are equal. Then the following points
were covered:

• After you have reached agreement with the
customer on the requirements to be included,
ask the customer to help prioritize them

• Prioritization helps all stakeholders to identify
the core requirements

• Prioritization helps designers to decide on
system architecture and resolve design
conflicts

A good discussion followed that helped make
the idea of priorities fit within the students’
perspective. The important point was getting the
customer to help prioritize after agreement on the
full requirement set. The class appreciated the fact
they have to make trade-offs in order to deliver a
system on budget and on time.

The terminology found in (Sommerville 1997)
Requirements Engineering A good practice guide
was used to address the priority categories. These
categories are:

• “Essential” requirements are those that must
be included in the system

• “Useful” requirements are those that would
reduce system effectiveness if left out

• “Desirable” requirements are those that are not
part of the core, but make the system more
attractive to the users

It does not pay to have many priority
classifications. Three priorities are sufficient to
achieve the goals of reflecting the relative
importance of requirements. The importance of
having stakeholders, other than the customer,
involved in the prioritization process was stressed,
just as the stakeholders’ importance in developing
the requirements is emphasized.

More information was added to support the
argument that prioritizing is beneficial to the
project. Discussion points evolved around
customer satisfaction. When the requirements are
prioritized, the customer is happier because
expectations are more realistic. It is easier to
correlate requirements delivered with schedule
deadlines.

Some suggestions were made to help avoid
problems. One of these was to try for informal
agreement on the priorities. If differences cannot

be resolved informally, then they should be
discussed and resolved at the negotiation table.
Lengthy negotiations would certainly add effort
that may be sufficient to kill the concept.

Another point made was that as requirements
evolve, for whatever reason, priorities will also
evolve and should be revisited and adjusted as
needed. While discussing the requirement
management process elements, it was pointed out
that prioritization would help when adding new
requirements. A new high priority requirement
would have to replace a lower priority requirement
if the work were to remain on the same schedule
and budget. Everyone would know where the
sacrifice would be made before approving the new
requirement. Our belief is that the prioritization
process will increase customer confidence.

What a change between the dry run and the
first class! Not only was there no revolt when the
subject of setting priorities was broached, but the
class evaluations revealed they believed that they
would gain tremendously by adding this element to
their process. They felt they had arguments to aid
them in meeting with their customer and
convincing them of the advantage of setting
priorities.

The Second Class – Prioritization – Been
There/Done That.

No changes to the prioritization charts were
made for the second class. When the point where
prioritization was covered was reached, the
students were asked if anyone had ever employed
the process. Amazingly, one group answered not
only did they prioritize, but the benefits were huge.
The two major benefits cited were cutting out the
overtime and having a happy customer. Those
benefits are desirable in any organization.

The group who claimed these benefits had
been working with a commercial customer over
about a six-year period. The first three years were
filled with frustrations. The customer was not
getting what they wanted and the developers were
working overtime on a regular basis trying to
implement all the requirements.

After about three years, the developers
changed their approach. The developers set about
to do much better up-front planning. This planning
effort enabled the developers to lay out the
customer requirements against a schedule and say
what could be done by when. The customer
quickly recognized prioritizing requirements would

aid the process and did so on their own initiative.
Essentially the three categories discussed earlier
were used, labeled high, medium, and low.

When the developers scheduled the prioritized
requirements, those with less priority went to the
end of the queue. Not too surprisingly, the
customer actually decided that some of their low
priority requirements were not needed at all and
simply deleted them.

Because delivery schedule was a major
customer constraint, phased implementation would
assure the highest priority requirements were
delivered first with others of declining priority in
following releases. As new requirements were
added, they could be prioritized allowing easy
revision of schedules and releases to meet the
customer needs.

Now, the customer gets what they want when
they want it. The customer is happy with the
results which, of course makes the developers feel
much better. In addition, there is the benefit of less
overtime, especially during acceptance testing.
The students said they kept waiting for things to go
wrong during acceptance test that would take a
large amount of overtime to resolve. They were
astounded at how cleanly the acceptance testing
went when everyone was aware of exactly what to
expect.

These students were quick to point out; these
results were not caused by prioritization alone.
They believed their whole approach to planning
and scheduling also aided in the improvements.
While they had recorded no metrics, they knew
absolutely that there were large benefits. They also
discussed another customer who does not want to
operate in this manner and that is declaring all
requirements are of equal priority. The students,
with the support of their management, are telling
that customer no and insisting upon the approach
which has provided benefits with other customers.

RECOMMENDATIONS

Our recommendations to implement
prioritizing requirements in your process follow:

1. Sell prioritization benefits
2. Define the 1, 2, 3’s
3. Classify requirements
4. Assess the classification and resolve issues

5. Create schedules based on priorities
6. Maintain the priorities

Step 1 – Sell prioritization benefits
To get participants to agree to prioritize, they

must be convinced of the need. Point out the fact
they are probably already doing prioritization, it is
only the timing that needs to change. When there
is not enough money or time to include everything,
something must be deferred or deleted to meet
budget or schedule. Then the requirements are
prioritized. When a really important new
requirement is added, then the requirements are
prioritized and something of lower value is usually
thrown out. Since this normally happens late in the
project, there are fewer options.

With late prioritization, serious problems come
with deferrals and deletions that are related to
synchronization of effort. If one group has
completed the implementation of a requirement
and another hardly begun, throwing out the
requirement could create considerable risk.

Present these undesirable scenarios and
recommend setting the priorities early, when there
are more options. This allows realistic scheduling
of resources and effort. Even if it appears that
everything can be done within the schedule and
budget without prioritization, prioritizing the initial
list allows the least important requirements to be
scheduled last. Then if schedule or budget
problems develop, or if a new requirement is
added, the ability to defer or delete the less
important requirements without impacting work
already completed increases dramatically.

Point out to people that not all requirements
can be priority 1, unless there are missing
requirements. There are always requirements
levied upon a system that are desirable or useful, or
which can be deferred in phased deliveries.

Step 2 – Define 1, 2, and 3’s
A simple 1-2-3 numbering system works well.

The most important requirements are numbered 1 –
these are essential, non-negotiable, and are needed
right now. Those that are useful, negotiable, or
can be deferred a little later are numbered 2. And
those that are desirable, flexible, or can be done
someday become the number 3 requirements. One
technique is to identify those that are priority 1 and
3. The others are 2 by default. Your operations
will determine how you define each of these levels.

Step 3 – Classify
Educate the stakeholders, both external and

internal, about the prioritization numbering system
before they classify the requirements.

It is important that all stakeholders participate
in the process. It is true that some of the
stakeholders have more sway than others. When
developing for a particular customer, that customer
has more influence on the priorities than someone
does in your development or test organization.
When developing a commercial product, then
marketing has a large say so, but so does the
development organization that is looking at the cost
and complexity of a phased set of releases to a
particular schedule.

Have the stakeholders sort the requirements
into the three categories. This should be a rather
informal process so it can be done quickly and so
people do not get too stressed in performing the
operation. The important aspect of this process is
to get a relative sense of each requirement’s
importance. It is not worth it to agonize over the
exactness of the categorization.

 Step 4 – Assess the classification and resolve
disputes

After each group defines their priorities, the
next step is simple. Everything that is agreed upon
gets thrown into its applicable bucket. That is, if
everyone thinks requirement A is priority 1, then it
is and that is that.

All of the requirements with differing opinions
on priority need to have those differences resolved.
So if one person thinks Requirement B is priority
1, someone else thinks it is priority 2, and others
think it is a 3, now the harder work begins and the
differences have to be resolved.

Again, keep this process as informal as
possible. Get the groups together and simply show
them how every requirement is classified. Then
show them those that are in dispute and what this
looks like in a tabular format. Immediate
agreement to change their priority by someone will
reduce the differences. Some requirements will
need more discussion.

If one person feels strongly that a requirement
should be priority 1, but others think it is a 2, put it
in the 1 category but note that it needs to be at the
end of the priority 1 implementation schedule. If

there is a disagreement over another requirement
ask the development expert if it is worth disputing.
Some requirements are going to be done early
anyway because they will be implemented with
other similar items to save development effort. If
the disputed requirement is one of these or if it is
very small in terms of time and money then put it
in the higher priority list and stop the debate.
Again, the key is to keep it simple and quick.
There is no exact answer or solution.

Step 5 – Create schedules based on priorities
When agreement on the priorities has been

reached, development schedules can be laid out to
determine if any priority 3 items are going to have
to be deferred to a later release. Everyone can see
where work is beginning and ending on each
requirement. Work in different areas on the same
requirement can be synchronized to avoid potential
schedule problems.

Step 6 – Maintain the priorities
Priorities, like other requirement information,

need to be maintained throughout the project
lifecycle. As analysis is performed and design
issues are resolved, the priorities need to be
revisited. This enables the maintenance of
realistic, detailed implementation schedules.
Likewise, when new requirements are introduced a
reassessment of at least some of the priorities is
required. Maintaining the priorities and the
resulting implementation schedules increase the
probability of functionality being delivered when
needed.

QFD
Prioritization discussions would be incomplete

if Quality Functional Deployment (QFD) were
ignored. This particular method of setting
priorities is well documented and courses in how to
use the method are available from a number of
sources. Accordingly, we have chosen not to
address this methodology in this paper.

Using QFD is considerably more complex than
the method discussed in this paper. Most projects
do not need to undertake the large investment in
time and effort required for QFD. Other programs,
those involving large numbers of diverse
stakeholders, with very different and often
contradictory viewpoints, may find QFD is the
solution to their prioritization problem.

SUMMARY

We were convinced, before the students
brought us a real-life example, that prioritization is
essential for managing requirements. We just had
not conceived of all of the possible benefits.

Some marketing is required to convince both
customer and developer that the effort to do
prioritization is worthwhile. Our limited
experience seems to indicate that this is not a
widely accepted practice. To get the commitment
to prioritize the requirements, the benefits of this
activity need to be demonstrated to the customer.
The development organization needs to understand
these benefits and gain the confidence to approach
the customer for assistance with prioritization.

A fairly simple process can be used to
establish priorities that will help to dramatically
reduce rework and schedule slips in a typical
project. The resulting reduction in effort will be
considerably more than the effort expended
establishing priorities.

Working through the prioritization with the
customer will allow the developers to better
understand the customer, another essential
ingredient of the development process. It creates
dialog, which reduces misinterpretations by the
developers. It will help the customer understand
the development schedule problems and feel like a
part of the solution.

The customer has many tasks competing for
attention and requirements are just one of them. If
the requirement definition process is lengthy, the
customer gets confused by all the different versions
and really does not know what is in the set.
Prioritizing the requirements helps clarify the
requirements.

The need to prioritize increases with the
number of requirements. Those programs with
large numbers of requirements need to prioritize
early and maintain prioritization with changes to
the requirements and their attributes.

Although we do not recommend maintaining the
priorities as a baseline item, it is clear that they
should be documented. To avoid
misunderstandings and conflicting expectations,
both customer and developer should agree to the

documented priorities.

REFERENCES

Davis, Alan M. Software Requirements Objects,
Functions, and States. PTR Prentice Hall,
Englewood Cliffs, NJ: 1993

Davis, Alan M. 201 Principles of Software
Development. McGraw- Hill, Inc., New York,
NY: 1995

Down, Alex et al,. Risk Management for Software
Projects. McGraw-Hill, London: 1994

Pressman, Roger S. Software Engineering A
Practitioner’s Approach Fourth Edition.
McGraw-Hill, Inc., New York, NY: 1997

Sommerville, Ian; Sawyer, Pete. Requirements
Engineering A Good Practice Guide. John
Wiley and Sons, West Sussex, England: 1997

Wiegers, Karl E. Creating A Software Engineering
Culture. Dorset House Publishing, New York,
NY: 1996

BIOGRAPHIES

Larry Fellows
Larry is a staff engineer in the Honeywell

Software Initiative. The mission of the Software
Initiative is to enable business growth by
championing software competency improvement
throughout the corporation. This mission is
accomplished through partnerships, liaison
activities, joint projects, and assessments of
Honeywell locations worldwide.

Larry comes to Honeywell from Wilcox
Electric, Inc. were he worked as the Software Test
Lead and Systems Test Manager. Most recently,
Larry was the Software Engineering Process Group
Chair. Prior to Wilcox, Larry was a Software Test
Manager for General Electric Aerospace. He has
also worked as a systems engineer, software
developer, and software development manager for
Vitro Corporation. He has sixteen years
experience in the US Navy with advanced
submarine navigation, communications, and ASW
systems. Larry holds a BS in Computer Science
from the University of Nebraska.

Ivy Hooks
Ivy is president and CEO of Compliance

Automation, Inc. (CAI). CAI is the developer of
Vital Link, requirement management software, and
provides training and consulting in requirements
management and writing. Ivy has provided
requirements training for the past seven and one-
half years and written numerous papers on different
aspects of requirements engineering.

Prior to the creation of CAI, Ivy was President
of BGJ&A and prior to that, with Barrios
Technology Inc. For twenty years, she had a
distinguished NASA career at the Johnson Space
Center. She is the recipient of many awards and is
a charter member of INCOSE, a Fellow of the
Society of Women Engineers, and a member of
IEEE.

