
New robust control functions for the
Polynomial Toolbox 3.0

Didier Henrion
1,2,3

Michael Šebek
4

February 13, 2003

Abstract

This report describes a bunch of new functions implemented in version 3.0 of the
Polynomial Toolbox for Matlab. Calling sequences and functionalities are illustrated
by numerical examples. The functions use convex optimization over linear matrix
inequalities (LMIs) to solve various robust control problems.

1 Introduction

A set of new functions are being included to the new release 3.0 of the Polynomial Toolbox
[PolyX 00], based on recent theoretical achievements in polynomial techniques and convex
optimization. The new functions use optimization over linear matrix inequalities (LMIs)
to solve various robust control problems:

• robust analysis:

– ptopana - robust stability analysis of a polytope of polynomial matrices

– elliana - robust stability radius of an ellipsoid of continuous-time scalar poly-
nomials

– ellista - ellipsoidal approximation of the stability domain in the coefficient
space of a polynomial

1Corresponding author. FAX: +33 5 61 33 69 69. E-mail: henrion@laas.fr
2Laboratoire d’Analyse et d’Architecture des Systèmes, Centre National de la Recherche Scientifique,

7 Avenue du Colonel Roche, 31 077 Toulouse, cedex 4, France.
3Also with the Institute of Information Theory and Automation, Academy of Sciences of the Czech

Republic, Pod vodárenskou věž́ı 4, 182 08 Praha, Czech Republic.
4Center for Applied Cybernetics, Faculty of Electrical Engineering, Czech Technical University in

Prague, Technická 2, 166 27 Praha 6, Czech Republic.

1



• robust design:

– ptopdes - robust stabilization of a polytope of scalar polynomials

– ellides - robust stabilization of an ellipsoid of scalar polynomials

– ptopdes2 - robust proportional-derivative stabilization of a polytope of second-
order systems

– ellides2 - robust proportional-derivative stabilization of an ellipsoid of second-
order systems

– sofss - simultaneous stabilization by scalar static output feedback

– hinfdes - fixed-order H∞ controller design

LMI problems are solved with the semidefinite programming feature of the solver SeDuMi
[Sturm 99]. LMI problems are transformed into semidefinite programs with a user-friendly
interface to SeDuMi [Peaucelle et al. 01].

2 Installation

The new functions require Matlab 6.5 and the Polynomial Toolbox 3.0. Both freeware
SeDuMi 1.05 and its LMI interface 1.03 must be properly installed and reachable from
Matlab’s path. To download and install SeDuMi, refer to the instructions given at

http://fewcal.kub.nl/sturm/software/sedumi.html

To download and install the LMI interface to SeDuMi, refer to the instructions given at

http://www.laas.fr/∼peaucell/SeDuMiInt.html

3 Notations

We say that a polynomial is stable when all its roots belong to a given stability region D.
We consider standard stability regions described by the quadratic scalar inequality

D = {s ∈ C :

[
1
s

]?
S

[
1
s

]
< 0}

where the star denotes transpose conjugate and S is a 2× 2 Hermitian matrix referred to
as the stability matrix. For example the choice

S =

[
0 1
1 0

]
2



corresponds to the left half-plane (continuous-time polynomials) and

S =

[
−1 0
0 1

]
corresponds to the unit disk (discrete-time polynomials).

When referring to a monic polynomial of degree n

p(s) = p0 + p1s+ · · ·+ pn−1s
n−1 + sn

we use sometimes its coefficient vector

p =


p0

p1
...

pn−1

 ∈ Rn.

4 Function ptopana

Function ptopana checks robust stability of a polytope of polynomial matrices. Given
a set of polynomial matrix vertices Ai(s) for i = 1, 2, . . . the function attempts to prove
stability of the uncertain polynomial matrix

A(s) =
∑
i

λiAi(s),
∑
i

λi = 1, λi ≥ 0.

The underlying theory can be found in [Henrion et al. 01a] and [Henrion et al. 01b].

The function syntax is as follows:

ptopana(A)

ptopana(A,S)

where the first input argument is a cell array of polynomial matrices, and the second input
argument is the stability matrix. Function ptopana returns 1 is the polytope is robustly
stable. If the function returns 0 then we cannot conclude about robust stability.

4.1 Third degree continuous-time polytope with three vertices

With the following instructions:

>> A{1} = 28.3820+34.7667*s+8.3273*s^2+s^3;

>> A{2} = 0.2985+1.6491*s+2.6567*s^2+s^3;

3



>> A{3} = 4.0421+9.3039*s+5.5741*s^2+s^3;

>> ptopana(A)

ans =

1

function ptopana proves robust stability of the continous-time polytope of degree 3 with
3 vertices. The root locus of the edges of the polytopic family is represented in Figure 1.

Figure 1: Root locus of the edges of the polynomial polytope.

4.2 Mechanical system

Consider the mechanical system represented in Figure 2, whose differential equations after
application of the Laplace transform are given by[

m1s
2 + d1s+ c1 + c12 −c12

−c12 m2s
2 + d2s+ c2 + c12

] [
x1(s)
x2(s)

]
=

[
0

u(s)

]
.

We assume that system parameters m1, d1, c1, m2, d2, c2 belong to the uncertainty hyper-
rectangle [1, 3]×[0.5, 2]×[1, 2]×[2, 5]×[0.5, 2]×[2, 4] and we set c12 = 1. This mechanical
system is passive so it must be open-loop stable (when u(s) = 0) independently of the
values of the masses, springs, and dampers. However, it is a non-trivial task to know
whether the open-loop system is robustly stable in some stability region D ensuring a
certain damping. Here we choose the disk of radius 12 centered at -12:

D = {s ∈ C : (s+ 12)2 < 122},

i.e. we set

S =

[
0 12
12 1

]
4



Figure 2: Mechanical system.

as the stability matrix. The robust stability analysis problem amounts then to assessing
whether the second degree polynomial matrix is robustly stable in D for all admissible
uncertainty. This is an interval polynomial matrix with m = 26 = 64 vertices. With this
polynomial matrix polytope and the above stability matrix as input arguments, function
ptopana returns 1, which proves robust stability, see the script below:

>> c12 = 1;

>> A = cell(1,2^6); i = 1;

>> for m1 = [1 3], for d1 = [0.5 2], for c1 = [1 2],

for m2 = [2 5], for d2 = [0.5 2], for c2 = [2 4],

A0 = [c1+c12 -c12; -c12 c2+c12]; A1 = [d1 0;0 d2]; A2 = [m1 0;0 m2];

A{i} = pol([A0 A1 A2],2); i = i+1;

end; end; end;

end; end; end;

>> S = [0 12; 12 1];

>> ptopana(A,S)

ans =

1

Therefore, the root-locus of the polynomial matrix remains in disk D for all admissible
uncertainty. In Figure 3 we represented the roots of the 64 polynomial matrix vertices.

5



Figure 3: Roots of the 64 polynomial matrix vertices of the mechanical system.

5 Function elliana

Function elliana computes the largest radius r such that the continuous-time ellipsoid
of polynomials

{p(s, q) = p0(s) +
n∑
i=1

qipi(s), q
T q ≤ r2},

remains robustly stable. In the above description, p0(s) is a given stable nominal poly-
nomial, pi(s) are given polynomials of degree less than or equal to the degree of p0(s),
and

q =


q1

q2
...
qn


is a real vector modelling the uncertainty, see [Ackermann 93, §7.2], [Barmish 94, Part
IV] or [Bhattacharyya 95, §4.5].

The function syntax is as follows:

R = elliana(P0,[P1 P2 .. PN])

where the first input argument is the stable nominal polynomial p0(s) and the second
input argument is an array of polynomials pi(s) describing the uncertainty ellipsoid.

6



5.1 First example

Consider as in [Barmish 94, Example 15.5.3] the ellipsoid of polynomials described by

p0(s) = 2 + 1.4s+ 1.5s2 + s3

pi(s) = si−1, i = 1, .., 4

We obtain a stability radius of r = 0.0330 with the following script:

>> r = elliana(s^3+1.5*s^2+1.4*s+2,[1 s s^2 s^3])

r =

0.0330

5.2 Second example

Consider as in [Ackermann 93, Example 7.2] the ellipsoid of polynomials described by

p0(s) = 129 + 166s+ 237s2 + 108s3 + 80s4

p1(s) = −16 + 24s− 12s2 + 4s3

p2(s) = −21 + 42s− 21s2

We obtain a stability radius of r = 1.1125 with the following script:

>> r = elliana(129+166*s+237*s^2+108*s^3+80*s^4,...

[-16+24*s-12*s^2+4*s^3, -21+42*s-21*s^2])

r =

1.1125

6 Function ellista

Function ellista builds an inner ellipsoidal approximation E of the (generally non-
convex) stability domain in the space of coefficients of a monic polynomial, based on the
theoretical results of [Henrion et al. 01c]. Note that the LMI formulation implemented in
function ellista slightly differs from the one found in the above reference: the current
implementation is less conservative.

The function syntax is as follows:

[P,pc] = ellista(p0)

[P,pc] = ellista(p0,S)

P = ellista(pc,S,’center’)

where the first input argument is either

7



• one arbitrary polynomial p0(s) in E (first and second calling syntaxes), or

• the center polynomial pc(s) of E (third syntax).

Stability region D can be specified through its defining matrix S as a second input ar-
gument. By default it is the standard stability region associated with the first input
polynomial. A positive definite shaping matrix P as well as a center polynomial pc(s) are
returned as output arugments such that

E = {p ∈ R : (p− pc)′P (p− pc) ≤ 1}

is the ellipsoidal approximation of the stability domain in the space of polynomial coeffi-
cients.

6.1 Third-degree discrete-time stability domain

In the three-dimensional space of coefficients of third degree discrete-time monic polyno-
mials, the exact stability domain is a non-convex set delimited by two triangles V1V2V3,
V2V3V4 of vertices

pV1 =

 1
3
3

 pV2 =

 −1
−1

1

 pV3 =

 1
−1
−1

 pV4 =

 −1
3
−3


supporting a hyperbolic paraboloid with saddle point

pS =

 0
1
0

 .
With the following command, function ellista computes an inner approximation of the
stability domain containing a stable polynomial with all roots at the origin:

>> [P,pc] = ellista(z^3)

P =

2.3189 0.0000 0.4458

0.0000 2.0180 -0.0000

0.4458 -0.0000 1.7998

pc =

2.5e-17 + 0.15z + 2.5e-16z^2 + z^3

The actual non-convex stability domain and its ellipsoidal approximation are represented
in Figure 4.

8



Figure 4: Hyperbolic and ellipsoidal stability domains for a third-degree discrete-time
polynomial.

6.2 Second-degree continuous-time stability domains

In order to obtain ellipsoidal approximation of the stability domain of second-degree
continuous-time polynomials with respective centers (s+ 1)2, (s+ 2)2 and (s+ 3)2, we use
the following sequence:

>> P1 = ellista((s+1)^2,[],’center’);

>> P2 = ellista((s+2)^2,[],’center’);

>> P3 = ellista((s+3)^2,[],’center’);

We obtained the three ellipses represented in Figure 5. One can notice that the ellipse
area increases with the norm of center vector coefficients, which is not surprising since
the actual stability domain is the unbounded positive quadrant.

6.3 Third-degree continuous-time stability with stability mar-
gin

Let stability region D be the shifted left half-plane ensuring a stability margin of 2, i.e.

D = {s ∈ C : Re s < −2}

which corresponds to the stability matrix

S =

[
4 1
1 0

]
.

Enforcing for example p0(s) = (s + 4)3 as a polynomial contained in ellipsoid E , the
following sequence computes an ellipsoidal approximation of the stability region:

9



Figure 5: Continuous-time second-degree ellipsoidal stability domains for different choices
of center polynomials.

>> [P,pc] = ellista((s+4)^3,[4 1;1 0])

P =

0.0197 -0.0739 0.2760

-0.0739 0.2956 -1.1824

0.2760 -1.1824 5.0423

pc =

2.2e+02 + 1.3e+02s + 22s^2 + s^3

Center polynomial pc(s) has its roots located in −4.0076 ± i0.0742 and −13.7466, well
inside the stability region D.

7 Function ptopdes

This function attempts to stabilize a polytope of scalar plants with a fixed-order compen-
sator. We consider a proper scalar plant

b(s, q)

a(s, q)

whose denominator and numerator polynomials are affected by polytopic uncertainty. The
components of uncertainty parameter vector q belong to a polytope with given vertices
qi, i.e.

q =
∑
i

λiq
i,

∑
i

λi = 1, λi ≥ 0.

We are seeking a controller
y(s)

x(s)

10



of fixed order with monic denominator polynomial. The controller is settled in a standard
negative feedback configuration. Equivalently, polynomials x(s) and y(s) are sought such
that the roots of polytopic characteristic polynomial

d(s, q) = a(s, q)x(s) + b(s, q)y(s)

remain in the stability region for all admissible values of uncertain parameter q in the
polytope.

The calling syntax of function ptopdes is as follows:

[x,y] = ptopdes(a,b,c)

[x,y] = ptopdes(a,b,c,S)

[x,y] = ptopdes(a,b,c,S,pid)

The first and second input arguments are cell arrays of denominator and numerator poly-
nomials a(s, qi) and b(s, qi) respectively. The third argument c(s) is called the central
polynomial. It plays a key role in the design process, as illustrated by the following nu-
merical examples. See also [Henrion et al. 02c] for more information. Input polynomial
c(s) fixes the order of the sought controller, i.e. deg x(s) = deg c(s)− deg a(s). Stability
region D can be specified through its defining matrix S as a fourth input argument. By
default it is the standard stability region associated with the first input polynomial. Note
that roots of central polynomial c(s) must lie within the stability region D. Finally, if a
last input argument is present, then controller denominator is set to x(s) = s. So if the
controller has order one (resp. two), it will be a PI (resp. PID).

7.1 Helicopter

The simplified linearized model of a laboratory experiment representing a helicopter is
given by the plant

b(s, q)

a(s, q)
=

q1

s(0.1s+ 1)(s+ q2)

affected by interval uncertainty

q1 ∈ [20, 60], q2 ∈ [0, 1].

Here uncertainty polytope Q is a two-dimensional box with 22 = 4 vertices

q1 = [20 0], q2 = [20 1], q3 = [60 0], q4 = [60 1].

The nominal parameter vector is the center of the box q0 = [40 0.5]. We are seeking a
second-order monic controller

y(s)

x(s)

robustly stabilizing the interval plant.

11



In order to call function ptopdes, we need a so-called central closed-loop characteristic
polynomial, central polynomial for short. A nominally stabilizing second-order controller,
obtained by some design method, is given by

y0(s)

x0(s)
=

2 + 2.2s+ 2.2s2

10s+ s2
.

The nominal characteristic polynomial reads

d(s, q0) = a(s, q0)x0(s) + b(s, q0)y0(s)
= 80 + 88s+ 93s2 + 11s3 + 2.05s4 + 0.10s5.

Calling the Matlab function ptopdes with the 4 plant vertex numerators and denomina-
tors and the central polynomial c(s) = d(s, q0) as input arguments (see the script below),
we obtain the following robustly stabilizing controller

y(s)

x(s)
=

0.9947 + 0.3007s+ 1.574s2

1.611 + 6.232s+ s2
.

% parameter intervals

>> q1int = [20 60]; q2int = [0 1];

% vertices

>> a = cell(1,4); b = cell(1,4); i = 1;

>> for q1 = q1int, for q2 = q2int,

a{i} = (0.1*s+1)*s*(s+q2); b{i} = q1; i = i+1;

end; end;

% nominal plant

>> q1 = 40; q2 = 0.5;

>> a0 = (0.1*s+1)*s*(s+q2); b0 = q1;

% nominal controller & char poly

>> x0 = 10*s+s^2; y0 = 2+2.2*s+2.2*s^2; c = a0*x0+b0*y0;

% robust controller

>> [x,y] = ptopdes(a,b,c)

x =

1.6 + 6.2s + s^2

y =

0.99 + 0.3s + 1.6s^2

The function ptopdes attempts to minimize the Euclidean norm of the vector of controller
coefficients. Here we obtain a controller of norm 6.78. As we can see on the robust root
locus on Figure 6, stability is ensured but some poles are very near the imaginary axis.
To ensure some robust stability margin, we can shift the stability region to the left. For
example, we choose the shifted half plane

D = {s ∈ C : Re s < −0.4},

i.e. we set

S =

[
0.8 1
1 0

]
12



Figure 6: Helicopter. Edges of robust root locus without stability margin.

Figure 7: Helicopter. Edges of robust root locus with stability margin.

13



as the stability matrix.

In the above script, we just have to replace the instruction

[x,y] = ptopdes(a,b,c);

with

[x,y] = ptopdes(a,b,c,[0.8 1;1 0]);

Running the modified script, we obtain a controller

y(s)

x(s)
=

1.865 + 2.061s+ 1.992s2

4.335 + 10.50s+ s2

of norm 11.91 greater than the previous one. This could be expected since more control
effort is needed to shift the poles farther from the imaginary axis. We can check on the
robust root locus on Figure 7 that the required robust stability margin is ensured indeed.

7.2 F4E Aircraft

We consider Ackermann’s model of the longitudinal motion of an F4E fighter aircraft
[Ackermann 93, §1.4]. The input is the elevator position, the output is the pitch rate, and
the system is linearized around four representative flight conditions in the Mach-altitude
envelope:

Mach 0.5 5000 ft a1(s) = −52.75 + 22.00s+ 15.84s2 + s3 b1(s) = −163.8− 185.4s
Mach 0.85 5000 ft a2(s) = −122.5 + 34.93s+ 17.12s2 + s3 b2(s) = −789.1− 507.8s
Mach 0.9 35000 ft a3(s) = −14.64 + 17.51s+ 15.33s2 + s3 b3(s) = −101.8− 158.3s
Mach 1.5 35000 ft a4(s) = 269.1 + 43.60s+ 15.74s2 + s3 b4(s) = −251.4− 304.2s.

We are seeking a static output feedback controller simultaneously stabilizing the four
plants with a stability margin of 0.5.

It is easy to see that the first plant can be stabilized with the controller polynomials
x1(s) = 1 and y1(s) = −1. The resulting central polynomial

c(s) = a1(s)x1(s) + b1(s)y1(s) = 111.1 + 207.4s+ 15.84s2 + s3

has roots −0.5588 and −7.6410 ± j11.85 ensuring the stability margin. With the above
four vertex plants ai(s), bi(s), the above central polynomial c(s) and the stability matrix

S =

[
1 1
1 0

]

14



i roots of di(s)
1 −0.5112, −7.664± j10.80
2 −1.234, −7.943± j19.84
3 −0.5000, −7.415± j9.629
4 −1.717, −7.011± j15.32

Table 1: F4E aircraft. Closed-loop poles.

Figure 8: F4E aircraft. Edges of robust root locus.

as input arguments, function ptopdes returns the controller

y(s)

x(s)
= −0.8692.

One can check that the above controller simultaneously stabilizes the four plants with
the required stability margin. The roots of characteristic polynomials di(s) = ai(s)x(s) +
bi(s)y(s) are given in Table 1. Actually the above controller does not only stabilize
simultaneously the four plants but also any plant within the convex hull of these four
vertices, see the edges of the robust root locus on Figure 8.

7.3 Oblique wing aircraft

We consider the model of an experimental oblique wing aircraft studied in [Barmish 94,
Example 11.5.1]

b(s, q)

a(s, q)
=

q0 + q1s

q2 + q3s+ q4s2 + q5s3 + s4

with

q0 ∈ [90, 166], q1 ∈ [54, 74], q2 ∈ [−0.1, 0.1], q3 ∈ [30.1, 33.9], q4 ∈ [50.4, 80.8], q5 ∈ [2.8, 4.6]

15



Figure 9: Oblique wing aircraft. Robust root locus.

that must be stabilized with a PI controller

y(s)

x(s)
= Kp +

Ki

s
.

The interval plant corresponds to a polytope ai(s), bi(s) with 26 = 64 vertices. One can
check easily that the choice Kp = 1 and Ki = 1 stabilizes the vertex plant

b1(s)

a1(s)
=

90 + 54s

−0.1 + 30s+ 50s2 + 2.8s3 + s4

obtained by setting all the parameters to their minimum allowed values. With the choice

c(s) = sa1(s) + (1 + s)b1(s)

as the central polynomial, function ptopdes called with the script

>> i = 1; a = cell(2^6,1); b = cell(2^6,1);

>> for q0 = [90 166], for q1 = [54 74], for r0 = [-0.1 0.1],

for r1 = [30.1 33.9], for r2 = [50.4 80.8], for r3 = [2.8 4.6],

b{i} = q1*s+q0; a{i} = s^4+r3*s^3+r2*s^2+r1*s+r0; i = i+1;

end; end; end;

end; end; end;

>> c = s*a{1}+(1+s)*b{1};

>> [x,y] = ptopdes(a,b,c,[],’pi’)

fails in finding a robustly stabilizing controller. In the above syntax the last input argu-
ment indicates that we are seeking a PI controller.

Considering now the second vertex plant

b2(s)

a2(s)
=

90 + 54s

−0.1 + 30s+ 50s2 + 4.6s3 + s4

16



where we changed only the coefficient of s3 in the denominator polynomial, the choice

c(s) = sa2(s) + (1 + s)b2(s)

as a third input argument to function ptopdes now proves successful. We obtain the
robustly stabilizing PI controller

y(s)

x(s)
= 0.8641 +

0.6354

s
.

The robust root locus, obtained by taking 1000 random plants within the uncertainty
polytope, is represented on Figure 9.

7.4 Robot

We consider the problem of designing a robust controller for the approximate ARMAX
model of a PUMA 762 robotic disk grinding process [Tong and Sinha 94]. From the
results of identification and because of the nonlinearity of the robot, the coefficients of
the numerator of the plant transfer function change for different positions of the robot
arm. We consider variations of up to 20% around the nominal value of the parameters.
The fourth-order discrete-time model is given by

b(z−1, q)

a(z−1, q)
=

(0.0257 + q1) + (−0.0764 + q2)z−1 + (−0.1619 + q3)z−2 + (−0.1688 + q4)z−3

1− 1.914z−1 + 1.779z−2 − 1.0265z−3 + 0.2508z−4

where
|q1| ≤ 0.00514, |q2| ≤ 0.01528, |q3| ≤ 0.03238, |q4| ≤ 0.03376.

The characteristic polynomial of the closed-loop system is given by

d(z, q) = z12[(1− z−1)a(z−1, q)x(z−1) + z−5b(z−1, q)y(z−1)]

where the term 1−z−1 is introduced in the controller denominator to maintain the steady
state error to zero when parameters are changed. With the input central polynomial

c(z) = z19

function ptopdes finds the seventh-order robust controller

y(z−1)
x(z−1)

=
−0.2863 + 0.2928z−1 + 0.0221z−2 − 0.1558z−3 + 0.0809z−4 + 0.1420z−5 − 0.1254z−6 + 0.0281z−7

1 + 1.1590z−1 + 0.9428z−2 + 0.4996z−3 + 0.3044z−4 + 0.4881z−5 + 0.4003z−6 + 0.3660z−7
.

The robust root locus, obtained by taking 1000 random plants within the uncertainty
polytope, is represented on Figure 10.

17



Figure 10: Robot. Robust root locus.

Figure 11: Norm of the first order controller as a function of upper gain k1 with the
central polynomial c(s) = (s+ 1)3.

18



Figure 12: Maximum value of upper gain k1 for which a first order robust controller is
found with the central polynomial c(s) = (s+ 1)p.

7.5 Stability margin optimization

We consider as in [Doyle et al. 92, §11.3] the problem of robustly stabilizing the plant

b(s, q)

a(s, q)
=

q(s− 1)

(s+ 1)(s− 2)

for all real gains q in the interval [1, k1]. The uncertain plant polytope is therefore made
of 2 vertices only. In [Doyle et al. 92] it is shown that a robustly stabilizing controller
(of arbitrarily high order) exists if and only if k1 < 4. The design method proposed
there is based on coprime factorization and H∞ model matching. It is solved with the
help of Nevanlinna-Pick interpolation, which has the drawback of producing high-order
controllers. In [Doyle et al. 92] a controller of eighth order is computed for k1 = 3.5.

From the Hurwitz stability criterion there is no static controller stabilizing the plant, so
we try the central polynomial c(s) = (s + 1)p with p ≥ 3 as input argument to ptopdes

in order to seek a controller of order p − 2 ≥ 1. When p = 3 we represent in Figure
11 the Euclidean norm of the first order controller obtained by function ptopdes as a
function of k1. Recall that the function is designed to minimize the Euclidean norm over
all candidate controllers. In Figure 12 we reported as a function of degree p the maximum
value of k1 for which a robust controller is found with function ptopdes. For values of p
greater than 15 we are reaching the limits of the SeDuMi solver, and the function fails for
numerical reasons.

In the sequel we describe a heuristic to improve the stability margin with low-order
controllers. Let k1 = 2. We know from the results above that c(s) = (s + 1)3 is not
a suitable choice of central polynomial for this value of k1. It may mean that the poles
of central polynomial c(s) are not correctly chosen. So we try to move one pole nearest
to the imaginary axis, just as in c(s) = (s + 1)2(s + 0.1) but function ptopdes fails as
well. We try the opposite direction, i.e. c(s) = (s+ 1)2(s+ 10) and function ptopdes now

19



successfully returns a robustly stabilizing first-order controller

y(s)

x(s)
=

254.9 + 348.1s

−327.9 + s
.

With this choice of central polynomial c(s) function ptopdes finds a first-order controller
up to k1 = 2.38, so we have improved the stability margin without increasing the controller
order. Pursuing this idea and trying to move poles of c(s), we have been able to stabilize
robustly the system for k1 = 2.59 and c(s) = (s+ 0.5)(s+ 1)(s+ 100) with the first-order
controller

y(s)

x(s)
=

1292 + 1773s

−1731 + s
.

This stability margin may perhaps be improved with further attempts.

Proceeding similarly with higher order controllers, we have been able to stabilize robustly
the plant for k1 = 3.5 with the third-order controller

y(s)

x(s)
=

240.8 + 755.5s+ 871.7s2 + 420.1s3

−423.5− 739.8s− 409.5s2 + s3

with the choice
c(s) = (s+ 0.5)3(s+ 10)(s+ 100)

as a central polynomial. Following this procedure, we may think about designing a heuris-
tic to select poles of c(s) and improve the stability margin without increasing the controller
order.

8 Function ellides

This function attempts to stabilize a scalar plant affected by ellipsoidal uncertainty with
a fixed-order compensator. We consider a proper scalar plant

b(s, q)

a(s, q)
=
b0(s) + q′b1(s)

a0(s) + q′a1(s)

whose denominator and numerator polynomials are affected by norm-bounded uncer-
tainty: real parameter vector q satisfies q′q ≤ 1 and a1(s), b1(s) are polynomial row
vectors of the same dimension as q.

We are seeking a controller
y(s)

x(s)

of fixed order with monic denominator polynomial. The controller is settled in a standard
negative feedback configuration. Equivalently, polynomials x(s) and y(s) are sought such
that the roots of polytopic characteristic polynomial

d(s, q) = a(s, q)x(s) + b(s, q)y(s)

remain in the stability region for all q such that q′q ≤ 1.

The calling syntax of function ellides is as follows:

20



[x,y] = ellides(a0,b0,a1,b1,c)

[x,y] = ellides(a0,b0,a1,b1,c,S)

[x,y] = ellides(a0,b0,a1,b1,c,S,pid)

The first and second input arguments are nominal polynomials. The third and fourth
input arguments are uncertainty polynomials. The fifth argument is called the central
polynomial. It plays the same role as in function ptopdes, see above. Stability region D
can be specified through its defining matrix S as a sixth input argument. By default it
is the standard stability region associated with the first input polynomial. Finally, if a
last input argument is present, then controller denominator is set to x(s) = s. So if the
controller has order one (resp. two), it will be a PI (resp. PID).

8.1 Mixing tanks

We consider the two mixing tanks arranged in cascade with recycle stream shown in Figure
13 and described in [Crisalle et al. 94]. The controller must be designed to maintain the

Figure 13: Two-tank system.

temperature Tb of the second tank at a desired set point by manipulating the power
P delivered by the heater located in the first tank. The only available measurement
is temperature Tb. The identification of the nominal plant model is carried out using
a standard least-squares method [Crisalle et al. 94]. The discrete-time nominal plant is
given by

b0(z)

a0(z)
=

b0
0 + b0

1z

a0
0 + a0

1z + z2

with nominal plant vector

pc =


b0

0

b0
1

a0
0

a0
1

 =


0.0038
0.0028
0.2087
−1.1871

 .
21



An ellipsoidal uncertainty model is readily available as a by-product of the least-squares
identification technique [Crisalle et al. 94]. The positive definite matrix P characterizing
the uncertainty ellipsoid {p : (p− pc)′P (p− pc) ≤ 1} is given by

P = 105


2.4179 0.0568 0.0069 0
0.0568 2.4121 0.0045 0.0062
0.0069 0.0045 0.0015 0.0014

0 0.0062 0.0014 0.0015

 .
Equivalently, uncertainty polynomial vectors are given by

a1(s) = 10−2


−0.05575 + 0.03987z
0.0002497− 0.02517z

19.73− 13.77z
−13.77 + 19.62z

 , b1(s) = 10−3


2.036− 0.02397z
−0.02397 + 2.037z
−0.5575 + 0.002497z

0.3987− 0.2517z

 .
Now suppose that we are seeking a first-order controller

y0 + y1z

x0 + z

robustly stabilizing the plant for all admissible models within the uncertainty ellipsoid.

With the choice
c(z) = (0.1 + z)3

as an input central polynomial, function ellides returns

y(z)

x(z)
=

6.068 + 6.981z

0.3524 + z

as a first-order robustly stabilizing controller, see the script below:

>> pc = [0.0038 0.0028 0.2087 -1.1871]’;

>> P = 1e5*[2.4179 0.0568 0.0069 0;0.0568 2.4121 0.0045 0.0062

0.0069 0.0045 0.0015 0.0014;0 0.0062 0.0014 0.0015];

>> Q = P^(-.5);

>> b0 = [1 z 0 0]*pc; a0 = [0 0 1 z]*pc+z^2;

>> b1 = ([1 z 0 0]*Q).’; a1 = ([0 0 1 z]*Q).’;

>> c = (0.1+z)^3;

>> [x,y] = ellides(a0,b0,a1,b1,c)

x =

0.35 + z

y =

6.1 + 7z

The robust root-locus of closed-loop characteristic polynomial obtained by describing
randomly the uncertainty ellipsoid is represented in Figure 14. We can check that indeed
all characteristic polynomial roots stay in the unit disk for all admissible uncertainty.

22



Figure 14: Root-locus within the unit disk.

Enforcing now pole location in the stability region

D = {z ∈ C : |z| ≤ 0.7},

i.e. setting

S =

[
−(0.7)2 0

0 1

]
as the stability matrix in function ellides, we obtain

y(z)

x(z)
=
−35.69 + 137.3z

0.5913 + z

and the robust root-locus of figure 15.

Figure 15: Root-locus within |z| ≤ 0.7.

23



9 Function ptopdes2

Consider the multivariable linear system described by the second-order dynamical equa-
tions

(A0 + A1s+ A2s
2)x = Bu
y = Cx

controlled by a proportional-derivative (PD) output-feedback controller of the form

u = −(F0 + F1s)y

so that the closed-loop system behavior is captured by the quadratic polynomial matrix

N(s) = (A0 +BF0C) + (A1 +BF1C)s+ A2s
2.

We assume that the second-order system is affected by polytopic uncertainty, i.e. quadratic
matrix A(s) = A0+A1s+A2s

2 belongs to a polytope with given polynomial matrix vertices
A1(s), A2(s) , . . .

The calling syntax of function ptopdes2 is as follows:

[F0,F1] = ptopdes2(A,B,C,D)

[F0,F1] = ptopdes2(A,B,C,D,S)

The first input argument is the quadratic polynomial matrix A(s). The second input
argument is the constant input matrix B (default identity). The third input argument
is the constant output matrix C (default identity). The fourth input argument is the
central (or nominal) closed-loop quadratic polynomial matrix, see the above description
of function ptopdes for more information. Stability region D can be specified through its
defining matrix S as a fifth input argument. By default it is the standard stability region
associated with the first input polynomial. If S is a cell array of stability matrices Sj,
then the stability region D is the intersection of all stability regions Dj corresponding to
matrices Sj. Function ptopdes2 attempts to find constant feedback matrices F0 and F1

such that closed-loop polynomial matrix N(s) is robustly stable (i.e. its zeros are located
with region D) in the presence of polytopic uncertainty.

9.1 Mechanical structure

We consider the mechanical system shown on Figure 16, consisting of five material points
linked by elastic springs [Barb et al. 01]. The points can slide without friction along their
respective axes. Mass, distance to the origin at the equilibrium, and spring stiffness are
given for each point in Table 2.

The system is controlled by two external forces acting at masses 1 and 5. System matrices

24



Figure 16: Five masses linked by elastic springs.

Point Mass Distance Spring Stiffness
1 0.5093 0.8034 1-2 1.461
2 0.9107 0.7430 2-3 1.369
3 0.7224 0.9456 3-4 1.088
4 0.8077 0.8810 4-5 1.203
5 0.8960 0.7282 5-1 1.468

Table 2: System data.

25



are given by

A0 =


2.565 1.080 0 0 1.089
0.6038 0.8206 0.4766 0 0

0 0.6009 1.504 0.4808 0
0 0 0.4300 1.114 0.5131

0.6190 0 0 0.4626 0.8352

 , A1 = 05, A2 = I5

and

B =


0 1.964
0 0
0 0
0 0

1.116 0

 , C = I3.

Open-loop poles are all purely imaginary and located at ±i1.783, ±i1.380, ±i1.145,
±i0.5675 and ±i0.3507.

A stabilizing PD controller is obtained in [Barb et al. 01] with a nearly optimal linear-
quadratic robust design method:

F 0
0 =

[
0.03960 −0.02200 0.3685 0.8069 0.4099
0.3993 0.6453 0.4886 0.2269 0.03220

]
,

F 0
1 =

[
0.01520 −0.3694 0.06470 −0.04980 1.317
1.186 −0.5896 −0.2165 −0.3263 0.02680

]
.

Poles of closed-loop quadratic matrix polynomial

D(s) = (A0 +BF 0
0C) + (A1 +BF 0

1C)s+ A2s
2

are located at −0.1067± i1.406, −0.1405, −0.1809± i0.5350, −0.2174± i1.099, −0.8157±
i1.450 and −1.016. Feedback matrix F 0 = [F 0

0 F 0
1 ] has norm f 0 = 1.859.

In view of the closed-loop poles, we choose

D = {s ∈ C : Re s < −0.1}

as the stability region. With the above polynomial matrix D(s) as central system matrix,
we invoke function ptopdes2 as follows

>> A2 = eye(5); A1 = zeros(5);

>> A0 = [2.5647 1.0797 0 0 1.0890

0.6038 0.8206 0.4766 0 0

0 0.6009 1.5044 0.4808 0

0 0 0.4300 1.1142 0.5131

0.6190 0 0 0.4626 0.8352];

>> A = pol([A0 A1 A2],2);

>> B = [0 1.9637;0 0;0 0;0 0;1.1161 0];

>> F00 = -[-0.0396 0.0220 -0.3685 -0.8069 -0.4099

-0.3993 -0.6453 -0.4886 -0.2269 -0.0322];

26



>> F01 = [0.0152 -0.3694 0.0647 -0.0498 1.3167

1.1859 -0.5896 -0.2165 -0.3263 0.0268];

>> D = pol([A0+B*F00 A1+B*F01 A2],2);

>> S = [0.2 1;1 0];

>> [F0,F1] = ptopdes2(A,B,[],D,S)

Running the above script, we obtain the feedback matrices

F0 =

[
−0.1610 −0.1136 −0.03508 0.08337 −0.05075
−0.2706 0.04941 0.1440 0.06144 −0.1366

]
,

F1 =

[
−0.1169 −0.3153 0.2319 0.1873 0.5418
0.5383 −0.2237 −0.004471 −0.2137 0.06340

]
.

Poles of the new closed-loop quadratic matrix polynomial

N(s) = (A0 +BF0C) + (A1 +BF1C)s+ A2s
2

are located at −0.1090± i1.404, −0.1348± i0.5436, −0.1445± i1.1110, −0.1823± i0.2301
and −0.2603 ± i1.457, well inside region D. Feedback matrix F = [F0 F1] has largest
singular value f = 0.7593 < f 0. Consequently, new feedback F requires less control effort
and is less prone to saturation than original feedback F 0.

9.2 Vibrating rod

We consider as in [Datta et al. 97] the finite difference model of an axially vibrating non-
conservative rod. The model is parametrized by the number of nodes n, and system
matrices are given by A0 = 1000FF ′, A1 = FGF ′ and A2 = 2(I + SS ′) + S + S ′ where
S = [δi+1,j] is a shift matrix of size n , δij is the Kronecker delta, F = In − S, G =
0.01 diag{sin iπ

2n
} for i = 1, . . . , n. We assume that all the inputs and the outputs are

available for feedback. For example, when n = 4, system matrices are:

A0 = 1000


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 , A1 = 0.01


1.090 −0.7071 0 0
−0.7071 1.631 −0.9239 0

0 −0.9239 1.924 −1
0 0 −1 1


and

A2 =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

 .
Open-loop system poles are located at −7.681 · 10−5 ± i5.102, −9.644 · 10−4 ± i16.10,
−3.259 · 10−3 ± i29.24 and −8.195 · 10−3 ± i42.28.

We choose the strip
D = {s ∈ C : −2 < Re s < −0.5}

27



as the intersection of two basic stability regions and

D(s) = (s+ 1)2In

as an (arbitrary) central system matrix with zeros in D. When n = 4 function ptopdes2

returns a stabilizing PD compensator with feedback matrices

F0 = 1000


−1.990 1.001 0.001493 0.0001069
1.001 −1.989 0.9999 −0.0001651

0.001493 0.9999 −1.989 1.002
0.0001068 −0.0001649 1.002 −0.9955

 ,

F1 =


10.24 1.704 0.6290 0.04552
1.704 10.86 1.456 −0.0702
0.6289 1.457 10.61 2.486
0.04536 −0.06999 2.486 4.931

 .
Closed-loop system poles are then located at −1.218±i0.8525, −1.222±i0.8506, −1.239±
i0.8344 and −1.719± i1.257, well inside the assigned stability region.

9.3 Mass-spring system

Consider the undamped mass-spring example [Nichols and Kautsky 01, Example 1], where
system matrices are given by:

A0 =

 40 −40 0
−40 80 −40

0 −40 80

 , A1 = 03, A2 = 10I3, B =

 1 2
3 2
3 4

 , C = I3.

Following [Nichols and Kautsky 01], a choice of nominally stabilizing PD controller ma-
trices assigning closed-loop poles to −1, −2, −3, −4, −5 and −6 is as follows:

F 0
0 =

[
1.257 44.62 −120.2
−56.18 −42.28 227.7

]
, F 0

1 =

[
−86.18 27.23 16.52
85.49 −13.02 4.992

]
.

Now suppose that each diagonal entry in mass matrix A2 belongs to an independent
uncertainty interval [9, 11]. As a result, the system matrix belongs to a polytope with
23 = 8 vertices. Let

D = {s ∈ C : Re s < −0.5}
be the stability region, and let

D(s) = (A0 +BF 0
0C) + (A1 +BF 0

1C)s+ A2s
2

be the central system matrix when diagonal entries in A2 are equal to their nominal value
10. Function ptopdes2 yields

FR
0 =

[
−7.992 −11.21 22.39
−3.851 3.637 12.42

]
, FR

1 =

[
−21.55 12.41 7.180
22.23 −10.93 7.768

]
as robustly stabilizing feedback matrices. In Figure 17 we represent the closed-loop robust
root locus for 10000 randomly chosen systems in the admissible uncertainty range. Closed-
loop poles of the 8 polytope vertices are represented by red stars.

28



Figure 17: Robust root-locus of the mass-spring system.

10 Function ellides2

Now we assume that the second-order system introduced in the description of function
ptopdes2 is affected by ellipsoidal uncertainty. In other words, quadratic matrix A(s) is
subject to additive norm-bounded (unstructured) uncertainty

A(s) = A0(s) + ∆A1(s), σmax(∆′∆) ≤ 1

where ∆ is a uncertainty matrix of arbitrary column dimension, A0(s) is the nominal
quadratic system matrix, A1(s) is the quadratic uncertainty matrix, and σmax denotes the
maximum singular value.

The calling syntax of function ellides2 is as follows:

[F0,F1] = ellides2(A0,A1,B,C,D)

[F0,F1] = ellides2(A0,A1,B,C,D,S)

The first two input arguments are system matrix A0(s) and uncertainty matrix A1(s),
respectively. The third input argument is the constant input matrix B (default identity).
The fourth input argument is the constant output matrix C (default identity). The fifth
input argument is the central (or nominal) closed-loop quadratic polynomial matrix, see
[Henrion et al. 02d] and the above description of function ptopdes2 for more information.
Stability regionD can be specified through its defining matrix S as a sixth input argument.
By default it is the standard stability region associated with the first input polynomial.

29



If S is a cell array of stability matrices Sj, then the stability region D is the intersection
of all stability regions Dj corresponding to matrices Sj. Function ellides2 attempts
to find constant feedback matrices F0 and F1 such that closed-loop polynomial matrix
N(s) = A0(s)+∆A1(s)+B(F0 +F1s)C is robustly stable (i.e. its zeros are located within
region D) in the presence of ellipsoidal uncertainty ∆.

10.1 Wing in airstream

In [Tisseur and Higham 01] the authors consider an eigenvalue problem arising from the
analysis of the oscillations of a wing in an airstream. Quadratic system matrix coefficients
are given by:

A0 =

 121.0 18.90 15.90
0 2.700 0.1450

11.90 3.640 15.50

 , A1 =

 7.660 2.450 2.100
0.2300 1.040 0.2230
0.6000 0.7560 0.6580


and

A2 =

 17.60 1.280 2.890
1.280 0.8240 0.4130
2.890 0.4130 0.7250

 .
The system is open-loop unstable since its poles are located at 0.09427±i2.553, −0.8848±
i8.442 and −0.9180± i1.761.

We choose D = D1 ∩ D2 with

D1 = {s ∈ C : −Re s < 0}, D1 = {s ∈ C : −2 < −Re s}

as the stability region, i.e. we set

S1 =

[
0 1
1 0

]
, S2 =

[
−4 −1
−1 0

]
as stability matices. Let D(s) = (s + 1)2I3 be the central closed-loop matrix with roots
in D. Macro ellides2 called with no uncertainty matrix returns the following stabilizing
feedback matrices:

>> A2 = [17.6 1.28 2.89; 1.28 0.824 0.413; 2.89 0.413 0.725];

>> A1 = [7.66 2.45 2.1; 0.23 1.04 0.223; 0.6 0.756 0.658];

>> A0 = [121 18.9 15.9; 0 2.7 0.145; 11.9 3.64 15.5];

>> A = pol([A0 A1 A2],2);

>> D = diag([(s+1)^2 (s+1)^2 (s+1)^2]);

>> S = cell(2,1);

>> S{1} = [0 1;1 0]; % Re(s) < 0

>> S{2} = [-4 -1;-1 0]; % Re(s) > -2

>> [F0,F1] = ellides2(A,[],[],[],D,S)

F0 =

-4.8884 -13.1087 -2.4724

30



1.9863 -1.0819 0.9174

1.5609 -1.3376 -12.9224

F1 =

14.0911 -3.9281 0.0044

1.5266 0.6136 0.6725

1.0762 -0.7899 -0.2328

>> N = pol([A0+F0 A1+F1 A2],2);

>> roots(N)

ans =

-1.0498 + 2.6799i

-1.0498 - 2.6799i

-0.7443 + 1.5821i

-0.7443 - 1.5821i

-0.7736

-0.4570

If a failure affects the second actuator, function ellides2 is still able to compute a
stabilizing PD feedback:

>> B = [1 0;0 0;0 1]; C = eye(3);

>> [F0,F1] = ellides2(A,[],B,C,D,S)

F0 =

-4.3948 -15.1142 -0.4306

1.9550 -1.5836 -12.8369

F1 =

14.9815 -3.9831 0.7908

2.1173 -0.4122 0.4698

>> N = pol([A0+B*F0*C A1+B*F1*C A2],2);

>> roots(N)

ans =

-1.0335 + 2.6151i

-1.0335 - 2.6151i

-0.3391 + 1.7762i

-0.3391 - 1.7762i

-1.8296 + 0.5039i

-1.8296 - 0.5039i

Similarly, assuming that all the actuators are available, but that a failure affects the
second sensor, function ellides2 returns

>> B = eye(3); C = [1 0 0;0 0 1];

>> [F0,F1] = ellides2(A,[],B,C,D,S)

F0 =

-4.7800 3.0768

13.5196 2.4315

5.2709 -11.7931

31



F1 =

15.7655 1.5617

4.5934 0.7399

3.2495 0.7613

>> N = pol([A0+B*F0*C A1+B*F1*C A2],2);

>> roots(N)

ans =

-0.9126 + 2.6002i

-0.9126 - 2.6002i

-1.9667

-1.3883

-0.3567 + 0.4326i

-0.3567 - 0.4326i

Finally, we suppose that the damping matrix is subject to additive norm-bounded un-
certainty, i.e. A1(s) = δsI3. Function ellides2 was then able to robustly stabilize the
system:

>> A1 = 0.19*s*eye(3);

>> [F0,F1] = ellides2(A,A1,[],[],D,S)

F0 =

-4.7768 -15.0286 -0.0750

1.1389 -1.0147 0.3262

2.9717 -2.8173 -13.0886

F1 =

14.5147 -3.2621 0.2163

0.3704 0.7278 0.3836

2.1353 -0.3827 0.0369

for all uncertainty with worst-case norm δ = 0.19. In Figure 18 we represent the closed-
loop robust root locus for 10000 randomly chosen systems in the admissible uncertainty
range. Nominal closed-loop poles are represented by red stars.

11 Function sofss

Let
bi(s)

ai(s)
, i = 1, 2 . . .

denote a set of scalar plants, where ai(s) and bi(s) are scalar polynomials of degree n.
Function sofss solves the problem of finding a scalar static feedback gain k that simul-
taneous stabilizes the plants, i.e. such that the roots of all the characteristic polynomials

ci(s) = ai(s) + kbi(s), i = 1, 2 . . .

32



Figure 18: Robust root-locus of the wing.

belong to the left half plane.

Even though the problem can be solved using LMIs, function sofss solves the problem
with standard numerical algebra. The calling syntax of function sofss is as follows:

inter = sofss(a,b)

where input arguments are cell arrays of denominator and numerator polynomials, re-
spectively. The output argument is an two-dimensional arrays, where each row is an open
interval ]kj, kj+1[ for j = 1, 2 . . . Any feedback gain k chosen within these intervals will
simultaneously stabilize the plants.

11.1 Reactor

Consider the continuous stirred tank reactor model studied in [Howitt and Luus 91]. The
non-linear model is

x1 = (x2 + 0.5)exp(Ex1/(x1 + 2))− (2 + u)(x1 + 0.25)
x2 = 0.5− x2 − (x2 + 0.5)exp(Ex1/(x1 + 2))

where E is a parameter related to the activation energy. During the life of the reactor,
some representative values of E are 20, 25 and 30. Assuming that only y = x1 is available

33



for feedback, the N = 3 linearized systems of order n = 2 to be simultaneously stabilized
are given by

b1(s)/a1(s) = (0.5− 0.25s)/(11− 5s+ s2)
b2(s)/a2(s) = (−0.5− 0.25s)/(−2.25− 2.25s+ s2)
b3(s)/a3(s) = (−0.5− 0.25s)/(−3.5− 3.5s+ s2).

Calling function sofss with the following script

>> b1=0.5-0.25*s;a1=11-5*s+s^2;

>> b2=-0.5-0.25*s;a2=-2.25-2.25*s+s^2;

>> b3=-0.5-0.25*s;a3=-3.5-3.5*s+s^2;

>> sofss({a1 a2 a3},{b1 b2 b3})

ans =

-22.0000 -20.0000

we obtain that the three plants are simultaneously stabilizable by a static output feedback
u = ky for any value of k such that −22 < k < −20.

11.2 F4E aircraft

We consider as in Section 7.2 the problem of simultaneously stabilizing four operating
points of the longitudinal short period mode of the F4E fighter aircraft. Applying function
sofss, we obtain the interval ] − ∞,−0.3219[, i.e. the four plants are simultaneously
stabilizable by a static output feedback for any finite value of k such that k < −0.3219.
In Figure 19 we represent the root locus of the four plants for −1 < k < 2 (in black) and
−1 < k < −0.3219 (in red).

12 Function hinfdes

The scalar H∞ design problem to be solved in this paper can be formally stated as follows.
Given a set of polynomials nki (s), d

k
i (s) for i = 1, 2, . . ., k = 1, 2, . . ., as well as a set of

positive real numbers γk, seek polynomials xi(s) of given degrees such that∥∥∥∥∑i n
k
i (s)xi(s)∑

i d
k
i (s)xi(s)

∥∥∥∥
∞
< γk, k = 1, 2, . . .

In the above inequalities
‖S‖∞ = sup

s∈∂D
|S(s)|

denotes the peak value of the magnitude of rational transfer function S when evaluated
along the one-dimensional boundary ∂D of a given stability region D.

The above H∞ design paradigm covers all the standard frequency domain specifications
arising in scalar control problems. For example, in the feedback system of figure 20

34



Figure 19: Robust root-locus of the F4E aircraft.

Figure 20: Standard feedback configuration.

35



the sensitivity of the control system output z to disturbances v is characterized by the
sensitivity function

S =
1

1 + b
a
y
x

=
ax

ax+ by

where plant polynomials a and b are given, and controller polynomials x and y must
be found, see [Kwakernaak 93]. As shown in [Doyle et al. 92], robustness of the closed-
loop plant to model uncertainty may be characterized by the complementary sensitivity
function

T = 1− S =
by

ax+ by

which is also the closed-loop system transfer function. As recalled in [Åström et al. 98],
simplified yet sensible design specifications for a control law can be formulated as

‖S| < γS, ‖T‖ < γT

where typical values of γS range between 1.2 and 2.0 and typical values of γT range between
1.0 and 1.5. This H∞ control problem, as well as many others, can be formulated using
the general paradigm proposed above.

12.1 Optimal robust stability

Consider the optimal robust stability problem of section 11.1 in [Doyle et al. 92], where
the open-loop plant in figure 20 is given by

b

a
=

s− 1

(s+ 1)(s− 0.5)

and we seek a controller y/x minimizing γT under the following weighted H∞ constraint
on the closed-loop transfer function

‖WT‖∞ =

∥∥∥∥(s+ 0.1

s+ 1

)(
by

ax+ by

)∥∥∥∥
∞
< γT .

The following Matlab code seeks a first order controller for γT = 1.9:

a = (s+1)*(s-0.5); b = (s-1); gammaT = 1.9;

c = (s+0.1)*(s+1)^2*(s+3); % central polynomial

lmi = hinfdes([],’init’,[1 1]); % seek first order controller

lmi = hinfdes(lmi,(s+0.1)*[0 b],(s+1)*[a b],c,gammaT); % H-inf spec

out = hinfdes(lmi,’solve’); % solve LMI

x = out(1); y = out(2);

Central polynomial c is the key design parameter, and together with upper bound γT
they capture the whole degrees of freedom. Roots in c are just an indication on where
closed-loop poles should be located: generally, roots of characteristic polynomial ax+ by

36



will be located around roots of c, but they may also differ significantly due to structural
constraints. The H∞ design procedure then consists in iteratively playing with the roots
of c, while lowering upper bound γT .

In table 3 we show different choices of roots for c, denoted by σ(c) (4 roots = 2 for the
open-loop system, 1 for the weighting function, 1 for the controller), together with actual
poles of closed-loop transfer function T (3 roots) denoted by σ(ax + by), upper bounds
γT and the actual weighted norms ‖WT‖∞ achieved by the computed controllers. Each
design requires about 1 second of CPU time on our computer.

σ(c) σ(ax+ by) γT ‖WT‖∞
-1,-1,-1,-1 −1.04± i1.08, -0.230 2.9 2.11

-1,-1,-1,-0.1 −0.731± i0.566, -0.118 2.3 1.74
-2,-1,-1,-0.1 −1.133± i0.586, -0.114 2.1 1.54

-3,-1,-1,-0.1 −1.383± i0.642, -0.0932 1.9 1.47
-10,-1,-1,-0.1 -6.775, -1.063, -0.1059 1.8 1.31
-500,-1,-1,-0.1 -1700, -0.992, -0.103 1.7 1.21

Table 3: Optimal robust stability. Roots of central polynomial, characteristic polynomial,
H∞ upper bound and achieved H∞-norm.

We can see that a good strategy is to start with a central polynomial with all its roots
in −1, and a loose upper bound on γT . Decreasing γT , some closed-loop poles move
away from −1, which gives indications on how to move roots of the central polynomial.
At the bottom of the table, we can see that by allowing a very fast root in the central
polynomial, γT can be decreased significantly close to the theoretical infimum of 1.20.
Yet the closed-loop system also features a very fast pole, and the resulting controller
y/x = (−2046.2− 2039.7s)/(3744.0 + s) results impractical.

A good tradeoff here is indicated in boldface letters in table 3, where a weighted H∞-norm
of 1.47 is achieved with the first-order controller

y

x
=
−3.0456− 3.2992s

5.6580 + s
.

Note however that the sensitivity function has very poor norm ‖S = 1−T‖∞ = 13.1, due
to the fact that no specifications were enforced on S. As a result, the above controller can
be very sensitive to perturbations, or fragile, as pointed out in [Keel and Bhattacharyya 97].

A more sensible design approach would then enforce an additional H∞ specification on
S, such as

‖S‖∞ =

∥∥∥∥ ax

ax+ by

∥∥∥∥
∞
< γS

for some suitable value of γS. However, as shown in [Åström 00], for this numerical
example the ratio between the unstable open-loop pole and zero is small so there is no
controller that will give a reasonably robust closed-loop system.

Adding a line to the above Matlab code to enforce an additional specification on ‖S‖∞,
we obtain (after about 2 seconds of CPU time) with c(s) = (s+ 1)3(s+ 100), γT = 4 and

37



γS = 4 the following first-order controller

y

x
=
−873.30− 816.37s

1202.4 + s

producing ‖S‖∞ = 3.44 and ‖WT‖∞ = 2.24.

12.2 Flexible beam

Consider the flexible beam example of section 10.3 in [Doyle et al. 92]. The open-loop
plant is given by

b

a
=

−6.4750s2 + 4.0302s+ 175.7700

5s4 + 3.5682s3 + 139.5021s2 + 0.0929s

and we are seeking a controller y/x. For the closed-loop plant to approximate a standard
second-order system with settling time at 1% of 8 seconds and overshoot less then 10%, the
following frequency domain specification on the weighted sensitivity function is enforced:

‖WS‖∞ =

∥∥∥∥s2 + 1.2s+ 1

s(s+ 1.2)

ax

ax+ by

∥∥∥∥
∞
< γS.

Suppose we are looking for a second-order controller. The open-loop plant has poles 0,
−0.6660 · 10−3, and −0.3565 ± i5.270, and the weighting function has poles at 0 and
−1.2. As explained in [Henrion 03], the central polynomial must mirror open-loop stable
poles, so an initial choice of central polynomial features roots −0.6660 · 10−3, −0.3565±
i5.270, −1.2 plus two roots at −10−2 corresponding to the open-loop plant integrator and
the weighting function integrator, plus two roots at −1 (arbitrary) corresponding to the
controller poles. With this choice of central polynomial and γS = 5 the H∞ LMI problem
is solved in 15 seconds but the resulting step response is too slow.

After a series of attempts, an acceptable step response was obtained with the roots σ(c) =
{−0.6660 ·10−3, −10−2, −0.3565± i5.270, −0.1, −1, −1, −1} corresponding to the central
polynomial c(s) = 0.1858 · 10−4 + 0.3000 · 10−1s+ 3.178s2 + 37.33s3 + 94.06s4 + 90.50s5 +
33.45s6 + 3.824s7 + s8.

% Matlab script for the flexible beam example

b = (-6.4750*s^2+4.0302*s+175.77)/5; % plant numerator

a = (5*s^4+3.5682*s^3+139.5021*s^2+0.0929*s)/5; % monic plant denominator

lmi = hinfdes([],’init’,[2 2]); % seek second-order controller

wn = s^2+1.2*s+1; wd = s*(s+1.2); % weighting function

c = (a+shift(a,-1)*1e-2)*(s+1)*(s+0.1)*(s+1)^2; % central polynomial

gammaS = 5; % H-inf upper bound

% H-inf spec |(wn*a*x)/(wd*(a*x+b*y))| < gammaS

lmi = hinfdes(lmi,wn*[a 0],wd*[a b],c,MS);

sol = hinfdes(lmi,’solve’);

if ~isempty(sol) x = sol(1); y = sol(2); end;

38



With γS = 5 the above script returns the controller

y

x
=

0.77489 · 10−4 + 0.16572 · 10−1s+ 0.36537s2

0.41025 · 10−1 + 1.0437s+ s2

producing
‖S‖∞ = 1.27, ‖T‖∞ = 1.01

and a step response with settling time at 1% of 11.3 seconds and overshoot of 4%. Bode
magnitude plots of S and T are given in figure 21, and the step response is shown in figure
22.

Figure 21: Flexible beam. Bode magnitude plots of S and T .

Figure 22: Flexible beam. Step response.

39



13 Extensions

Some directions for further work:

1. Maximization of uncertainty radius (instead of minimization of controller norm) in
ellides and ellides2 (easy)

2. Extend ptopdes, ellides, ptopdes2, ellides2 to intersections of stability regions
(already implemented in ptopdes2 and ellides2 but not yet documented) (easy)

3. Extend elliana to other stability regions (medium)

4. The current version of function ptopana is based on [Henrion et al. 01a], but it is
likely that the more recent results of [Henrion et al. 02a] are less computationally
demanding (medium)

5. Extend ptopdes to polynomial matrices, based on the results of [Henrion et al. 02a]
(medium)

6. Implement functions ptopspr and ellispr to perform SPR design with polytopic
and ellipsoidal uncertainty, based on [Henrion 02] and [Henrion 01] (medium)

7. Extend some analysis and design routines to LMI (or even QMI) stability regions,
see [Henrion et al. 01b] (medium)

8. Extend hinfdes to multivariable systems (medium)

9. Implement simdes, simultaneous stabilization of a set of scalar plants with the cone
complementarity LMI algorithm, see [Henrion et al. 99] (difficult)

Acknowledgment

This work was supported by the Grant Agency of the Czech Republic under Project
No. 102/02/0709, and by the CNRS STIC Departement Young Researcher Grant No.
01N80/0474. Comments by Zdeněk Hurák, Michal Kvasnica, Thomas Gauchet and Dim-
itri Peaucelle were appreciated.

References

[Ackermann 93] J. Ackermann. Robust Control. Systems with Uncertain Physical Param-
eters. Springer Verlag, Berlin, 1993.

[Åström et al. 98] K. J. Åström, H. Panagopoulos, T. Hägglund. Design of PI controllers
based on non-convex optimization. Automatica, Vol. 34, No. 5, pp. 585–601, 1998.

40



[Åström 00] K. J. Åström. Limitations on Control System Performance. European Journal
of Control, Vol. 6, No. 1, pp. 2–20, 2000.

[Barb et al. 01] F. Dan Barb, A. Ben-Tal, A. Nemirovski. Robust dissipativity of interval
uncertain systems. Technical report, Delft University of Technology, The Netherlands,
2001.

[Barmish 94] B. R. Barmish. New Tools for Robustness of Linear Systems. MacMillan,
New York, 1994.

[Bhattacharyya 95] S. P. Bhattacharyya, H. Chapellat, L. H. Keel. Robust Control: The
Parametric Approach, Prentice Hall, Upper Saddle River, 1995.

[Crisalle et al. 94] O. D. Crisalle, H. M. Mahon, D. Bonvin. Study of Robust Control
Designs using the Critical Direction Method for Ellipsoidal Uncertainties. Proceedings
of the IEEE Southcon94 Conference, pp. 173–180, Orlando, Florida, 1994.

[Datta et al. 97] B. N. Datta, S. Elhay, Y. M. Ram. Orthogonality and partial pole assign-
ment for the symmetric definite quadratic pencil. Linear Algebra and its Applications,
Vol. 257, pp. 29–48, 1997.

[Doyle et al. 92] J. C. Doyle, B. A. Francis and A. R. Tannenbaum. Feedback Control
Theory. MacMillan, New York, 1992.

[El Ghaoui 99] L. El Ghaoui, S. I. Niculescu (Editors). Advances in Linear Matrix In-
equality Methods in Control. SIAM, Philadelphia, 1999.

[Franklin et al. 86] G. J. Franklin, J. D. Powell and A. Emani-Naeini. Feedback Control
of Dynamic Systems. Addison-Wesley, Reading, 1986.

[Henrion et al. 99] D. Henrion, S. Tarbouriech, M. Šebek. Rank-one LMI Approach to
Simultaneous Stabilization of Linear Systems. Systems and Control Letters, Vol. 38,
No. 2, pp. 79–89, 1999.

[Henrion 01] D. Henrion. Discrete Robust SPR Design via Semidefinite Programming.
LAAS-CNRS Research Report No. 01150, Toulouse, France, March 2001.

[Henrion et al. 01a] D. Henrion, D. Arzelier, D. Peaucelle, M. Šebek. An LMI Condition
for Robust Stability of Polynomial Matrix Polytopes. IFAC Automatica, Vol. 37, pp.
461–468, 2001.

[Henrion et al. 01b] D. Henrion, O. Bachelier, M. Šebek. D-Stability of Polynomial Ma-
trices. International Journal of Control, Vol. 74, No. 8, pp. 845–856, 2001.

[Henrion et al. 01c] D. Henrion, D. Peaucelle, D. Arzelier, M. Šebek. Ellipsoidal Approx-
imation of the Stability Domain of a Polynomial. Proceedings of the European Control
Conference, Porto, Portugal, pp.384–389, September 2001.

[Henrion et al. 02a] D. Henrion, D. Arzelier, D. Peaucelle. Positive Polynomial Matrices
and Improved LMI Robustness Conditions. Proceedings of the IFAC World Congress
on Automation, Barcelona, Spain, July 2002. To appear in Automatica, 2003.

41



[Henrion et al. 02b] D. Henrion, M. Šebek, V. Kučera. An Algorithm for Static Output
Feedback Simultaneous Stabilization of Scalar Plants. Proceedings of the IFAC World
Congress on Automation, Barcelona, Spain, July 2002.

[Henrion 02] D. Henrion. LMIs for Robust SPR Design. IEEE Transactions on Circuits
and Systems, Part I: Fundamental Theory and Applications, Vol. 49, No. 7, pp. 1017–
1020, 2002.

[Henrion et al. 02c] D. Henrion, M.Šebek, V. Kučera. Positive Polynomials and Robust
Stabilization with Fixed-Order Controllers. LAAS-CNRS Research Report No. 02325,
Toulouse, France. To appear in IEEE Transactions on Automatic Control, 2003.

[Henrion et al. 02d] D. Henrion, M. Šebek, V. Kučera. Robust pole placement for second-
order systems: an LMI approach. LAAS-CNRS Research Report No. 02324, July 2002.

[Henrion 03] D. Henrion. LMI optimization for fixed-order H∞ controller design. To be
registred as a LAAS-CNRS Research Report, February 2003.

[Howitt and Luus 91] G. D. Howitt, R. Luus. Simultaneous Stabilization of Linear Single-
Input Systems by Linear State Feedback Control. International Journal of Control, Vol.
54, No. 4, pp. 1015–1030, 1991.

[Keel and Bhattacharyya 97] L. H. Keel, S. P. Bhattacharyya. Robust, fragile or optimal
? IEEE Transactions on Automatic Control, Vol. 42, No. 8, pp. 1098–1105, 1997.

[Kwakernaak 93] H. Kwakernaak. Robust control and H∞ optimization – Tutorial Paper.
Automatica, Vol. 29, No. 2, pp. 255–273, 1993.

[Nichols and Kautsky 01] N. K. Nichols, J. Kautsky. Robust eigenstructure assignment
in quadratic matrix polynomials: nonsingular case. SIAM Journal on Matrix Analysis
and Applications, Vol. 23, No. 1, pp. 77–102, 2001.

[Peaucelle et al. 01] D. Peaucelle, D. Henrion, Y. Labit. SeDuMi Interface: A user-
friendly free Matlab package for defining LMI problems. Proceedings of the IEEE
Conference on Computer-Aided Control System Design, Glasgow, Scotland, Septem-
ber 2002. See www.laas.fr/∼peaucell/SeDuMiInt.html

[PolyX 00] PolyX, Ltd. The Polynomial Toolbox for Matlab. Prague, Czech Republic.
Version 2.5 realeased in 2000. See www.polyx.cz

[Sturm 99] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over
symmetric cones. Optimization Methods and Software, Vol. 11–12, pp. 625–653, 1999.
See fewcal.kub.nl/sturm/software/sedumi.html

[Tisseur and Higham 01] F. Tisseur, N. J. Higham. Structured pseudospectra for poly-
nomial eigenvalue problems, with applications. SIAM Journal on Matrix Analysis and
Applications, Vol. 23, No. 1, pp. 187–208, 2001.

[Tong and Sinha 94] Y. Tong and N. K. Sinha. A Computational Technique for the Ro-
bust Root Locus. IEEE Transactions on Industrial Electronics, Vol. 41, No. 1, pp.
79–85, 1994.

42


