
Design of Stable Mechanical Structures

Michal Kočvara
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Structural design problems

Mathematical program with equilibrium constraints:

min
ρ,u

F (ρ, u)

s.t.

ρ ∈ Uad

u solves E(ρ, u)

F (ρ, u) . . . cost functional (weight, stiffness, peak stress. . . )
ρ . . . design variable (thickness, material properties, shape. . . )
u . . . state variable (displacements, stresses)
Uad . . . admissible designs
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Truss design problem

K(ρ) =
m∑

i=1

ρiKi, Ki = Ei

l2
i

γiγ
T
i

ρi. . . bar volumes
ui. . . displacements
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Truss design problem

K(ρ) =
m∑

i=1

ρiKi, Ki = Ei

l2
i

γiγ
T
i

ρi. . . bar volumes
ui. . . displacements

min
ρ∈Rm,u∈Rn

m∑

i=1

ρi

s.t. K(ρ)u = f, fT u ≤ C, ρi ≥ 0, i = 1, 2, . . . , m
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Structural design problems

WEIGHT versus STIFFNESS:

W weight
∑

ρi

C stiffness (compliance) fT u

Equilibrium constraint: u solves E(ρ, u) −→
∑

(ρiKi)u = f
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equilibrium
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S. Timoshenko:

Experience showed that structures like bridges or aircrafts
may fail in some cases not on account of high stresses
but owing to insufficient elastic stability.
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Self-vibrations of a mechanical system

Free vibrations (motions in absence of external loads) of a mechanical
system

Mẍ(t) = −Kx(t) (⋆)

K � 0. . . stiffness matrix, M ≻ 0. . . mass matrix
M =

∑
ρiβiβ

T
i , βi =

√
µγi

The solutions to (⋆) are of the form

x(t) =

n∑

j=1

[aj cos(ωjt) + bj sin(ωj)t]ej

where aj, bj are free parameters, ej are the eigenvectors of

(λjM − K)ej = 0

and ωj =
√

λj .
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Structural design with free vibration control

Three quantities to control:

W weight
∑

ρi

C stiffness (compliance) fT u

λ min. eigenfrequency K(ρ)u = λM(ρ)u
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Structural design with free vibration control

Three quantities to control:

W weight
∑

ρi

C stiffness (compliance) fT u

λ min. eigenfrequency K(ρ)u = λM(ρ)u

min C

s.t.

W ≤ Ŵ

λ ≥ λ̂

equilibrium
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Structural design with free vibration control

Three quantities to control:

W weight
∑

ρi

C stiffness (compliance) fT u

λ min. eigenfrequency K(ρ)u = λM(ρ)u

min C

s.t.

W ≤ Ŵ

λ ≥ λ̂

equilibrium

min W

s.t.

C ≤ Ĉ

λ ≥ λ̂

equilibrium

max λ

s.t.

W ≤ Ŵ

C ≤ Ĉ

equilibrium
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Structural design with stability control

Three quantities to control:

W weight
∑

ρi

C stiffness (compliance) fT u

λ critical buckling force K(ρ)u = λG(ρ, u)u

min C

s.t.

W ≤ Ŵ

λ ≥ 1

equilibrium

min W

s.t.

C ≤ Ĉ

λ ≥ 1

equilibrium

max λ

s.t.

W ≤ Ŵ

C ≤ Ĉ

equilibrium
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Structural design with stability control

Lowest (positive) eigenvalue of

K(ρ)u = λG(ρ, u)u

(critical force) should be bigger than 1 (than λ̂ for vibration constraint)

min
ρ,u

W (ρ)

s.t.

K(ρ)u = f

fT u ≤ Ĉ

ρi ≥ 0, i = 1, . . . , m

λ ≥ 1

Design of Stable Mechanical Structures – p.9/21

kocvara
bmin�,uW(ρ)s.t.K(ρ)u = ffT u ≤ bCρi ≥ 0, i = 1, . . . ,mλ ≥ 1



Structural design with stability control

Two standard tricks:

K(ρ) ≻ 0, u = K(ρ)−1f

fT K(ρ)−1f ≤ Ĉ ⇐⇒
(

Ĉ fT

f K(ρ)

)
� 0
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Structural design with stability control

Two standard tricks:

K(ρ) ≻ 0, u = K(ρ)−1f

fT K(ρ)−1f ≤ Ĉ ⇐⇒
(

Ĉ fT

f K(ρ)

)
� 0

K(ρ)u = λG(ρ, u)u

λ ≥ 1

}
⇐⇒ K(ρ) − G(ρ, u) � 0

⇐⇒ K(ρ) − G̃(ρ) � 0

⇐⇒ G̃(ρ) = G(ρ, K(ρ)−1f)
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Structural design with stability control

Formulated as SDP problem:

min
ρ

W (ρ)

subject to

K(ρ) − G̃(ρ) � 0
(

c fT

f K(ρ)

)
� 0

ρi ≥ 0, i = 1, . . . , m

where
K(ρ) =

∑
ρiKi, G̃(ρ) =

∑
G̃i
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Structural design with free vibration control

Formulated as SDP problem:

min
ρ

W (ρ)

subject to

K(ρ) − λ̂M(ρ) � 0
(

c fT

f K(ρ)

)
� 0

ρi ≥ 0, i = 1, . . . , m

where
K(ρ) =

∑
ρiKi, M(ρ) =

∑
ρiMi
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Solving vibration problem as GEVP

Another option (vibration problems):
Solve the maximum eigenvalue problem formulated as GEVP:

λ min. eigenfrequency of K(ρ)u = λM(ρ)u

max λ

s.t.

W ≤ Ŵ

C ≤ Ĉ

equilibrium
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Solving vibration problem as GEVP

Another option (vibration problems):
Solve the maximum eigenvalue problem formulated as GEVP:

λ min. eigenfrequency of K(ρ)u = λM(ρ)u

max λ

s.t.

W ≤ Ŵ

C ≤ Ĉ

equilibrium

max
ρ,λ

λ

s.t.

K(ρ) − λM(ρ) � 0
∑

ρi ≤ Ŵ

ρi ≥ 0, i = 1, . . . , m
(

Ĉ fT

f K(ρ)

)
� 0

(quasiconvex) SDP problem with BMI constraints — solve by PENBMI
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Truss design problem

min
ρ∈Rm,u∈Rn

fT u

s.t. K(ρ)u = f,

m∑

i=1

ρi = V, ρi ≥ 0, i = 1, 2, . . . , m

K(ρ) =
m∑

i=1

ρiKi, Ki = Ei

l2
i

γiγ
T
i

ρi. . . bar volumes
ui. . . displacements
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Truss design with stability constraint

min
ρ

∑
ρi (minimize weight)

subject to

K(ρ) + G̃(ρ) � 0
(

c fT

f K(ρ)

)
� 0

ρi ≥ 0, i = 1, . . . , m

with

K(ρ) =
∑

ρiKi Ki =
Ei

ℓ2
i

γiγ
T
i

G̃(ρ) =
∑

G̃i(ρ) G̃i(ρ) =
Eρi

ℓ3
i

(γT
i K(ρ)−1f)(δiδ

T
i ).
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Truss design with free vibration constraint

min
ρ

∑
ρi (minimize weight)

subject to

K(ρ) + λ̂M(ρ) � 0
(

c fT

f K(ρ)

)
� 0

ρi ≥ 0, i = 1, . . . , m

with

K(ρ) =
∑

ρiKi Ki =
Ei

ℓ2
i

γiγ
T
i

M(ρ) =
∑

ρiMi Mi = diag(δiδ
T
i )
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external load f ,
find the material (distribution) so that the body is as stiff as possible
under f .

The design variables are the material properties at each point of the
structure.
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external load f ,
find the material (distribution) so that the body is as stiff as possible
under f .

The design variables are the material properties at each point of the
structure.

inf
E<0∫

tr(E)dx≤1

sup
u∈U

−1

2

∫

Ω

〈Ee(u), e(u)〉 dx +

∫

Γ2

f · u dx
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−1

2

∫

Ω
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∫
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sup
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Free Material Optimization

Aim:

Given an amount of material, boundary conditions and external load f ,
find the material (distribution) so that the body is as stiff as possible
under f .

The design variables are the material properties at each point of the
structure.

inf
E<0∫

tr(E)dx≤1

sup
u∈U

−1

2

∫

Ω

〈Ee(u), e(u)〉 dx +

∫

Γ2

f · u dx

inf
ρ≥0∫
ρ dx≤1

sup
u∈U

−1

2

∫

Ω

ρ〈e(u), e(u)〉 dx +

∫

Γ2

f · u dx

inf
α∈R,u∈U

{
α − fT u | α ≥ m

2
uTAi u for i = 1, . . . , m

}
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FMO, example

1
1

2

2
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FMO, example

1
1

2

2
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Truss design w. stability, vibration constraint
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Truss design w. stability, vibration constraint
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Truss design w. stability, vibration constraint
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Truss design w. stability, vibration constraint
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Truss design w. stability, vibration constraint
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Truss design w. stability constraint
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Truss design w. stability constraint
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Truss design w. stability constraint
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Truss design w. stability constraint
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Examples, FMO w. vibration constraint
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Examples, FMO w. vibration constraint
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Examples, FMO w. vibration constraint

FMO with vibration constraint: BMI formulation
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