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PBM Method for convex NLP

Ben-Tal, Zibulevsky, ’92, ’97

Combination of:
(exterior) Penalty meth., (interior) Barrier meth., Method of Multipliers

Problem:

(CP ) min
x∈Rn

{f(x) : gi(x) ≤ 0 , i = 1, . . . , m}

Assume:

1. f, gi ( i = 1, . . . , m ) convex

2. X∗ nonempty and compact (A1)

3. ∃x̂ so that gi(x̂) < 0 for all i = 1, . . . , m (A2)
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PBM Method for convex NLP

ϕ possibly smooth, domϕ possibly large

(ϕ0) ϕ strictly convex, strictly monotone increasing and C2

(ϕ1) domϕ = (−∞, b) with 0 < b ≤ ∞
(ϕ2) ϕ(0) = 0 , (ϕ4) lim

t→b
ϕ′(t) =∞

(ϕ3) ϕ′(0) = 1 , (ϕ5) lim
t→−∞

ϕ′(t) = 0

b 

ϕ(t)

1 

b 

ϕ′(t)
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PBM Method for convex NLP

Examples:

ϕr
1(t) =

{

c1
1
2
t2 + c2t + c3 t ≥ r

c4 log(t− c5) + c6 t < r .
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PBM Method for convex NLP

Examples:

ϕr
1(t) =

{

c1
1
2
t2 + c2t + c3 t ≥ r

c4 log(t− c5) + c6 t < r .

ϕr
2(t) =

{

c1
1
2
t2 + c2t + c3 t ≥ r ,

c4

t−c5
+ c6 t < r , r ∈ 〈−1, 1〉
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PBM Method for convex NLP

Examples:

ϕr
1(t) =

{

c1
1
2
t2 + c2t + c3 t ≥ r

c4 log(t− c5) + c6 t < r .

ϕr
2(t) =

{

c1
1
2
t2 + c2t + c3 t ≥ r ,

c4

t−c5
+ c6 t < r , r ∈ 〈−1, 1〉

Properties:

C2, bounded second derivative

=⇒ improved behaviour of Newton’s method

composition of barrier branch (logarithmic/reciprocal) and
penalty branch (quadratic)
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PBM algorithm for convex problems

With pi > 0 for i ∈ {1, . . . , m}, we have

gi(x) ≤ 0 ⇐⇒ piϕ(gi(x)/pi) ≤ 0, i = 1, . . . , m

The corresponding augmented Lagrangian:

F (x, u, p) := f(x) +

m
∑

i=1

uipiϕ(gi(x)/pi)

PBM algorithm:

xk+1 = arg min
x∈IRn

F (x, uk, pk)

uk+1
i = uk

i ϕ′(gi(x
k+1)/pk

i ) i = 1, . . . , m

pk+1
i = π pk

i i = 1, . . . , m
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Properties of the PBM method

Theory:

{uk}k generated by PBM is the same as for a
Proximal Point algorithm applied to the dual problem
(→ convergence proof)

any cluster point of {xk}k is an optimal solution to (CP )

f(xk)→ f∗ without pk → 0
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Properties of the PBM method

Theory:

{uk}k generated by PBM is the same as for a
Proximal Point algorithm applied to the dual problem
(→ convergence proof)

any cluster point of {xk}k is an optimal solution to (CP )

f(xk)→ f∗ without pk → 0

Praxis:

fast convergence thanks to the barrier branch of ϕ

particularly suitable for large sparse problems

robust, typically 10–15 outer iterations and 40–80 Newton steps
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PBM in semidefinite programming

Problem: min
x∈Rn

{

bT x : A(x) 4 0
}

Question: How can the matrix constraint

A(x) 4 0 (A : R
n −→ Sd convex)

be treated by PBM approach ?

Idea: Find an augmented Lagrangian as follows:

F (x, U, p) = f(x) + 〈U, Φp (A(x))〉Sd
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PBM in semidefinite programming

Problem: min
x∈Rn

{

bT x : A(x) 4 0
}

Question: How can the matrix constraint

A(x) 4 0 (A : R
n −→ Sd convex)

be treated by PBM approach ?

Idea: Find an augmented Lagrangian as follows:

F (x, U, p) = f(x) + 〈U, Φp (A(x))〉Sd

Notation:
〈A, B〉Sd

:= tr
(

AT B
)

inner product on Sd

Sd+
= {A ∈ Sd | A positive semidefinite}

U ∈ Sd+
matrix multiplier (dual variable)

Φp penalty function on Sd
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Construction of the penalty function Φp, first idea

Given:
scalar valued penalty function ϕ satisfying (ϕ0)− (ϕ5)

matrix A = S⊤ΛS , where Λ = diag (λ1, λ2, . . . , λd)
⊤

Define

A
Φp7−→ ST

















pϕ
(

λ1

p

)

0 . . . 0

0 pϕ
(

λ2

p

) ...
...

. . . 0

0 . . . 0 pϕ
(

λd

p

)

















S

−→ any positive eigenvalue of A is “penalized” by ϕ
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PBM algorithm for semidefinite problems

We have
A(x) 4 0⇐⇒ Φp(A(x)) 4 0

and the corresponding augmented Lagrangian:

F (x, U, p) := f(x) + 〈U, Φp(A(x))〉Sd

PBM algorithm:

(i) xk+1 = argmin
x∈Rn

F (x, Uk, pk)

(ii) Uk+1 = DAΦp(A(x); Uk)

(iii) pk+1 < pk
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PBM algorithm for semidefinite problems

The first idea may not be the best one:

The matrix function Φp corresponding to ϕ is convex but may be
nonmonotone on Hd(r,∞) (right branch) −→

〈U, Φp (A(x))〉Sd

may be nonconvex.
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PBM algorithm for semidefinite problems

The first idea may not be the best one:

The matrix function Φp corresponding to ϕ is convex but may be
nonmonotone on Hd(r,∞) (right branch) −→

〈U, Φp (A(x))〉Sd

may be nonconvex.

Complexity of Hessian assembling −→ O(d4 + d3n + d2n2)

Even for a very sparse structure the complexity can be O(d4) !

n . . . number of variables

d . . . size of matrix constraint
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PBM algorithm for semidefinite problems

Hessian:

[

▽xx 〈U, Φp (A(x))〉Sd

]

i,j
=

d
∑

k=1

(

sk(x)⊤Ai

[

S(x)
(

[△2ϕ(λl(x), λm(x), λk(x))]nl,m=1

◦[S(x)⊤US(x)]
)

S(x)⊤

]

Ajsk(x)
)

S : decomposition matrix of A(x)

sk : k-th column of S

△i divided difference of i-th order

A∗ : Sd → R
n conjugate operator to A
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Construction of the penalty function, second idea

Find a penalty function ϕ which allows “direct” computation of Φ,
its gradient and Hessian.
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Construction of the penalty function, second idea

Find a penalty function ϕ which allows “direct” computation of Φ,
its gradient and Hessian.

Example: (A(x) =
∑

xiAi)

ϕ(x) = x2 ⇒ Φ(A) = A2

Then
∂

∂xi

Φ(A(x)) = A(x)Ai + AiA(x)

and
∂2

∂xi∂xj

Φ(A(x)) = AjAi + AiAj
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Construction of the penalty function

The reciprocal barrier function in SDP: (A(x) =
∑

xiAi)

ϕ :=
1

t− 1
− 1

The corresponding matrix function is

Φ(A) = (A− I)−1 − I

and we can show that

∂

∂xi

Φ(A(x)) = (A− I)−1Ai(A− I)−1

and

∂2

∂xi∂xj

Φ(A(x)) = (A− I)−1Ai(A− I)−1Aj(A− I)−1

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP – p.13/39



Construction of the penalty function

Complexity of Hessian assembling:

O(d3n + d2n2) for dense matrices

O(n2K2) for sparse matrices
(K . . . max. number of nonzeros in Ai, i = 1, . . . , n)

Compare to O(d4 + d3n + d2n2) in the general case

min
x∈Rn

{

bT x : A(x) 4 0
}

A : R
n −→ Sd
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Handling sparsity

. . . essential for code efficiency

min
x∈Rn

{

bT x : A(x) 4 0
}

A =
∑

xiAi

Three basic sparsity types:

many (small) blocks→ sparse Hessian (multi-load truss/material)

(A− I)−1Ai(A− I)−1Aj(A− I)−1
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Handling sparsity

. . . essential for code efficiency

min
x∈Rn

{

bT x : A(x) 4 0
}

A =
∑

xiAi

Three basic sparsity types:

many (small) blocks→ sparse Hessian (multi-load truss/material)

few (large) blocks

(A− I)−1Ai(A− I)−1Aj(A− I)−1
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Handling sparsity

. . . essential for code efficiency

min
x∈Rn

{

bT x : A(x) 4 0
}

A =
∑

xiAi

Three basic sparsity types:

many (small) blocks→ sparse Hessian (multi-load truss/material)

few (large) blocks
A dense, Ai sparse (most of SDPLIB examples)

(A− I)−1Ai(A− I)−1Aj(A− I)−1
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Handling sparsity

3
x  +1 x  + 2 x  + ...

full version as inefficient as general sparse version
Recently, 3 matrix-matrix multiplication routines:

full–full

full–sparse

sparse–sparse
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Handling sparsity

essential for code efficiency

min
x∈Rn

{

bT x : A(x) 4 0
}

A =
∑

xiAi

Three basic sparsity types:

many (small) blocks→ sparse Hessian (multi-load truss/material)

few (large) blocks
A dense, Ai sparse (most of SDPLIB examples)
A sparse (truss design with buckling/vibration, maxG, . . . )

(A− I)−1Ai(A− I)−1Aj(A− I)−1
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Handling sparsity

Fast inverse computation of sparse matrices

Z = M−1N

Explicite inverse of M : O(n3)
Assume M is sparse and Cholesky factor L of M is sparse

Zi = (L−1)T L−1Ni, i = 1, . . . , n

Complexity: n times nK → O(n2K)
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Numerical results

New code called PENNON

Comparison with
DSDP by Benson and Ye
SDPT3 by Toh, Todd and Tütüncü
SeDuMi by Jos Sturm

SDPLIB problems: http://www.nmt.edu/˜sdplib/
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Numerical results

problem variables matrix DSDP SDPT3 PENNON

arch8 174 335 4 7 6
control7 136 45 114 48 82

control11 1596 165 1236 288 974
gpp500-4 501 500 28 39 21
mcp500-1 500 500 2 18 7

qap10 1021 101 19 8 16
ss30 132 426 10 18 20

theta6 4375 300 551 287 797
equalG11 801 801 139 156 102
equalG51 1001 1001 351 350 391
maxG11 800 800 6 54 25
maxG32 2000 2000 72 650 259
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Examples from Mechanics

Multiple-load Free Material Optimization
After reformulation, discretization, further reformulation:

min
α∈R,x∈(Rn)L

{

α−
L

∑

ℓ=1

(cℓ)T xℓ | Ai(α, x) � 0 , i = 1, . . . , m

}

Many (∼ 5000) small (11–19) matrices.
Large dimension (nL ∼ 20 000)
In a standard form:

min
x∈(Rn)L

{

aT x |
nL
∑

i=1

xiBi � 0

}

2
x  + x  + ...

1
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Examples from Mechanics

no. of size of
problem var. matrix DSDP SDPT3 SeDuMi PENNON

mater3 1439 3588 146 35 20 6
mater4 4807 12498 6269 295 97 29
mater5 10143 26820 36000 m 202 78
mater6 20463 56311 m m 533 233
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Truss design with free vibration control

Lowest eigenfrequency of the optimal structure should be bigger than
a prescribed value

min
t,u

∑

ti

s.t. A(t)u = f

|σ| ≤ σℓ (g(u) ≤ c)

t ∈ T

min. eigenfrequency ≥ a given value

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP – p.23/39



Truss design with free vibration control

Formulated as SDP problem:

min
t

∑

ti

subject to A(t)− λM(t) � 0
(

c fT

f A(t)

)

� 0

ti ≥ 0, i = 1, . . . , n

where

A(t) =
∑

tiAi Ai =
Ei

ℓ2
i

γiγ
T
i

M(t) =
∑

tiMi Mi = c ∗ diag(γiγ
T
i )
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truss test problems

trto: problems from single-load truss topology design. Normally
formulated as LP, here reformulated as SDP for testing purposes.

vibra: single load truss topology problems with a vibration
constraint. The constraint guarantees that the minimal
self-vibration frequency of the optimal structure is bigger than a
given value.

buck: single load truss topology problems with linearized global
buckling constraint. Originally a nonlinear matrix inequality, the
constraint should guarantee that the optimal structure is
mechanically stable (does not buckle).

All problems characterized by sparsity of the matrix operator A.
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truss test problems

problem n m DSDP SDPT3 PENNON

trto3 544 321+544 11 19 17
trto4 1200 673+1200 134 124 106
trto5 3280 1761+3280 3125 1422 1484

buck3 544 641+544 44 43 39
buck4 1200 1345+1200 340 241 221
buck5 3280 3521+3280 10727 2766 3006
vibra3 544 641+544 52 45 34
vibra4 1200 1345+1200 596 294 191
vibra5 3280 3521+3280 25290 3601 2724
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Benchmark tests by Hans Mittelmann:
http://plato.la.asu.edu/bench.html

Implemented on the NEOS server:
http://www-neos.anl.gov

Homepage:
http://www2.am.uni-erlangen.de/ ∼kocvara/pennon/
http://www.penopt.com/

Available with MATLAB interface through TOMLAB

http://www.tomlab.biz
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When PCG helps (SDP) ?

Linear SDP, dense Hessian A =
n
∑

i=1

Ai, Ai ∈ R
m×m

Complexity of Hessian evaluation

O(m3
An + m2

An2) for dense matrices

O(m2
An + K2n2) for sparse matrices

(K . . . max. number of nonzeros in Ai, i = 1, . . . , n)

Complexity of Cholesky algorithm - linear SDP

O(n3) (. . . from PCG we expect O(n2))

Problems with large n and small m:

CG better than Cholesky (expected)
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Iterative algorithms

Conjugate Gradient method for Hd = −g, H ∈ S
n
+

. . .

. . .
y = Hx complexity O(n2)
. . .
. . .

Exact arithmetics: “convergence” in n steps

→ overall complexity O(n3)
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Iterative algorithms

Conjugate Gradient method for Hd = −g, H ∈ S
n
+

. . .

. . .
y = Hx complexity O(n2)
. . .
. . .

Exact arithmetics: “convergence” in n steps

→ overall complexity O(n3)

Praxis: may be much worse (ill-conditioned problems)
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Iterative algorithms

Conjugate Gradient method for Hd = −g, H ∈ S
n
+

. . .

. . .
y = Hx complexity O(n2)
. . .
. . .

Exact arithmetics: “convergence” in n steps

→ overall complexity O(n3)

Praxis: may be much worse (ill-conditioned problems)
Praxis: may be much better→ preconditioning
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Iterative algorithms

Conjugate Gradient method for Hd = −g, H ∈ S
n
+

. . .

. . .
y = Hx complexity O(n2)
. . .
. . .

Exact arithmetics: “convergence” in n steps

→ overall complexity O(n3)

Praxis: may be much worse (ill-conditioned problems)
Praxis: may be much better→ preconditioning

Convergence theory: number of iterations depends on

condition number

distribution of eigenvalues
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Iterative algorithms

Conjugate Gradient method for Hd = −g, H ∈ S
n
+

. . .

. . .
y = Hx complexity O(n2)
. . .
. . .

Exact arithmetics: “convergence” in n steps

→ overall complexity O(n3)

Praxis: may be much worse (ill-conditioned problems)
Praxis: may be much better→ preconditioning

Convergence theory: number of iterations depends on

condition number

distribution of eigenvalues

Preconditioning: solve M−1Hd = M−1g with M ≈ H−1
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Conditioning of Hessian

Solve Hd = −g, H Hessian of

F (x, u, U, p, P ) = f(x) + 〈U, ΦP (A(x))〉SmA

Condition number depends on P

Example: problem Theta2 from SDPLIB (n = 498)
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κ0 = 394 κopt = 4.9 · 107
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Theta2 from SDPLIB ( n = 498)
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Behaviour of CG: testing ‖Hd + g‖/‖g‖
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Theta2 from SDPLIB ( n = 498)

0 50 100 150 200 250 300 350 400 450
500

-0.5

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400 450
500

-6

-5

-4

-3

-2

-1

0

1

2

3

Behaviour of QMR: testing ‖Hd + g‖/‖g‖
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Theta2 from SDPLIB ( n = 498)
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QMR: effect of preconditioning (for small P )
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Control3 from SDPLIB ( n = 136)
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κ0 = 3.1 · 108 κopt = 7.3 · 1012
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Control3 from SDPLIB ( n = 136)
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Behaviour of CG: testing ‖Hd + g‖/‖g‖
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Control3 from SDPLIB ( n = 136)
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Behaviour of QMR: testing ‖Hd + g‖/‖g‖
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Preconditioners

Should be:

– efficient (obvious but often difficult to reach)

– simple (low complexity)

– only use Hessian-vector product (NOT Hessian elements)
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Preconditioners

Should be:

– efficient (obvious but often difficult to reach)

– simple (low complexity)

– only use Hessian-vector product (NOT Hessian elements)

Diagonal

Symmetric Gauss-Seidel

L-BFGS (Morales-Nocedal, SIOPT 2000)

A-inv (approximate inverse) (Benzi-Collum-Tuma, SISC 2000)
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Preconditioners

Monteiro, O’Neil, Nemirovski (2004): Adaptive Ellipsoid Preconditioner

“Improves the CG performance on extremely ill-conditioned systems.”

preconditioner:

M = CkCT
k , Ck+1 ← αCk + βCkpkpT

k , C1 = γI

α, β, pk . . . by matrix-vector products

VERY preliminary results (MATLAB implementation)
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Preconditioners — example

Example: problem Theta2 from SDPLIB (n = 498)
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Preconditioners — example

Example: problem Theta2 from SDPLIB (n = 498)
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.
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Hessian free methods

Use finite difference formula for Hessian-vector products:

∇2F (xk)v ≈
∇F (xk + hv)−∇F (xk)

h

with h = (1 + ‖xk‖2
√

ε)

Complexity: Hessian-vector product = gradient evaluation Complexity:
need for Hessian-vector-product type preconditioner

Limited accuracy (4–5 digits)
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Test results: linear SDP, dense Hessian

Stopping criterium for PENNON

Exact Hessian: 10−7 (7–8 digits in objective function)
Approximate Hessian: 10−4 (4–5 digits in objective function)

Stopping criterium for CG/QMR ???

Hd = −g, stop when ‖Hd + g‖/‖g‖ ≤ ǫ
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Test results: linear SDP, dense Hessian

Stopping criterium for PENNON

Exact Hessian: 10−7 (7–8 digits in objective function)
Approximate Hessian: 10−4 (4–5 digits in objective function)

Stopping criterium for CG/QMR ???

Hd = −g, stop when ‖Hd + g‖/‖g‖ ≤ ǫ

Experiments: ǫ = 10−2 sufficient.
→ often very low (average) number of CG iterations

Complexity: n3 → kn2, k ≈ 4− 8

Practice: effect not that strong, due to other complexity issues
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Problems with large n and small m

Library of examples with large n and small m
(courtesy of Kim Toh)

CG-exact much better than Cholesky
CG-approx much better than CG-exact
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problem    n m PENSDP PENSDP (APCG) SDPLR
      CPU CPU CG CPU iter 
ham_7_5_6  1793 128 126 4 52 1 113
ham_9_8  2305 512 423 210 66 46 222
ham_8_3_4  16129 256 81274 104 52 21 195
ham_9_5_6  53761 512  1984 71 71 102
theta42 200 5986 4722 51 269 393 11548
theta6 4375 300 2327 108 308 1221 20781
theta62 13390 300 68374 196 240 1749 16784
theta8 7905 400 11947 263 311 1854 15257
theta82 23872 400 m 650 267 4650 20653
theta83 39862 400 m 1715 277 7301 23017
theta10 12470 500 57516 492 278 4636 18814
theta102  37467 500 m 1948 340 12275 29083
theta103  62516 500 m 6149 421 17687 29483
theta104  87845 500 m 8400 269    
theta12 17979 600 t 843 240 8081 21338
keller4 5101 171 3264 52 432 244 8586
sanr200-0.7  6033 200 6664 52 278 405 12139
 
problem     n m PENSDP (APCG) RENDL
theta83  39862 400 460 345 440
theta103  62516 500 1440 491 850
theta123  90020 600 5286 1062 1530
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