PENNON

A Generalized Augmented Lagrangian Method for Convex NLP and SDP

Michal Kočvara
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic and
Czech Technical University
kocvara@utia.cas.cz
http://www.utia.cas.cz/kocvara

PBM Method for convex NLP

Ben-Tal, Zibulevsky, '92, '97

Combination of:
(exterior) Penalty meth., (interior) Barrier meth., Method of Multipliers

Problem:

$$
(C P) \quad \min _{x \in \mathbb{R}^{n}}\left\{f(x): g_{i}(x) \leq 0, \quad i=1, \ldots, m\right\}
$$

Assume:

1. $f, g_{i}(i=1, \ldots, m)$ convex
2. \boldsymbol{X}^{*} nonempty and compact
3. $\exists \hat{x}$ so that $g_{i}(\hat{x})<0$ for all $i=1, \ldots, m$

PBM Method for convex NLP

φ possibly smooth, dom φ possibly large
$\left(\varphi_{0}\right) \quad \varphi$ strictly convex, strictly monotone increasing and C^{2}
$\left(\varphi_{1}\right) \quad \operatorname{dom} \varphi=(-\infty, b)$ with $0<b \leq \infty$
$\left(\varphi_{2}\right) \quad \varphi(0)=0, \quad\left(\varphi_{4}\right) \quad \lim _{t \rightarrow b} \varphi^{\prime}(t)=\infty$
$\left(\varphi_{3}\right) \quad \varphi^{\prime}(0)=1, \quad\left(\varphi_{5}\right) \quad \lim _{t \rightarrow-\infty} \varphi^{\prime}(t)=0$

PBM Method for convex NLP

Examples:

$$
\varphi_{1}^{r}(t)= \begin{cases}c_{1} \frac{1}{2} t^{2}+c_{2} t+c_{3} & t \geq r \\ c_{4} \log \left(t-c_{5}\right)+c_{6} & t<r .\end{cases}
$$

PBM Method for convex NLP

Examples:

$$
\begin{gathered}
\varphi_{1}^{r}(t)= \begin{cases}c_{1} \frac{1}{2} t^{2}+c_{2} t+c_{3} & t \geq r \\
c_{4} \log \left(t-c_{5}\right)+c_{6} & t<r .\end{cases} \\
\varphi_{2}^{r}(t)=\left\{\begin{array}{ll}
c_{1} \frac{1}{2} t^{2}+c_{2} t+c_{3} & t \geq r, \\
\frac{c_{4}}{t-c_{5}}+c_{6} & t<r,
\end{array} \quad r \in\langle-1,1\rangle\right.
\end{gathered}
$$

PBM Method for convex NLP

Examples:

$$
\begin{gathered}
\varphi_{1}^{r}(t)= \begin{cases}c_{1} \frac{1}{2} t^{2}+c_{2} t+c_{3} & t \geq r \\
c_{4} \log \left(t-c_{5}\right)+c_{6} & t<r .\end{cases} \\
\varphi_{2}^{r}(t)=\left\{\begin{array}{ll}
c_{1} \frac{1}{2} t^{2}+c_{2} t+c_{3} & t \geq r, \\
\frac{c_{4}}{t-c_{5}}+c_{6} & t<r,
\end{array} \quad r \in\langle-1,1\rangle\right.
\end{gathered}
$$

Properties:

- C^{2}, bounded second derivative
\Longrightarrow improved behaviour of Newton's method
- composition of barrier branch (logarithmic/reciprocal) and penalty branch (quadratic)

PBM algorithm for convex problems

With $p_{i}>0$ for $i \in\{1, \ldots, m\}$, we have

$$
g_{i}(x) \leq 0 \Longleftrightarrow p_{i} \varphi\left(g_{i}(x) / p_{i}\right) \leq 0, \quad i=1, \ldots, m
$$

The corresponding augmented Lagrangian:

$$
F(x, u, p):=f(x)+\sum_{i=1}^{m} u_{i} p_{i} \varphi\left(g_{i}(x) / p_{i}\right)
$$

PBM algorithm:

$$
\begin{aligned}
x^{k+1} & =\arg \min _{x \in \mathbb{R}} F\left(x, u^{k}, p^{k}\right) & & \\
u_{i}^{k+1} & =u_{i}^{k} \varphi^{\prime}\left(g_{i}\left(x^{k+1}\right) / p_{i}^{k}\right) & & i=1, \ldots, m \\
p_{i}^{k+1} & =\pi p_{i}^{k} & & i=1, \ldots, m
\end{aligned}
$$

Properties of the PBM method

Theory:

- $\left\{u^{k}\right\}_{k}$ generated by PBM is the same as for a Proximal Point algorithm applied to the dual problem (\rightarrow convergence proof)
- any cluster point of $\left\{x^{k}\right\}_{k}$ is an optimal solution to ($C P$)
- $f\left(x^{k}\right) \rightarrow f^{*}$ without $p_{k} \rightarrow 0$

Properties of the PBM method

Theory:

- $\left\{u^{k}\right\}_{k}$ generated by PBM is the same as for a Proximal Point algorithm applied to the dual problem (\rightarrow convergence proof)
- any cluster point of $\left\{x^{k}\right\}_{k}$ is an optimal solution to ($C P$)
- $f\left(x^{k}\right) \rightarrow f^{*}$ without $p_{k} \rightarrow 0$

Praxis:

- fast convergence thanks to the barrier branch of φ
- particularly suitable for large sparse problems
- robust, typically 10-15 outer iterations and 40-80 Newton steps

PBM in semidefinite programming

Problem:
 $$
\min _{x \in \mathbb{R}^{n}}\left\{b^{T} x: \mathcal{A}(x) \preccurlyeq 0\right\}
$$

Question: How can the matrix constraint

$$
\mathcal{A}(x) \preccurlyeq 0 \quad\left(\mathcal{A}: \mathbb{R}^{n} \longrightarrow \mathbb{S}_{d} \text { convex }\right)
$$

be treated by PBM approach ?
Idea: Find an augmented Lagrangian as follows:

$$
F(x, U, p)=f(x)+\left\langle U, \Phi_{p}(\mathcal{A}(x))\right\rangle_{S_{d}}
$$

PBM in semidefinite programming

Problem: $\quad \min _{x \in \mathbb{R}^{n}}\left\{b^{T} x: \mathcal{A}(x) \preccurlyeq 0\right\}$

Question: How can the matrix constraint

$$
\mathcal{A}(x) \preccurlyeq 0 \quad\left(\mathcal{A}: \mathbb{R}^{n} \longrightarrow \mathbb{S}_{d} \text { convex }\right)
$$

be treated by PBM approach ?
Idea: Find an augmented Lagrangian as follows:

$$
F(x, U, p)=f(x)+\left\langle U, \Phi_{p}(\mathcal{A}(x))\right\rangle_{\mathbb{S}_{d}}
$$

Notation:

$$
\begin{array}{ll}
\langle\boldsymbol{A}, \boldsymbol{B}\rangle_{\mathbb{S}_{d}} & :=\operatorname{tr}\left(\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{B}\right) \text { inner product on } \mathbb{S}_{d} \\
\mathbb{S}_{d_{+}} & =\left\{\boldsymbol{A} \in \mathbb{S}_{d} \mid \boldsymbol{A} \text { positive semidefinite }\right\} \\
\boldsymbol{U} \in \mathbb{S}_{d_{+}} & \text {matrix multiplier (dual variable) } \\
\Phi_{p} & \text { penalty function on } \mathbb{S}_{d}
\end{array}
$$

Construction of the penalty function Φ_{p}, first idea

Given:

scalar valued penalty function φ satisfying $\left(\varphi_{0}\right)-\left(\varphi_{5}\right)$ matrix $A=S^{\top} \Lambda S$, where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)^{\top}$

Define

$$
A \stackrel{\Phi_{p}}{\longmapsto} S^{T}\left(\begin{array}{cccc}
p \varphi\left(\frac{\lambda_{1}}{p}\right) & 0 & \cdots & 0 \\
0 & p \varphi\left(\frac{\lambda_{2}}{p}\right) & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & p \varphi\left(\frac{\lambda_{d}}{p}\right)
\end{array}\right) S
$$

\longrightarrow any positive eigenvalue of \boldsymbol{A} is "penalized" by φ

PBM algorithm for semidefinite problems

We have

$$
\mathcal{A}(x) \preccurlyeq 0 \Longleftrightarrow \Phi_{p}(\mathcal{A}(x)) \preccurlyeq 0
$$

and the corresponding augmented Lagrangian:

$$
F(x, U, p):=f(x)+\left\langle U, \Phi_{p}(\mathcal{A}(x))\right\rangle_{\mathbb{S}_{d}}
$$

PBM algorithm:
(i) $\quad x^{k+1}=\arg \min _{x \in \mathbb{R}^{n}} F\left(x, U^{k}, p^{k}\right)$
(ii) $\quad U^{k+1}=D_{\mathcal{A}} \Phi_{p}\left(\mathcal{A}(x) ; U^{k}\right)$
(iii) $p^{k+1}<p^{k}$

PBM algorithm for semidefinite problems

The first idea may not be the best one:

- The matrix function Φ_{p} corresponding to φ is convex but may be nonmonotone on $\mathbb{H}_{d}(r, \infty)$ (right branch) \longrightarrow

$$
\left\langle\boldsymbol{U}, \Phi_{p}(\mathcal{A}(x))\right\rangle_{\mathbb{S}_{d}}
$$

may be nonconvex.

PBM algorithm for semidefinite problems

The first idea may not be the best one:

- The matrix function Φ_{p} corresponding to φ is convex but may be nonmonotone on $\mathbb{H}_{d}(r, \infty)$ (right branch) \longrightarrow

$$
\left\langle\boldsymbol{U}, \boldsymbol{\Phi}_{p}(\mathcal{A}(x))\right\rangle_{\mathbb{S}_{d}}
$$

may be nonconvex.

- Complexity of Hessian assembling $\longrightarrow O\left(d^{4}+d^{3} n+d^{2} n^{2}\right)$ Even for a very sparse structure the complexity can be $O\left(d^{4}\right)$!
n ... number of variables
d... size of matrix constraint

PBM algorithm for semidefinite problems

Hessian:

$$
\begin{aligned}
& {\left[\nabla_{x x}\left\langle U, \Phi_{p}(\mathcal{A}(x))\right\rangle_{\mathbb{S}_{d}}\right]_{i, j}=} \\
& \sum_{k=1}^{d}\left(s _ { k } (x) ^ { \top } \boldsymbol { A } _ { i } \left[S (x) \left(\left[\triangle^{2} \varphi\left(\lambda_{l}(x), \lambda_{m}(x), \lambda_{k}(x)\right)\right]_{l, m=1}^{n}\right.\right.\right. \\
& \left.\left.\left.\circ\left[S(x)^{\top} U S(x)\right]\right) S(x)^{\top}\right] \boldsymbol{A}_{j} s_{k}(x)\right)
\end{aligned}
$$

- S : decomposition matrix of $\mathcal{A}(x)$
- $s_{k}: k$-th column of S
- \triangle^{i} divided difference of i-th order
- $\mathcal{A}^{*}: \mathbb{S}_{d} \rightarrow \mathbb{R}^{n} \quad$ conjugate operator to \mathcal{A}

Construction of the penalty function, second idea

Find a penalty function φ which allows "direct" computation of $\boldsymbol{\Phi}$, its gradient and Hessian.

Construction of the penalty function, second idea

Find a penalty function φ which allows "direct" computation of Φ, its gradient and Hessian.

Example: $\left(\mathcal{A}(x)=\sum x_{i} A_{i}\right)$

$$
\varphi(x)=x^{2} \quad \Rightarrow \quad \Phi(A)=A^{2}
$$

Then

$$
\frac{\partial}{\partial x_{i}} \Phi(\mathcal{A}(x))=\mathcal{A}(x) A_{i}+A_{i} \mathcal{A}(x)
$$

and

$$
\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \Phi(\mathcal{A}(x))=A_{j} A_{i}+A_{i} A_{j}
$$

Construction of the penalty function

The reciprocal barrier function in SDP:
$\left(\mathcal{A}(x)=\sum x_{i} \boldsymbol{A}_{i}\right)$

$$
\varphi:=\frac{1}{t-1}-1
$$

The corresponding matrix function is

$$
\Phi(A)=(A-I)^{-1}-I
$$

and we can show that

$$
\frac{\partial}{\partial x_{i}} \Phi(\mathcal{A}(x))=(A-I)^{-1} A_{i}(A-I)^{-1}
$$

and

$$
\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \Phi(\mathcal{A}(x))=(A-I)^{-1} A_{i}(A-I)^{-1} A_{j}(A-I)^{-1}
$$

Construction of the penalty function

Complexity of Hessian assembling:

- $O\left(d^{3} n+d^{2} n^{2}\right)$ for dense matrices
- $O\left(n^{2} K^{2}\right)$ for sparse matrices ($K \ldots$ max. number of nonzeros in $\boldsymbol{A}_{\boldsymbol{i}}, \boldsymbol{i}=1, \ldots, n$)
- Compare to $O\left(d^{4}+d^{3} n+d^{2} n^{2}\right)$ in the general case

$$
\min _{x \in \mathbb{R}^{n}}\left\{b^{T} x: \mathcal{A}(x) \preccurlyeq 0\right\} \quad \mathcal{A}: \mathbb{R}^{n} \longrightarrow \mathbb{S}_{d}
$$

Handling sparsity

... essential for code efficiency

$$
\min _{x \in \mathbb{R}^{n}}\left\{b^{T} x: \mathcal{A}(x) \preccurlyeq 0\right\} \quad \mathcal{A}=\sum x_{i} A_{i}
$$

Three basic sparsity types:

- many (small) blocks \rightarrow sparse Hessian (multi-load truss/material)

Handling sparsity

... essential for code efficiency

$$
\min _{x \in \mathbb{R}^{n}}\left\{b^{T} x: \mathcal{A}(x) \preccurlyeq 0\right\} \quad \mathcal{A}=\sum x_{i} A_{i}
$$

Three basic sparsity types:

- many (small) blocks \rightarrow sparse Hessian (multi-load truss/material)
- few (large) blocks

Handling sparsity

... essential for code efficiency

$$
\min _{x \in \mathbb{R}^{n}}\left\{b^{T} x: \mathcal{A}(x) \preccurlyeq 0\right\} \quad \mathcal{A}=\sum x_{i} A_{i}
$$

Three basic sparsity types:

- many (small) blocks \rightarrow sparse Hessian (multi-load truss/material)
- few (large) blocks
- \mathcal{A} dense, \boldsymbol{A}_{i} sparse (most of SDPLIB examples)

Handling sparsity

full version as inefficient as general sparse version Recently, 3 matrix-matrix multiplication routines:

- full-full
- full-sparse
- sparse-sparse

Handling sparsity

essential for code efficiency

$$
\min _{x \in \mathbb{R}^{n}}\left\{b^{T} x: \mathcal{A}(x) \preccurlyeq 0\right\} \quad \mathcal{A}=\sum x_{i} A_{i}
$$

Three basic sparsity types:

- many (small) blocks \rightarrow sparse Hessian (multi-load truss/material)
- few (large) blocks
- \mathcal{A} dense, \boldsymbol{A}_{i} sparse (most of SDPLIB examples)
- \mathcal{A} sparse (truss design with buckling/vibration, maxG, ...)

$$
(A-I)^{-1} A_{i}(A-I)^{-1} A_{j}(A-I)^{-1}
$$

Handling sparsity

Fast inverse computation of sparse matrices

$$
Z=M^{-1} N
$$

Explicite inverse of $M: O\left(n^{3}\right)$
Assume M is sparse and Cholesky factor L of M is sparse

$$
Z_{i}=\left(L^{-1}\right)^{T} L^{-1} N_{i}, i=1, \ldots, n
$$

Complexity: n times $n K \rightarrow O\left(n^{2} K\right)$

Numerical results

New code called PENNON

Comparison with DSDP by Benson and Ye SDPT3 by Toh, Todd and Tütüncü SeDuMi by Jos Sturm

SDPLIB problems: http://www.nmt.edu/~sdplib/

Numerical results

problem	variables	matrix	DSDP	SDPT3	PENNON
arch8	174	335	4	7	6
control7	136	45	114	48	82
control11	1596	165	1236	288	974
gpp500-4	501	500	28	39	21
mcp500-1	500	500	2	18	7
qap10	1021	101	19	8	16
ss30	132	426	10	18	20
theta6	4375	300	551	287	797
equalG11	801	801	139	156	102
equalG51	1001	1001	351	350	391
maxG11	800	800	6	54	25
maxG32	2000	2000	72	650	259

Examples from Mechanics

Multiple-load Free Material Optimization

After reformulation, discretization, further reformulation:

$$
\min _{\alpha \in \mathbb{R}, x \in\left(\mathbb{R}^{n}\right)^{L}}\left\{\alpha-\sum_{\ell=1}^{L}\left(c^{\ell}\right)^{T} x^{\ell} \mid \mathcal{A}_{i}(\alpha, x) \succeq 0, i=1, \ldots, m\right\}
$$

Many (~ 5000) small (11-19) matrices.
Large dimension ($n L \sim 20000$) In a standard form:

$$
\min _{x \in\left(\mathbb{R}^{n}\right)^{L}}\left\{a^{T} x \mid \sum_{i=1}^{n L} x_{i} B_{i} \succeq 0\right\}
$$

Examples from Mechanics

	no. of var.	size of matrix	DSDP	SDPT3	SeDuMi	PENNON
mater3	1439	3588	146	35	20	6
mater4	4807	12498	6269	295	97	29
mater5	10143	26820	36000	m	202	78
mater6	20463	56311	m	m	533	233

Truss design with free vibration control

Lowest eigenfrequency of the optimal structure should be bigger than a prescribed value

$$
\begin{array}{ll}
\min _{t, u} \sum t_{i} \\
\text { s.t. } & A(t) u=f \quad \\
& |\sigma| \leq \sigma_{\ell} \quad(g(u) \leq c) \\
& t \in T \\
& \text { min. eigenfrequency } \geq \text { a given value }
\end{array}
$$

Truss design with free vibration control

Formulated as SDP problem:

$$
\begin{aligned}
\min _{t} \sum t_{i} & \\
\text { subject to } & A(t)-\lambda M(t) \succeq 0 \\
& \left(\begin{array}{cc}
c & f^{T} \\
f & A(t)
\end{array}\right) \succeq 0 \\
& t_{i} \geq 0, \quad i=1, \ldots, n
\end{aligned}
$$

where

$$
\begin{gathered}
A(t)=\sum t_{i} A_{i} \quad A_{i}=\frac{E_{i}}{\ell_{i}^{2}} \gamma_{i} \gamma_{i}^{T} \\
M(t)=\sum t_{i} M_{i} \quad M_{i}=c * \operatorname{diag}\left(\gamma_{i} \gamma_{i}^{T}\right)
\end{gathered}
$$

truss test problems

- trto: problems from single-load truss topology design. Normally formulated as LP, here reformulated as SDP for testing purposes.
- vibra: single load truss topology problems with a vibration constraint. The constraint guarantees that the minimal self-vibration frequency of the optimal structure is bigger than a given value.
- buck : single load truss topology problems with linearized global buckling constraint. Originally a nonlinear matrix inequality, the constraint should guarantee that the optimal structure is mechanically stable (does not buckle).

All problems characterized by sparsity of the matrix operator \mathcal{A}.

truss test problems

problem	n	m	DSDP	SDPT3	PENNON
trto3	544	$321+544$	11	19	17
trto4	1200	$673+1200$	134	124	106
trto5	3280	$1761+3280$	3125	1422	1484
buck3	544	$641+544$	44	43	39
buck4	1200	$1345+1200$	340	241	221
buck5	3280	$3521+3280$	10727	2766	3006
vibra3	544	$641+544$	52	45	34
vibra4	1200	$1345+1200$	596	294	191
vibra5	3280	$3521+3280$	25290	3601	2724

Benchmark tests by Hans Mittelmann:

http://plato.la.asu.edu/bench.html
Implemented on the NEOS server:
http://www-neos.anl.gov
Homepage:
http://www2.am.uni-erlangen.de/~kocvara/pennon/
http://www.penopt.com/
Available with MATLAB interface through TOMLAB
http://www.tomlab.biz

When PCG helps (SDP) ?

Linear SDP, dense Hessian

$$
A=\sum_{i=1}^{n} A_{i}, \quad A_{i} \in \mathbb{R}^{m \times m}
$$

Complexity of Hessian evaluation

- $O\left(m_{A}^{3} n+m_{A}^{2} n^{2}\right)$ for dense matrices
- $O\left(m_{A}^{2} n+K^{2} n^{2}\right)$ for sparse matrices
($\boldsymbol{K} \ldots$ max. number of nonzeros in $\boldsymbol{A}_{\boldsymbol{i}}, i=1, \ldots, n$)
Complexity of Cholesky algorithm - linear SDP
- $O\left(n^{3}\right) \quad\left(\ldots\right.$ from PCG we expect $\left.O\left(n^{2}\right)\right)$

Problems with large n and small m :
CG better than Cholesky (expected)

Iterative algorithms

Conjugate Gradient method for $\boldsymbol{H d}=-\boldsymbol{g}, \boldsymbol{H} \in \mathbb{S}_{+}^{n}$

$$
y=H x
$$

complexity $O\left(n^{2}\right)$

Exact arithmetics: "convergence" in \boldsymbol{n} steps
\rightarrow overall complexity $O\left(n^{3}\right)$

Iterative algorithms

Conjugate Gradient method for $\boldsymbol{H d}=-\boldsymbol{g}, \boldsymbol{H} \in \mathbb{S}_{+}^{n}$
$y=H x$
complexity $O\left(n^{2}\right)$

Exact arithmetics: "convergence" in n steps
\rightarrow overall complexity $O\left(n^{3}\right)$
Praxis: may be much worse (ill-conditioned problems)

Iterative algorithms

Conjugate Gradient method for $\boldsymbol{H d}=-\boldsymbol{g}, \boldsymbol{H} \in \mathbb{S}_{+}^{n}$
$y=H x$
complexity $O\left(n^{2}\right)$

Exact arithmetics: "convergence" in \boldsymbol{n} steps
\rightarrow overall complexity $O\left(n^{3}\right)$
Praxis: may be much worse (ill-conditioned problems) may be much better \rightarrow preconditioning

Iterative algorithms

Conjugate Gradient method for $\boldsymbol{H d}=-\boldsymbol{g}, \boldsymbol{H} \in \mathbb{S}_{+}^{n}$

$$
y=H x
$$

Exact arithmetics: "convergence" in \boldsymbol{n} steps
\rightarrow overall complexity $O\left(n^{3}\right)$
Praxis: may be much worse (ill-conditioned problems) may be much better \rightarrow preconditioning
Convergence theory: number of iterations depends on

- condition number
- distribution of eigenvalues

Iterative algorithms

Conjugate Gradient method for $\boldsymbol{H d}=-\boldsymbol{g}, \boldsymbol{H} \in \mathbb{S}_{+}^{n}$

$$
y=H x
$$

complexity $O\left(n^{2}\right)$

Exact arithmetics: "convergence" in \boldsymbol{n} steps
\rightarrow overall complexity $O\left(n^{3}\right)$
Praxis: may be much worse (ill-conditioned problems) may be much better \rightarrow preconditioning
Convergence theory: number of iterations depends on

- condition number
- distribution of eigenvalues

Preconditioning: solve $M^{-1} \boldsymbol{H} d=M^{-1} g$ with $M \approx H^{-1}$

Conditioning of Hessian

Solve $\boldsymbol{H d}=-\boldsymbol{g}, \boldsymbol{H}$ Hessian of

$$
F(x, u, U, p, P)=f(x)+\left\langle U, \Phi_{P}(\mathcal{A}(x))\right\rangle_{\mathbb{S}_{m_{A}}}
$$

Condition number depends on \boldsymbol{P}
Example: problem Theta2 from SDPLIB $(n=498)$

$$
\kappa_{0}=394
$$

$$
\kappa_{\mathrm{opt}}=4.9 \cdot 10^{7}
$$

Theta2 from SDPLIB $(n=498)$

Behaviour of CG: testing $\|\boldsymbol{H} \boldsymbol{d}+\boldsymbol{g}\| /\|\boldsymbol{g}\|$

Theta2 from SDPLIB $(n=498)$

Behaviour of QMR: testing $\|\boldsymbol{H} \boldsymbol{d}+\boldsymbol{g}\| /\|\boldsymbol{g}\|$

Theta2 from SDPLIB $(n=498)$

QMR: effect of preconditioning (for small \boldsymbol{P})

Control3 from SDPLIB $(n=136)$

$$
\kappa_{0}=3.1 \cdot 10^{8}
$$

$\kappa_{\mathrm{opt}}=7.3 \cdot 10^{12}$

Control3 from SDPLIB $(n=136)$

Behaviour of CG: testing $\boldsymbol{\|} \boldsymbol{H} \boldsymbol{d}+\boldsymbol{g}\|/\| \boldsymbol{g} \|$

PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP - p.32/39

Control3 from SDPLIB $(n=136)$

Behaviour of QMR: testing $\|\boldsymbol{H d}+\boldsymbol{g}\| /\|\boldsymbol{g}\|$

Preconditioners

Should be:

- efficient (obvious but often difficult to reach)
- simple (low complexity)
- only use Hessian-vector product (NOT Hessian elements)

Preconditioners

Should be:

- efficient (obvious but often difficult to reach)
- simple (low complexity)
- only use Hessian-vector product (NOT Hessian elements)
- Diagonal
- Symmetric Gauss-Seidel
- L-BFGS (Morales-Nocedal, SIOPT 2000)
- A-inv (approximate inverse) (Benzi-Collum-Tuma, SISC 2000)

Preconditioners

Monteiro, O'Neil, Nemirovski (2004): Adaptive Ellipsoid Preconditioner
"Improves the CG performance on extremely ill-conditioned systems."
preconditioner:

$$
M=C_{k} C_{k}^{T}, \quad C_{k+1} \leftarrow \alpha C_{k}+\beta C_{k} p_{k} p_{k}^{T}, \quad C_{1}=\gamma I
$$

$\alpha, \beta, p_{k} \ldots$ by matrix-vector products
VERY preliminary results (MATLAB implementation)

Preconditioners - example

Example: problem Theta2 from SDPLIB $(n=498)$

Preconditioners - example

Example: problem Theta2 from SDPLIB $(n=498)$

Hessian free methods

Use finite difference formula for Hessian-vector products:

$$
\nabla^{2} F\left(x_{k}\right) v \approx \frac{\nabla F\left(x_{k}+h v\right)-\nabla F\left(x_{k}\right)}{h}
$$

with $h=\left(1+\left\|x_{k}\right\|_{2} \sqrt{\varepsilon}\right)$
Complexity: Hessian-vector product = gradient evaluation need for Hessian-vector-product type preconditioner

Limited accuracy (4-5 digits)

Test results: linear SDP, dense Hessian

Stopping criterium for PENNON

$$
\begin{array}{lcl}
\text { Exact Hessian: } & \mathbf{1 0}^{-\mathbf{7}} & \text { (7-8 digits in objective function) } \\
\text { Approximate Hessian: } 10^{-4} & \text { (4-5 digits in objective function) }
\end{array}
$$

Stopping criterium for CG/QMR ???

$$
\boldsymbol{H d}=-\boldsymbol{g}, \text { stop when }\|\boldsymbol{H} \boldsymbol{d}+\boldsymbol{g}\| /\|\boldsymbol{g}\| \leq \epsilon
$$

Test results: linear SDP, dense Hessian

Stopping criterium for PENNON
Exact Hessian: $\quad \mathbf{1 0}^{\mathbf{- 7}}$ (7-8 digits in objective function)
Approximate Hessian: $\mathbf{1 0}^{-4}$ (4-5 digits in objective function)
Stopping criterium for CG/QMR ???

$$
\boldsymbol{H d}=-\boldsymbol{g}, \text { stop when }\|\boldsymbol{H d}+\boldsymbol{g}\| /\|\boldsymbol{g}\| \leq \epsilon
$$

Experiments: $\epsilon=10^{-2}$ sufficient.
\rightarrow often very low (average) number of CG iterations
Complexity: $\boldsymbol{n}^{3} \rightarrow k n^{2}, k \approx 4-8$
Practice: effect not that strong, due to other complexity issues

Problems with large n and small m

Library of examples with large n and small m (courtesy of Kim Toh)

CG-exact much better than Cholesky CG-approx much better than CG-exact

problem	n	m	PENSDP	PENSDP (APCG)		SDPLR	
			CPU	CPU	CG	CPU	iter
ham_7_5_6	1793	128	126	4	52	1	113
ham_9_8	2305	512	423	210	66	46	222
ham_8_3_4	16129	256	81274	104	52	21	195
ham_9_5_6	53761	512		1984	71	71	102
theta42	200	5986	4722	51	269	393	11548
theta6	4375	300	2327	108	308	1221	20781
theta62	13390	300	68374	196	240	1749	16784
theta8	7905	400	11947	263	311	1854	15257
theta82	23872	400	m	650	267	4650	20653
theta83	39862	400	m	1715	277	7301	23017
theta10	12470	500	57516	492	278	4636	18814
theta102	37467	500	m	1948	340	12275	29083
theta103	62516	500	m	6149	421	17687	29483
theta104	87845	500	m	8400	269		
theta12	17979	600	t	843	240	8081	21338
keller4	5101	171	3264	52	432	244	8586
sanr200-0.7	6033	200	6664	52	278	405	12139

problem	n	m	PENSDP (APCG)	RENDL	
theta83	39862	400	460	345	440
theta103	62516	500	1440	491	850
theta123	90020	600	5286	1062	1530

