## PENNON

# A Generalized Augmented Lagrangian Method for Convex NLP and SDP

Michal Kočvara

Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic

and

**Czech Technical University** 

kocvara@utia.cas.cz

http://www.utia.cas.cz/kocvara



Ben-Tal, Zibulevsky, '92, '97

#### Combination of:

(exterior) Penalty meth., (interior) Barrier meth., Method of Multipliers

#### Problem:

$$(CP) \qquad \min_{x\in\mathbb{R}^n} \left\{f(x): g_i(x)\leq 0\,,\quad i=1,\ldots,m
ight\}$$

#### Assume:

- 1.  $f, g_i \; (\; i = 1, \ldots, m \;)$  convex
- 2.  $X^*$  nonempty and compact (A1)
- 3.  $\exists \hat{x} \text{ so that } g_i(\hat{x}) < 0 \text{ for all } i = 1, \ldots, m$



(A2)

arphi possibly smooth,  ${
m dom}arphi$  possibly large

$$\begin{array}{ll} (\varphi_0) & \varphi \text{ strictly convex, strictly monotone increasing and } C^2 \\ (\varphi_1) & \operatorname{dom} \varphi = (-\infty, b) \text{ with } 0 < b \leq \infty \\ (\varphi_2) & \varphi(0) = 0 \,, \qquad (\varphi_4) \quad \lim_{t \to b} \varphi'(t) = \infty \\ (\varphi_3) & \varphi'(0) = 1 \,, \qquad (\varphi_5) \quad \lim_{t \to -\infty} \varphi'(t) = 0 \end{array}$$





#### **Examples:**

$$arphi_1^r(t) = \left\{ egin{array}{c_1 rac{1}{2} t^2 + c_2 t + c_3 & t \geq r \ c_4 \log(t - c_5) + c_6 & t < r \,. \end{array} 
ight.$$



•

•

#### **Examples:**

$$arphi_1^r(t) = \left\{ egin{array}{c} c_1 rac{1}{2} t^2 + c_2 t + c_3 & t \geq r \ c_4 \log(t-c_5) + c_6 & t < r \,. \end{array} 
ight.$$

$$arphi_2^r(t) \;\;=\;\; \left\{ egin{array}{cl} c_1rac{1}{2}t^2 + c_2t + c_3 & t \geq r\,, \ rac{c_4}{t-c_5} + c_6 & t < r\,, & r \in \langle -1,1 
angle \end{array} 
ight.$$



• • •

#### **Examples:**

$$\varphi_1^r(t) = \begin{cases} c_1 \frac{1}{2}t^2 + c_2 t + c_3 & t \ge r \\ c_4 \log(t - c_5) + c_6 & t < r. \end{cases}$$

$$arphi_2^r(t) \;\;=\;\; \left\{ egin{array}{cl} c_1rac{1}{2}t^2 + c_2t + c_3 & t \geq r\,, \ rac{c_4}{t-c_5} + c_6 & t < r\,, & r \in \langle -1,1 
angle \end{array} 
ight.$$

#### **Properties:**

 $\checkmark$   $C^2$ , bounded second derivative

 $\implies$  improved behaviour of Newton's method

composition of barrier branch (logarithmic/reciprocal) and penalty branch (quadratic)

### PENNON

### PBM algorithm for convex problems

With  $p_i > 0$  for  $i \in \{1, \ldots, m\}$ , we have

 $g_i(x) \leq 0 \iff p_i \varphi(g_i(x)/p_i) \leq 0, \quad i=1,\ldots,m$ 

The corresponding *augmented Lagrangian*:

$$F(x, u, p) := f(x) + \sum_{i=1}^m u_i p_i \varphi(g_i(x)/p_i)$$

PBM algorithm:

$$egin{array}{rcl} x^{k+1} &=& rg\min_{x\in I\!\!R^n} F(x,u^k,p^k) \ u^{k+1}_i &=& u^k_i arphi'(g_i(x^{k+1})/p^k_i) & i=1,\ldots,m \ p^{k+1}_i &=& \pi \, p^k_i & i=1,\ldots,m \end{array}$$



## **Properties of the PBM method**

#### Theory:

- any cluster point of  $\{x^k\}_k$  is an optimal solution to (CP)
- ${}^{\hspace{-.1cm} {\scriptstyle extsf{blue}}} f(x^k) o f^* extsf{ without } p_k o 0$



## Properties of the PBM method

#### Theory:

- any cluster point of  $\{x^k\}_k$  is an optimal solution to (CP)
- ${}^{\hspace{-.1cm} {\scriptstyle extsf{blue}}} f(x^k) o f^* extsf{ without } p_k o 0$

#### **Praxis:**

- **fast convergence** thanks to the barrier branch of  $\varphi$
- particularly suitable for large sparse problems
- robust, typically 10–15 outer iterations and 40–80 Newton steps



## PBM in semidefinite programming

 $\underline{\text{Problem:}} \qquad \min_{x \in \mathbb{R}^n} \left\{ b^T x : \mathcal{A}(x) \preccurlyeq 0 \right\}$ 

**Question:** How can the matrix constraint

$$\mathcal{A}(x) \preccurlyeq 0 \quad (\mathcal{A}: \mathbb{R}^n \longrightarrow \mathbb{S}_d \text{ convex})$$

be treated by PBM approach?

**Idea:** Find an *augmented Lagrangian* as follows:

$$F(x, U, p) = f(x) + \langle U, \Phi_p(\mathcal{A}(x)) \rangle_{\mathbb{S}_d}$$



## PBM in semidefinite programming

 $\underline{\text{Problem:}} \qquad \min_{x \in \mathbb{R}^n} \left\{ b^T x : \mathcal{A}(x) \preccurlyeq 0 \right\}$ 

**Question:** How can the matrix constraint

$$\mathcal{A}(x) \preccurlyeq 0 \quad (\mathcal{A}: \mathbb{R}^n \longrightarrow \mathbb{S}_d ext{ convex})$$

be treated by PBM approach?

**Idea:** Find an *augmented Lagrangian* as follows:

$$F(x,U,p)=f(x)+\langle U,\Phi_p\left(\mathcal{A}(x)
ight)
angle_{\mathbb{S}_d}$$

#### **Notation:**

 $\begin{array}{ll} \langle A,B\rangle_{\mathbb{S}_d} &:= \mathrm{tr}\left(A^TB\right) \text{ inner product on } \mathbb{S}_d\\ \mathbb{S}_{d_+} &= \{A \in \mathbb{S}_d \mid A \text{ positive semidefinite}\}\\ U \in \mathbb{S}_{d_+} & \text{matrix multiplier (dual variable)}\\ \Phi_p & \text{penalty function on } \mathbb{S}_d \end{array}$ 

## Construction of the penalty function $\Phi_p$ , first idea

<u>*Given:*</u> scalar valued penalty function  $\varphi$  satisfying  $(\varphi_0) - (\varphi_5)$ matrix  $A = S^{\top} \Lambda S$ , where  $\Lambda = \text{diag} (\lambda_1, \lambda_2, \dots, \lambda_d)^{\top}$ *Define* 

$$A \stackrel{\Phi_p}{\longmapsto} S^T \left( egin{array}{ccc} p arphi \left( egin{array}{ccc} \lambda_1 \\ p \end{array} 
ight) & 0 & \dots & 0 \\ 0 & p arphi \left( egin{array}{ccc} \lambda_2 \\ p \end{array} 
ight) & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & p arphi \left( egin{array}{ccc} \lambda_2 \\ p \end{array} 
ight) \end{array} 
ight) S$$

 $\longrightarrow$  any positive eigenvalue of A is "penalized" by arphi



We have

$$\mathcal{A}(x) \preccurlyeq 0 \Longleftrightarrow \Phi_p(\mathcal{A}(x)) \preccurlyeq 0$$

and the corresponding *augmented Lagrangian*:

$$F(x,U,p):=f(x)+\langle U,\Phi_p(\mathcal{A}(x))
angle_{\mathbb{S}_d}$$

PBM algorithm:

$$egin{aligned} (i) & x^{k+1} = rgmin_{x\in\mathbb{R}^n} F(x,U^k,p^k) \ (ii) & U^{k+1} = D_\mathcal{A} \Phi_p(\mathcal{A}(x);U^k) \ (iii) & p^{k+1} < p^k \end{aligned}$$



#### The first idea may not be the best one:

The matrix function  $\Phi_p$  corresponding to  $\varphi$  is convex but may be
 nonmonotone on  $\mathbb{H}_d(r, \infty)$  (right branch) →

 $\langle U, \Phi_p\left(\mathcal{A}(x)
ight)
angle_{\mathbb{S}_d}$ 

may be **nonconvex**.



#### The first idea may not be the best one:

The matrix function  $\Phi_p$  corresponding to  $\varphi$  is convex but may be
 nonmonotone on  $\mathbb{H}_d(r, \infty)$  (right branch) →

$$\langle U, \Phi_p\left(\mathcal{A}(x)
ight)
angle_{\mathbb{S}_d}$$

may be **nonconvex**.

- Complexity of Hessian assembling  $\longrightarrow O(d^4 + d^3n + d^2n^2)$ Even for a **very sparse** structure the complexity can be  $O(d^4)$  !
- $n \dots$  number of variables
- $d \dots$  size of matrix constraint



#### Hessian:

$$egin{split} & \left[ iggin{array}{ll} & \bigtriangledown_{xx} \left\langle U, \Phi_p \left( \mathcal{A}(x) 
ight) 
ight
angle_{\mathbb{S}_d} 
ight]_{i,j} = \ & \sum_{k=1}^d \left( s_k(x)^ op A_i \left[ S(x) \Big( [ riangle^2 arphi (\lambda_l(x), \lambda_m(x), \lambda_k(x)) ]_{l,m=1}^n 
ight. & \left. \circ [S(x)^ op US(x)] \Big) S(x)^ op 
ight] A_j s_k(x) \Big) \end{split}$$

- **9** S: decomposition matrix of  $\mathcal{A}(x)$
- ho  $s_k$ : k-th column of S
- ${}^{\hspace{-.15cm}{}^{\hspace{-.15cm}{}^{\hspace{-.15cm}}}}$   $\mathcal{A}^*:\ \mathbb{S}_d o \mathbb{R}^n$  conjugate operator to  $\mathcal{A}$

### PENNON

### Construction of the penalty function, second idea

Find a penalty function  $\varphi$  which allows "direct" computation of  $\Phi$ , its gradient and Hessian.



### Construction of the penalty function, second idea

Find a penalty function  $\varphi$  which allows "direct" computation of  $\Phi$ , its gradient and Hessian.

**Example:**  $(\mathcal{A}(x) = \sum x_i A_i)$   $\varphi(x) = x^2 \implies \Phi(A) = A^2$ Then  $\frac{\partial}{\partial x_i} \Phi(\mathcal{A}(x)) = \mathcal{A}(x)A_i + A_i\mathcal{A}(x)$ and  $\frac{\partial^2}{\partial x_i \partial x_j} \Phi(\mathcal{A}(x)) = A_jA_i + A_iA_j$ 



### **Construction of the penalty function**

The reciprocal barrier function in SDP:

$$(\mathcal{A}(x) = \sum x_i A_i)$$

$$arphi := rac{1}{t-1} - 1$$

The corresponding matrix function is

$$\Phi(A) = (A - I)^{-1} - I$$

and we can show that

$$\frac{\partial}{\partial x_i} \Phi(\mathcal{A}(x)) = (A - I)^{-1} A_i (A - I)^{-1}$$

and

$$\frac{\partial^2}{\partial x_i \partial x_j} \Phi(\mathcal{A}(x)) = (A - I)^{-1} A_i (A - I)^{-1} A_j (A - I)^{-1}$$

### **Construction of the penalty function**

#### **Complexity of Hessian assembling:**

- $O(d^3n + d^2n^2)$  for dense matrices
- $O(n^2 K^2)$  for sparse matrices
    $(K \dots max. number of nonzeros in A_i, i = 1, \dots, n)$
- Compare to  $O(d^4 + d^3n + d^2n^2)$  in the general case

$$\min_{x \in \mathbb{R}^n} \left\{ b^T x : \mathcal{A}(x) \prec 0 \right\} \qquad \mathcal{A} : \mathbb{R}^n \longrightarrow \mathbb{S}_d$$



... essential for code efficiency

$$\min_{x\in \mathbb{R}^n} \left\{ b^T x: \mathcal{A}(x) \preccurlyeq 0 
ight\} \qquad \mathcal{A} = \sum x_i A_i$$

Three basic sparsity types:

 $\square$  many (small) blocks  $\rightarrow$  sparse Hessian (multi-load truss/material)



... essential for code efficiency

$$\min_{x\in \mathbb{R}^n} \left\{ b^T x: \mathcal{A}(x) \preccurlyeq 0 
ight\} \qquad \mathcal{A} = \sum x_i A_i$$

Three basic sparsity types:

 $\square$  many (small) blocks  $\rightarrow$  sparse Hessian (multi-load truss/material)

few (large) blocks



... essential for code efficiency

$$\min_{x\in\mathbb{R}^n}\left\{b^Tx:\mathcal{A}(x)\preccurlyeq 0
ight\}\qquad \mathcal{A}=\sum x_iA_i$$

Three basic sparsity types:

 $\square$  many (small) blocks  $\rightarrow$  sparse Hessian (multi-load truss/material)

- few (large) blocks
  - $\mathcal{A}$  dense,  $A_i$  sparse (most of SDPLIB examples)





full version as inefficient as general sparse version Recently, 3 matrix-matrix multiplication routines:

- full—full
- full-sparse
- sparse-sparse



essential for code efficiency

$$\min_{x\in \mathbb{R}^n} \left\{ b^T x: \mathcal{A}(x) \preccurlyeq 0 
ight\} \qquad \mathcal{A} = \sum x_i A_i$$

Three basic sparsity types:

- $\square$  many (small) blocks  $\rightarrow$  sparse Hessian (multi-load truss/material)
- few (large) blocks
  - $\mathcal{A}$  dense,  $A_i$  sparse (most of SDPLIB examples)
  - $\mathcal{A}$  sparse (truss design with buckling/vibration, maxG, ...)

$$(A - I)^{-1}A_i(A - I)^{-1}A_j(A - I)^{-1}$$



Fast inverse computation of sparse matrices

$$Z = M^{-1}N$$

Explicite inverse of M:  $O(n^3)$ 

Assume M is sparse and Cholesky factor L of M is sparse

$$Z_i = (L^{-1})^T L^{-1} N_i, \ i = 1, \dots, n$$

Complexity: *n* times  $nK \rightarrow O(n^2K)$ 



New code called PENNON

Comparison with DSDP by Benson and Ye SDPT3 by Toh, Todd and Tütüncü SeDuMi by Jos Sturm

SDPLIB problems: http://www.nmt.edu/~sdplib/



### Numerical results

| problem   | variables | matrix | DSDP | SDPT3 | PENNON |
|-----------|-----------|--------|------|-------|--------|
| arch8     | 174       | 335    | 4    | 7     | 6      |
| control7  | 136       | 45     | 114  | 48    | 82     |
| control11 | 1596      | 165    | 1236 | 288   | 974    |
| gpp500-4  | 501       | 500    | 28   | 39    | 21     |
| mcp500-1  | 500       | 500    | 2    | 18    | 7      |
| qap10     | 1021      | 101    | 19   | 8     | 16     |
| ss30      | 132       | 426    | 10   | 18    | 20     |
| theta6    | 4375      | 300    | 551  | 287   | 797    |
| equalG11  | 801       | 801    | 139  | 156   | 102    |
| equalG51  | 1001      | 1001   | 351  | 350   | 391    |
| maxG11    | 800       | 800    | 6    | 54    | 25     |
| maxG32    | 2000      | 2000   | 72   | 650   | 259    |



•

#### **Multiple-load Free Material Optimization**

After reformulation, discretization, further reformulation:

$$\min_{\alpha \in \mathbb{R}, x \in (\mathbb{R}^n)^L} \left\{ \alpha - \sum_{\ell=1}^L (c^\ell)^T x^\ell \, | \, \mathcal{A}_i(\alpha, x) \succeq 0 \,, i = 1, \dots, m \right\}$$

Many ( $\sim 5000$ ) small (11–19) matrices. Large dimension ( $nL \sim 20000$ ) In a standard form:

 $oldsymbol{x}$ 

$$\min_{\in (\mathbb{R}^n)^L} \left\{ a^T x \mid \sum_{i=1}^{nL} x_i B_i \succeq 0 
ight\}$$





## **Examples from Mechanics**

|         | no. of | size of |       |       |        |        |
|---------|--------|---------|-------|-------|--------|--------|
| problem | var.   | matrix  | DSDP  | SDPT3 | SeDuMi | PENNON |
| mater3  | 1439   | 3588    | 146   | 35    | 20     | 6      |
| mater4  | 4807   | 12498   | 6269  | 295   | 97     | 29     |
| mater5  | 10143  | 26820   | 36000 | m     | 202    | 78     |
| mater6  | 20463  | 56311   | m     | m     | 533    | 233    |



### Truss design with free vibration control

Lowest eigenfrequency of the optimal structure should be bigger than a prescribed value

$$egin{aligned} \min_{t,u} \sum t_i \ & ext{s.t.} \quad A(t)u = f \ & |\sigma| \leq \sigma_\ell \quad (g(u) \leq c) \ & ext{t} \in T \ & ext{min. eigenfrequency} > ext{a given value} \end{aligned}$$



### Truss design with free vibration control

#### Formulated as SDP problem:

$$egin{aligned} \min_t \sum t_i \ ext{subject to} & A(t) - \lambda M(t) \succeq 0 \ & \left(egin{aligned} c & f^T \ f & A(t) \end{array}
ight) \succeq 0 \ & t_i \geq 0, \quad i = 1, \dots, n \end{aligned}$$

where

$$egin{aligned} A(t) &= \sum t_i A_i & A_i = rac{E_i}{\ell_i^2} \gamma_i \gamma_i^T \ M(t) &= \sum t_i M_i & M_i = c * ext{diag}(\gamma_i \gamma_i^T) \end{aligned}$$



•

•

### truss **test problems**

- trto: problems from single-load truss topology design. Normally formulated as LP, here reformulated as SDP for testing purposes.
- vibra: single load truss topology problems with a vibration constraint. The constraint guarantees that the minimal self-vibration frequency of the optimal structure is bigger than a given value.
- buck: single load truss topology problems with linearized global buckling constraint. Originally a nonlinear matrix inequality, the constraint should guarantee that the optimal structure is mechanically stable (does not buckle).

All problems characterized by sparsity of the matrix operator  $\mathcal{A}$ .



## truss **test problems**

| problem | n    | m         | DSDP  | SDPT3 | PENNON |
|---------|------|-----------|-------|-------|--------|
| trto3   | 544  | 321+544   | 11    | 19    | 17     |
| trto4   | 1200 | 673+1200  | 134   | 124   | 106    |
| trto5   | 3280 | 1761+3280 | 3125  | 1422  | 1484   |
| buck3   | 544  | 641+544   | 44    | 43    | 39     |
| buck4   | 1200 | 1345+1200 | 340   | 241   | 221    |
| buck5   | 3280 | 3521+3280 | 10727 | 2766  | 3006   |
| vibra3  | 544  | 641+544   | 52    | 45    | 34     |
| vibra4  | 1200 | 1345+1200 | 596   | 294   | 191    |
| vibra5  | 3280 | 3521+3280 | 25290 | 3601  | 2724   |



•

Benchmark tests by Hans Mittelmann: http://plato.la.asu.edu/bench.html

Implemented on the NEOS server:
http://www-neos.anl.gov

Homepage: http://www2.am.uni-erlangen.de/~kocvara/pennon/ http://www.penopt.com/

Available with MATLAB interface through TOMLAB

http://www.tomlab.biz



## When PCG helps (SDP) ?

Linear SDP, dense Hessian

$$A = \sum_{i=1}^{n} A_i, \ A_i \in \mathbb{R}^{m imes m}$$

**Complexity of Hessian evaluation** 

- $O(m_A^3 n + m_A^2 n^2)$  for dense matrices
- $O(m_A^2 n + K^2 n^2)
   for sparse matrices
   (K \ldots max. number of nonzeros in A_i, i = 1, \ldots, n)$

**Complexity of Cholesky algorithm - linear SDP** 

•  $O(n^3)$  (... from PCG we expect  $O(n^2)$ )

Problems with large n and small m:

CG better than Cholesky (expected)



### Conjugate Gradient method for Hd = -g, $H \in \mathbb{S}^n_+$



complexity  $O(n^2)$ 

Exact arithmetics: "convergence" in *n* steps

ightarrow overall complexity  $O(n^3)$ 



#### Conjugate Gradient method for Hd = -g, $H \in \mathbb{S}^n_+$



ightarrow overall complexity  $O(n^3)$ 

Praxis: may be much worse (ill-conditioned problems)



#### Conjugate Gradient method for Hd = -g, $H \in \mathbb{S}^n_+$



complexity  $O(n^2)$ 

#### Exact arithmetics: "convergence" in n steps

ightarrow overall complexity  $O(n^3)$ 

Praxis: may be much worse (ill-conditioned problems) may be much better → *preconditioning* 



### Conjugate Gradient method for Hd = -g, $H \in \mathbb{S}^n_+$



complexity  $O(n^2)$ 

#### Exact arithmetics: "convergence" in n steps

ightarrow overall complexity  $O(n^3)$ 

Praxis: may be much worse (ill-conditioned problems) may be much better  $\rightarrow$  preconditioning

Convergence theory: number of iterations depends on

- condition number
- distribution of eigenvalues



### Conjugate Gradient method for Hd = -g, $H \in \mathbb{S}^n_+$



complexity  $O(n^2)$ 

```
Exact arithmetics: "convergence" in n steps
```

ightarrow overall complexity  $O(n^3)$ 

Praxis: may be much worse (ill-conditioned problems) may be much better  $\rightarrow$  preconditioning

Convergence theory: number of iterations depends on

- condition number
- distribution of eigenvalues

Preconditioning: solve  $M^{-1}Hd = M^{-1}g$  with  $M \approx H^{-1}$ 

## **Conditioning of Hessian**

Solve Hd = -g, H Hessian of

$$F(x,u,U,p,P) = f(x) + \langle U, \Phi_P\left(\mathcal{A}(x)
ight) 
angle_{\mathbb{S}_{m_{\mathcal{A}}}}$$

Condition number depends on P

Example: problem Theta2 from SDPLIB (n = 498)



# Theta2 from SDPLIB (n = 498)



Behaviour of CG: testing  $\|Hd + g\|/\|g\|$ 



# Theta2 from SDPLIB (n = 498)



Behaviour of QMR: testing  $\|Hd + g\|/\|g\|$ 



# Theta2 from SDPLIB (n = 498)



QMR: effect of preconditioning (for small P)



## Control3 from SDPLIB (n = 136)



$$\kappa_0 = 3.1 \cdot 10^8$$

 $\kappa_{
m opt} = 7.3\cdot 10^{12}$ 



## Control3 from SDPLIB (n = 136)



Behaviour of CG: testing  $\|Hd + g\|/\|g\|$ 



## Control3 from SDPLIB (n = 136)



Behaviour of QMR: testing  $\|Hd + g\|/\|g\|$ 



### **Preconditioners**

Should be:

- efficient (obvious but often difficult to reach)
- simple (low complexity)
- only use Hessian-vector product (NOT Hessian elements)



## **Preconditioners**

Should be:

- efficient (obvious but often difficult to reach)
- simple (low complexity)
- only use Hessian-vector product (NOT Hessian elements)
- Diagonal
- Symmetric Gauss-Seidel
- L-BFGS (Morales-Nocedal, SIOPT 2000)
- A-inv (approximate inverse) (Benzi-Collum-Tuma, SISC 2000)



## **Preconditioners**

Monteiro, O'Neil, Nemirovski (2004): Adaptive Ellipsoid Preconditioner "Improves the CG performance on extremely ill-conditioned systems." preconditioner:

$$M = C_k C_k^T, \quad C_{k+1} \leftarrow \alpha C_k + \beta C_k p_k p_k^T, \quad C_1 = \gamma I$$

 $lpha, eta, p_k$  ... by matrix-vector products

VERY preliminary results (MATLAB implementation)



### **Preconditioners** — example

#### **Example:** problem Theta2 from SDPLIB (n = 498)



PENNON A Generalized Augmented Lagrangian Method for Convex NLP and SDP - p.35/39

### **Preconditioners** — example

**Example:** problem Theta2 from SDPLIB (n = 498)



## Hessian free methods

Use finite difference formula for Hessian-vector products:

$$abla^2 F(x_k) v pprox rac{
abla F(x_k + hv) - 
abla F(x_k)}{h}$$

with  $h = (1 + \|x_k\|_2 \sqrt{\varepsilon})$ 

Complexity: Hessian-vector product = gradient evaluation need for Hessian-vector-product type preconditioner

Limited accuracy (4–5 digits)



## Test results: linear SDP, dense Hessian

### Stopping criterium for PENNON

Exact Hessian: $10^{-7}$ (7–8 digits in objective function)Approximate Hessian: $10^{-4}$ (4–5 digits in objective function)

Stopping criterium for CG/QMR ???

Hd = -g, stop when  $\|Hd + g\|/\|g\| \leq \epsilon$ 



### Stopping criterium for PENNON

Exact Hessian: $10^{-7}$ (7–8 digits in objective function)Approximate Hessian: $10^{-4}$ (4–5 digits in objective function)

Stopping criterium for CG/QMR ???

 $Hd=-g, ext{ stop when } \|Hd+g\|/\|g\|\leq \epsilon$ 

Experiments:  $\epsilon = 10^{-2}$  sufficient.  $\rightarrow$  often very low (average) number of CG iterations

Complexity:  $n^3 
ightarrow kn^2$ , k pprox 4-8

Practice: effect not that strong, due to other complexity issues



## Problems with large n and small m

Library of examples with large n and small m (courtesy of Kim Toh)

CG-exact much better than Cholesky CG-approx much better than CG-exact



| problem     | n     | m    | PENSDP | PENSDP (APCG)     |     | SDPLR |       |
|-------------|-------|------|--------|-------------------|-----|-------|-------|
|             |       |      | CPU    | CPU               | CG  | CPU   | iter  |
| ham_7_5_6   | 1793  | 128  | 126    | 4                 | 52  | 1     | 113   |
| ham_9_8     | 2305  | 512  | 423    | 210               | 66  | 46    | 222   |
| ham_8_3_4   | 16129 | 256  | 81274  | 104               | 52  | 21    | 195   |
| ham_9_5_6   | 53761 | 512  |        | <mark>1984</mark> | 71  | 71    | 102   |
| theta42     | 200   | 5986 | 4722   | 51                | 269 | 393   | 11548 |
| theta6      | 4375  | 300  | 2327   | 108               | 308 | 1221  | 20781 |
| theta62     | 13390 | 300  | 68374  | 196               | 240 | 1749  | 16784 |
| theta8      | 7905  | 400  | 11947  | 263               | 311 | 1854  | 15257 |
| theta82     | 23872 | 400  | m      | 650               | 267 | 4650  | 20653 |
| theta83     | 39862 | 400  | m      | 1715              | 277 | 7301  | 23017 |
| theta10     | 12470 | 500  | 57516  | 492               | 278 | 4636  | 18814 |
| theta102    | 37467 | 500  | m      | 1948              | 340 | 12275 | 29083 |
| theta103    | 62516 | 500  | m      | 6149              | 421 | 17687 | 29483 |
| theta104    | 87845 | 500  | m      | 8400              | 269 |       |       |
| theta12     | 17979 | 600  | t      | 843               | 240 | 8081  | 21338 |
| keller4     | 5101  | 171  | 3264   | 52                | 432 | 244   | 8586  |
| sanr200-0.7 | 6033  | 200  | 6664   | 52                | 278 | 405   | 12139 |

| problem  | n     | m   | PENSDF | ' (APCG) | RENDL |
|----------|-------|-----|--------|----------|-------|
| theta83  | 39862 | 400 | 460    | 345      | 440   |
| theta103 | 62516 | 500 | 1440   | 491      | 850   |
| theta123 | 90020 | 600 | 5286   | 1062     | 1530  |