
Algorithms for linear SDP

Michal Kočvara

Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic

and

Czech Technical University

kocvara@utia.cas.cz

http://www.utia.cas.cz/kocvara

Algorithms for linear SDP – p.1/26

SDP notations

S
n . . . symmetric matrices of order n × n

A � 0 . . . A positive semidefinite
A � B . . . A − B ≥ 0
〈A, B〉 := Trace(AB) . . . inner product on S

n

A[Rm → S
n]. . . linear matrix operator defined by

A(y) :=

m∑

i=1

yiAi with Ai ∈ Sn

A∗[Sn → R
m] . . . adjoint operator to A defined by

A∗(X) := [〈A1, X〉, . . . , 〈A1, X〉]T

and satisfying

〈A∗(X), y〉 = 〈A(y), X〉 for all y ∈ R
m

Algorithms for linear SDP – p.2/26

kocvara
m

Primal-Dual SDP pair

inf
X

〈C, X〉 := Trace(CX) (P)

s.t. A∗(X) = b [〈Ai, X〉 = bi, i = 1, . . . , m]

X � 0

inf
y,S

〈b, y〉 :=
∑

biyi (D)

s.t. A(y) + S = C [
∑

yiAi + S = C]

S � 0

Weak duality: Feasible X , y , S satisfy

〈C, X〉 − 〈b, y〉 = 〈A(y) + S, X〉 −
∑

yi〈Ai, X〉 = 〈S, X〉 ≥ 0

duality gap nonnegative for feasible points.
Algorithms for linear SDP – p.3/26

kocvara
infX hC,Xi := Trace(CX)s.t. A∗(X) = b [hAi,Xi = bi, i = 1, . . . ,m]X � 0

kocvara
infy,Shb, yi :=Xbiyis.t. A(y) + S = C [XyiAi + S = C]S � 0

SDP duality

Points with zero duality gap

dg := 〈C, X〉 − 〈b, y〉 = 〈S, X〉 = 0

are optimal.

LP: (P)/(D) has optimal solution ⇒(D)/(P) has opt. sol. and d g = 0
. . . strong duality

SDP: Strong duality under Slater Constraint Qualification (SCQ) :

∃X ≻ 0 and S ≻ 0 .

Without SCQ (examples):
(P) solvable, (D) infeasible
d g > 0 at optimality

etc

Algorithms for linear SDP – p.4/26

SDP Optimality Conditions (1st order)

Theorem: Under SCQ, necessary and sufficient optimality conditions
for (P) and (D) are

A∗(X) = b , X � 0

A(y) + S = C , S � 0

XS = 0 .

Note: 〈X, S〉 = 0 ⇔ XS = 0 since X � 0, S � 0.

Algorithms for linear SDP – p.5/26

kocvara
Theorem: Under SCQ, necessary and sufficient optimality conditionsfor (P) and (D) areA∗(X) = b , X � 0A(y) + S = C , S � 0XS = 0 .

Logarithmic barrier methods

Primal Log-Barrier method:

For µ ց 0 solve

min
X

〈C, X〉 − µ log det(X)

s.t. 〈Ai, X〉 = bi, i = 1, . . . , m

Dual Log-Barrier method:

For µ ց 0 solve

min
y,S

〈b, y〉 − µ log det(S)

s.t. A(y) + S = C

Algorithms for linear SDP – p.6/26

kocvara
For µ ց 0 solveminX hC,Xi − µ log det(X)s.t. hAi,Xi = bi, i = 1, . . . ,m

kocvara
For µ ց 0 solveminy,S hb, yi − µ log det(S)s.t. A(y) + S = C

Logarithmic barrier methods

Primal-Dual Log-Barrier method:

Minimize the duality gap

〈C, X〉 − 〈b, y〉 = 〈S, X〉

using primal-dual barrier function

−(log det(X) + log det(S)) = − log det(XS)

For µ ց 0 solve

min
X,y,S

〈X, S〉 − µ log det(XS)

s.t. 〈Ai, X〉 = bi, i = 1, . . . , m

A(y) + S = C

Algorithms for linear SDP – p.7/26

kocvara
For µ ց 0 solveminX,y,ShX, Si − µ log det(XS)s.t. hAi,Xi = bi, i = 1, . . . ,mA(y) + S = C

Central path

Perturb OC by µ > 0:

A∗(X) = b , X � 0 (OCµ)

A(y) + S = C , S � 0

XS = µI .

Theorem: System (OCµ) has a unique solution.
Proof: Consider the primal log-barrier problem

minX≻0

{

f
µ
p := 1

µ
〈C, X〉 − log det(X) | A∗(X) = b

}

.

Function f
µ
p is strictly convex. The KKT conditions for this problem are

∇f
µ
P :=

1

µ
C − X−1 =

∑

ŷiAi

A∗(X) = b, X ≻ 0

Def. S = C −
∑

yiAi where yi = µŷi to get (OC)µ . If (D) strictly feasible, level-sets
of f

µ
p are compact (without proof here). Hence there is a unique minimizer X∗ of f

µ
p

over ri (P) and it is a unique solution of (OC)µ with S := µ(X∗)−1.

Algorithms for linear SDP – p.8/26

kocvara
A∗(X) = b , X � 0A(y) + S = C , S � 0XS = µI .

Central path

Definition: The curve defined by solutions (X(µ), S(µ), y(µ)) of
(OC)µ is called central path.

Theorem: The central path exists if (P) and (D) are strictly feasible.

Theorem: The pair

X∗ = lim
µց0

X(µ), S∗ = lim
µց0

S(µ)

is a maximally complementary solution pair (matrices with highest
rank).

Algorithms for linear SDP – p.9/26

Primal-dual path-following methods

Given µ > 0, the pair (X (µ) , S (µ)) is the target point on the central
path, associated with target duality gap 〈 X , S 〉 = n µ.

Idea: iteratively compute approximations of X(µ), S(µ) and thus
follow the central path while decreasing µ.
Assume X ≻ 0, S ≻ 0, solve the OC for the P-D problem

A∗(X) = b

A(y) + S = C

XS = µI

by the Newton method:

Algorithms for linear SDP – p.10/26

A∗(X) = b

A(y) + S = C

XS = µI

Find ∆X, ∆S, ∆y:

(i) 〈Ai, ∆X〉 = Rp := b − 〈Ai, X〉, i = 1, . . . , m

(ii) A(∆y) + ∆S = Rd := C − S − A(y)

(iii) X∆S + ∆XS = Rc := µI − XS (−∆X∆S)

Remark: Solutions ∆S, ∆X of (iii) generally nonsymmetric.

∆S symmetric from (ii) but ∆X may be nonsymmetric.

Symmetrization of (iii) needed.

Algorithms for linear SDP – p.11/26

kocvara
hAi,�Xi = RpA(�y) + �S = RdX�S + �XS = Rc :

kocvara
A∗(X) = bA(y) + S = CXS = µI

kocvara
Newton method for

Symmetrization techniques

Replace XS = µI by symmetrization

Hp(XS) = µI

where Hp(M) = 1

2
(PMP −1 + P −T MT P T).

Thus (iii) becomes

(iii)′ HP (∆XS + ∆SX) = µI − Hp(XS) .

The scaling matrix P determines the symmetrization strategy.

P reference
[X

1

2 (X
1

2 SX
1

2)−
1

2 X
1

2]
1

2 Nesterov-Todd (NT)
X−

1

2 Monteiro and others
S

1

2 Monteiro, Helmberg at al., . . .
I Alizadeh-Haeberly-Overton

Algorithms for linear SDP – p.12/26

kocvara
(iii)′ HP (�XS + �SX) = µI − Hp(XS) .

NT direction

Recall F (X) = log det(X) (the barrier function)

We require F ′′(D)X = S for a scaling matrix D.

Direct computation: D−1XD−1 = S and thus

D− 1

2 XD− 1

2 = D
1

2 SD
1

2 := V

Note that V 2 = D− 1

2 XSD
1

2 ∼ XS (have the same eigvs.)

Thus D = S− 1

2 (S
1

2 XS
1

2)
1

2 S− 1

2

NT equation:

∆X + D∆SD = µS−1 − X

Algorithms for linear SDP – p.13/26

kocvara
�X + D�SD = µS−1 − X

NT direction

NT equation

∆X + D∆SD = µS−1 − X

Can be written in the form (Todd-Toh-Tütüncü)

E∆X + F∆S = µS−1 − Σ

where

E = P −T
⊛PS, F = P −T X⊛P, P T P = D, Σ = P −T XP −1

and

G ⊛ H(M) :=
1

2
(HMGT + GMHT)

is the symmetric Kronecker product.

Algorithms for linear SDP – p.14/26

kocvara
E�X + F�S = µS−1 − �

Primal-Dual path-following algorithms

Define the centrality function

δ(X, S, µ) :=
1

2
‖√

µV −1− 1
√

µ
V ‖ (V = D−

1

2 XD−

1

2 = D
1

2 SD
1

2)

Note:
δ(X, S, µ) = 0 ⇐⇒ V 2 = µI ⇐⇒ XS = µI

Algorithms for linear SDP – p.15/26

kocvara
�(X, S, µ) :=12k√µV −1−1√µV k

Primal-Dual path-following algorithms

Input: (X0, S0) ∈ P × D

Parameters: τ < 1 and µ0 > 0 such that δ(X0, S0, µ0) ≤ τ

Algorithm (generic): Set X := X0, S := S0, µ := µ0

while 〈XS〉 > ε do

compute ∆X, ∆S by solving (i), (ii), (iii)′

choose a steplength α ∈ (0, 1]
X := X + α∆X, S := S + α∆S
choose 0 < θ < 1 and set µ := (1 − θ)µ

end

Denote
(X

+ , S

+) := (X + ∆ X , S + ∆ S) . . . full NT step
(Xα

, S α

) := (X + α∆ X , S + α∆ S) . . . damped NT step

Algorithms for linear SDP – p.16/26

kocvara
Input: (X0, S0) ∈ P × DParameters: τ < 1 and µ0 > 0 such that δ(X0, S0, µ0) ≤ τAlgorithm (generic): Set X := X0, S := S0, µ := µ0while hXSi > ε docompute �X,�S by solving (i), (ii), (iii)′choose a steplength α ∈ (0, 1]X := X + α�X, S := S + α�Schoose 0 < θ < 1 and set µ := (1 − θ)µend

Primal-Dual path-following algorithms

Lemma: If δ(X, S, µ) < 1√
2

then δ(X+, S+, µ) < δ2(X, S, µ)

. . . quadratic convergence to the µ−center (near the path).

Theorem: If τ = 1√
2

and θ = 1

2
√

n
, then the primal-dual

path-following algorithm with full NT steps terminates after at most

O

(

2
√

n log
nµo

ε

)

iterations.

Algorithms for linear SDP – p.17/26

Long-step p-d path-following algorithm

Input: τ > 0. . . centering parameter

(X0, S0) ∈ riP × D
µ0 > 0 such that δ(X0, S0, µ0) ≤ τ
θ < 1. . . updating parameter

Algorithm (long-step): Set X := X0, S := S0, µ := µ0

while 〈XS〉 > ε do

if δ(X, S, µ) ≤ τ do

µ := (1 − θ)µ

else if δ(X, S, µ) > τ do

compute ∆X, ∆S by solving (i), (ii), (iii)′

find α := arg min fµ
pd(X + α∆X, S + α∆S, µ)

X := X + α∆X, S := S + α∆S

end

end

Algorithms for linear SDP – p.18/26

Long-step p-d path-following algorithm

Theorem: The long-step primal-dual path-following algorithm
terminates after at most

O

(

n log
nµo

ε

)

iterations.

Algorithms for linear SDP – p.19/26

Solving the linear systems

Primal-dual system:

0 AT 0

A 0 I

0 E F

∆y

∆X

∆S

Rp

Rd

Rc

There exists a unique solution (Todd-Toh-Tütüncü).

Define U := F−1E (= D−1
⊛ D−1) and substitute

∆S = Rd − AT ∆y

to get
(

−U AT

A 0

) (
∆X

∆y

) (
R := Rd − F−1Rc

Rp

)

. . . augmented system

Algorithms for linear SDP – p.20/26

Solving the linear systems

Further eliminate ∆X

∆X = U−1(AT ∆y − Rd + F−1Rc)

to get

AU−1AT

︸ ︷︷ ︸

M

∆y = h := Rp + AU−1Rd − AE−1Rc

. . . Schur complement equation (normal eq.)

Most popular strategy: solve SCE by direct Cholesky factorization

M typically fully dense even if Ai sparse

Use sparse linear algebra to compute M

Algorithms for linear SDP – p.21/26

kocvara
AU−1AT| {z } M�y = h

A dual scaling algorithm

S. Benson and Y. Ye → code DSDP

min
y,S

〈b, y〉 − µ log det(S)

s.t. A(y) + S = C

KKT conditions:

A∗(X) = b, A(y) + S = C µS−1 = X

The corresponding Newton system:

A∗(X + ∆X) = b

A(∆y) + ∆S = 0

µS−1∆SS−1 + ∆X = µS−1 − X

Algorithms for linear SDP – p.22/26

kocvara
miny,S hb, yi − µ log det(S)s.t. A(y) + S = C

kocvara
A∗(X + �X) = bA(�y) + �S = 0µS−1�SS−1 + �X = µS−1 − X

A dual scaling algorithm

A∗(X + ∆X) = b

A(∆y) + ∆S = 0

µS−1∆SS−1 + ∆X = µS−1 − X

From (i) and (iii):

−A∗(S−1∆SS−1) =
1

µ
b − µA∗(S−1)

Substitute ∆S = A(∆y) (from (ii)):

A∗ (S

− 1 A(∆ y) S

− 1) =
1

µ
b − µA∗(S−1)

Set µ = z−bT y

ρ
, z = 〈C, X〉

Algorithms for linear SDP – p.23/26

A dual scaling algorithm

〈A1, S−1A1S−1〉 · · · 〈A1, S−1AmS−1〉
...

. . .
...

〈Am, S−1A1S−1〉 · · · 〈Am, S−1AmS−1〉

 ∆y =

ρ

z − bT y
b−A∗(S−1)

Remarks:
zk+1 = 〈C, Xk〉 computed as

zk+1 = 〈b, yk〉+〈Xk, Sk〉 = 〈b, yk〉+zk − 〈b, yk〉
ρ

(∆yT A∗((Sk)−1)+n)

Xk = µS−1 − µS−1∆SS−1 satisfies the primal constraint
A∗(Xk) = b.

Algorithms for linear SDP – p.24/26

A first-order algorithm

S. Burer and R. Monteiro → code SDPLR

inf
X

〈C, X〉 := Trace(CX) (P)

s.t. A∗(X) = b [〈Ai, X〉 = bi, i = 1, . . . , m]

X � 0

Theorem: (Pataki) Let X be an extreme point of SDP-P. Then
r = rank(X) satisfies r(r + 1)/2 ≤ m.

Consequence: We may restrict our search to X : rank (X) ≤ r ,

where r := min {r : r (r + 1) /2 ≥ m } (note: r ≈
√

2m).

Thus SDP-P is equivalent to the nonlinear program

min
R

{〈C, RRT 〉 : A∗(RRT) = b, R ∈ R
n×r}

Algorithms for linear SDP – p.25/26

kocvara
minR {hC,RRT i : A∗(RRT) = b, R ∈ Rn×r}

kocvara
infX hC,Xi := Trace(CX)s.t. A∗(X) = b [hAi,Xi = bi, i = 1, . . . ,m]X � 0

A first-order algorithm

min{〈C, RRT 〉 : A∗(RRT) = b, R ∈ R
n×r} (⋆)

Often m < n and thus r ≪ n → avoid storing full X

When C and Ai sparse, use first-order NLP code, maintaining the
sparsity

SDPLR: solve (⋆) by an Augmented Lagrangian code.
The subproblems (unconstrainend NLPs) solved by an L-BFGS code.

Algorithms for linear SDP – p.26/26

	SDP notations
	Primal-Dual SDP pair
	SDP duality
	SDP Optimality Conditions (1st order)
	Logarithmic barrier methods
	Logarithmic barrier methods
	Central path
	Central path
	Primal-dual path-following methods
	
	Symmetrization techniques
	NT direction
	NT direction
	Primal-Dual path-following algorithms
	Primal-Dual path-following algorithms
	Primal-Dual path-following algorithms
	Long-step p-d path-following algorithm
	Long-step p-d path-following algorithm
	Solving the linear systems
	Solving the linear systems
	A dual scaling algorithm
	A dual scaling algorithm
	A dual scaling algorithm
	A first-order algorithm
	A first-order algorithm

