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SDP notations

S™ ...symmetric matrices of order n X n
A t . A positive semidefinite
A > B L A—B>0

(A, B) := Trace(AB) ..Inner product on S™
A[R™ — S™]...linear matrix operator defined by

=1
A*[S™ — R™] ...adjoint operator to A defined by
A*(X) := [(A1, X))y vvy (A XDOH]F
and satisfying

(A*(X),y) = (A(y), X) forally € R™
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Primal-Dual SDP pair

i%f(C,X) := Trace(CX) (P)
st. A(X)=5»b [(A;, X) =b;, 1 =1,...,m]
X =0
Lf,lg(ba y) := > by (D)
st. Aly)+S=C > v:iAi+S=C]
S >0

Weak duality: Feasible X, y, S satisfy
(C,X) — (b,y) = (Ay) + S, X) — ) u:i{A;, X) =(5,X) >0

duality gap nonnegative for feasible points.

Algorithms for linear SDP — p.3/26


kocvara
inf
X hC,Xi := Trace(CX)
s.t. A∗(X) = b [hAi,Xi = bi, i = 1, . . . ,m]
X � 0

kocvara
inf
y,Shb, yi :=Xbiyi
s.t. A(y) + S = C [XyiAi + S = C]
S � 0


SDP duality

Points with zero duality gap
dg := (C,X) — (b,y) = (S, X) =0
are optimal.

LP: (P)/(D) has optimal solution =-(D)/(P) has opt. sol. and dg = 0
... strong duality

SDP: Strong duality under Slater Constraint Qualification:  (SCQ)

49X -0 and S > 0.

Without SCQ (examples):
(P) solvable, (D) infeasible
dg > 0 at optimality

etc
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SDP Optimality Conditions (1st order)

Theorem: Under SCQ, necessary and sufficient optimality conditions
for (P) and (D) are

A*(X)=b, X >0
XS =0.

Note: (X,S) =0« XS =0since X ~0, S>0.
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Theorem: Under SCQ, necessary and sufficient optimality conditions
for (P) and (D) are
A∗(X) = b , X � 0
A(y) + S = C , S � 0
XS = 0 .


Logarithmic barrier methods

Primal Log-Barrier method:

For i ™\, 0 solve
rr;}n(C,X) — plog det(X)
S.t. (Az,X>:bz, 1=1,....,m

Dual Log-Barrier method:

For i ™\, 0 solve
misn(b, y) — plog det(S)
Yy,

st. A(y)+S=C
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For µ ց 0 solve
min
X hC,Xi − µ log det(X)
s.t. hAi,Xi = bi, i = 1, . . . ,m

kocvara
For µ ց 0 solve
min
y,S hb, yi − µ log det(S)
s.t. A(y) + S = C


Logarithmic barrier methods

Primal-Dual Log-Barrier method:

Minimize the duality gap
(C, X) — (by) = (S, X)
using primal-dual barrier function

—(log det(X) + logdet(S)) = — logdet(XS)

For i X\, 0 solve

min (X, S) — plogdet(X.S)

X,y,S
S.L (AZ,X>:bZ, 1=1,....,m
Aly) +S=C
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For µ ց 0 solve
min
X,y,ShX, Si − µ log det(XS)
s.t. hAi,Xi = bi, i = 1, . . . ,m
A(y) + S = C


Central path

Perturb OC by o > 0:

A (X)=b, X >0 (OC,.)
XS =pul.

Theorem: System (OC,) has a unique solution.
Proof:. Consider the primal log-barrier problem

minx.s o {f{f ES %(C, X) —logdet(X) | A*(X) = b}.
Function f}' is strictly convex. The KKT conditions for this problem are

1 .
Vfh = ;c—x—l = #A;

A(X)=b,X =0

Def. S = C — ) y; A; where y; = pg; to get (OC),,. If (D) strictly feasible, level-sets
of f5' are compact (without proof here). Hence there is a unique minimizer X* of f}'
over ri (P) and it is a unique solution of (OC),, with S := pu(X*)~1.
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A∗(X) = b , X � 0
A(y) + S = C , S � 0
XS = µI .


Central path

Definition:  The curve defined by solutions (X (), S(wt), y(w)) of
(OC),, Is called central path.

Theorem: The central path exists if (P) and (D) are strictly feasible.

Theorem: The pair

X* = 1lmX S* = 1lim S
lim (), lim (n)

IS a maximally complementary solution pair (matrices with highest
rank).
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Primal-dual path-following methods

Given p > 0, the pair (X (), S(p)) is the target point on the central
path, associated with target duality gap (X, S) = nu.

ldea: iteratively compute approximations of X (u), S(u) and thus
follow the central path while decreasing .
Assume X > 0, S > 0, solve the OC for the P-D problem

A*(X) =b
Aly)+S5=C
XS =ul

by the Newton method:

Algorithms for linear SDP — p.10/26



Newton method for

A*(X)=b
Aly) +5=C
XS =pul
Find AX, AS, Ay:
(Z) (Az,AX>:Rp :b—<Az,X>, izl,...,m

(1) | A(Ay)+AS =Ry:=C — S — A(y)
(i) XAS+AXS=R.:=ul —XS (—AXAS)

Remark: Solutions AS, AX of (22¢) generally nonsymmetric.
AS symmetric from (z2) but AX may be nonsymmetric.

Symmetrization of (2¢2) needed.
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hAi,�Xi = Rp
A(�y) + �S = Rd
X�S + �XS = Rc :

kocvara
A∗(X) = b
A(y) + S = C
XS = µI

kocvara
Newton method for


Symmetrization techniques

Replace X S = pI by symmetrization
Hy(XS) = pl

where H,(M) = 3 (PMP~' + P~TMTPT).
Thus (22¢) becomes

(iii)  Hp(AXS+ ASX) = pl — Hy(XS).

The scaling matrix P determines the symmetrization strategy.

P reference
[Xz(X=S8Xz)"2Xz]z Nesterov-Todd (NT)
—3 Monteiro and others
Sz Monteiro, Helmberg at al., ...
I Alizadeh-Haeberly-Overton
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(iii)′ HP (�XS + �SX) = µI − Hp(XS) .


NT direction

Recall F(X) = logdet(X) (the barrier function)
We require F" (D)X = S for a scaling matrix D.

Direct computation: D~1XD~1 =S8 and thus

D :XD"2=D:SDz:=V
Note that V2 = D=2 XSDz ~ XS (have the same eigvs.)
Thus D = S~2(S2XS%)28"2

NT equation:

AX + DASD =uS™ ' — X
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�X + D�SD = µS−1 − X


NT direction

NT equation
AX + DASD =uS™ ' — X

Can be written in the form (Todd-Toh-Tutlncu)
EAX + FAS =upuS 1 -3
where
E=P TepPSs, F=P TXeP, PTP=D, =P Txp!

and
1
G® HM) := E(HMGT + GMHT)

IS the symmetric Kronecker product.
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E�X + F�S = µS−1 − �


Primal-Dual path-following algorithms

Define the centrality function

1

1 1 1 1 1
0(X,S,p) == _llvrV'——=V| | (V=D7:XD" = D25D?)
2 VI

Note:
0(X,S,pn)=0<«= V?=pul < XS =pul
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�(X, S, µ) :=
1
2k√µV −1−
1
√µ
V k


Primal-Dual path-following algorithms

Input: (X%, 8% e P xD

Parameters: 7 < 1 and pg > 0 such that §( X%, S%, o) < 7

Algorithm (generic):  Set X := X9, 8 := 8% pu := po
while (X S) > edo

compute A X, AS by solving (2), (¢2), (¢i2)’

choose a steplength a € (0, 1]

X =X+ aAX, S:=54+aAS

choose0 < @ < landsetpu:=(1—0)u

end
Denote

(XT,81T):= (X +AX,S+ AS) ...full NT step
(XasSa) := (X +aAX,S 4+ aAS) ...damped NT step
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Input: (X0, S0) ∈ P × D
Parameters: τ < 1 and µ0 > 0 such that δ(X0, S0, µ0) ≤ τ
Algorithm (generic): Set X := X0, S := S0, µ := µ0
while hXSi > ε do
compute �X,�S by solving (i), (ii), (iii)′
choose a steplength α ∈ (0, 1]
X := X + α�X, S := S + α�S
choose 0 < θ < 1 and set µ := (1 − θ)µ
end


Primal-Dual path-following algorithms

Lemma: If§(X, S, u) < % then §(X T, ST, u) < 62(X, S, n)

... quadratic convergence to the u—center (near the path).

_ _ 1 _ 1 imal-
Theorem: If = 7 and 6 = VL then the primal-dual

path-following algorithm with full NT steps terminates after at most

uf’)
1S

n

O (2\/5 log

iterations.
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Long-step p-d path-following algorithm

Input: 7 > 0...centering parameter
(X9, 8% eriPxD

po > 0 such that §( X9, 8% o) < 7
0 < 1...updating parameter

Algorithm (long-step): Set X := X9 8 := 8% pu:= po
while (X S) > e do
if 0(X, S, 1) < 7do
pi=(1—0)u
elseif (X, S, ) > 7do
compute A X, AS by solving (2), (¢2), (¢i2)’
find o := argmin f;;(X + aAX, S + aAS, u)
X =X+ aAX, S:=54+aAS

end

end
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Long-step p-d path-following algorithm

Theorem: The long-step primal-dual path-following algorithm

terminates after at most
n (0]
O (n log H )
g

iterations.
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Solving the linear systems

Primal-dual system:

0 AT 0 Ay\ (R,
A 0 I||AX | [|Rq
0 & F) \AS/) \R.

There exists a unique solution (Todd-Toh-Tutlncu).

Define U := F~1€ (= D~ ® D) and substitute

AS = Ry — AT Ay

—Uu AT\ ([AX\ (R:=Rq— F 'R,
A 0 Ay R,

... augmented system

to get
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Solving the linear systems

Further eliminate AX
AX =U Y (ATAy — R;+ F'R,)

to get

AUTTAT Ay =h:= R, + AUT'R; — AE™'R,
M

... Schur complement equation (normal eq.)

Most popular strategy: solve SCE by direct Cholesky factorization

M typically fully dense even if A; sparse

Use sparse linear algebra to compute M
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AU−1AT
| {z } M
�y = h


A dual scaling algorithm

S. Benson and Y. Ye — code DSDP

misn(b, y) — plog det(S)
Y,

st. A(y)+S5S=C
KKT conditions:
A*(X)=b, Aly)+ S=CpuS ' =X
The corresponding Newton system:

A*(X + AX) =1b
A(Ay) + AS =0
puS~rtASS '+ AX =puS 1 - X
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min
y,S hb, yi − µ log det(S)
s.t. A(y) + S = C

kocvara
A∗(X + �X) = b
A(�y) + �S = 0
µS−1�SS−1 + �X = µS−1 − X


A dual scaling algorithm

A*(X + AX) =1b
A(Ay) + AS =0
puS rASS '+ AX =puS ' - X

From (i) and (iii):
—A*(S71ASSTY) = %b — pA*(S™Y)
Substitute AS = A(Ay) (from (ii)):
A*(STTA(AY)S™1) = %b — pA*(S™1)

Set u = #,z: (C, X)
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A dual scaling algorithm

(A1,871A; 87 ... (A, 8571A,S7H)
: : Ay = pr b—A"(577)
Z —
<Ama S_1A15_1> <Am7 S_lAmS_1> 7
Remarks:
zkT1 = (C, X)) computed as
Zk _ (ba yk>

(Ay" A" ((S*) ) +n)

2* = (b, y*) +( Xk, S*) = (b,y")+

X, = puS™ ! — uS—1ASS—! satisfies the primal constraint
A*(Xg) = b.
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A first-order algorithm

S. Burer and R. Monteiro — code SDPLR

i%f(C,X) := Trace(CX) (P)
st. A*(X)=b [(A;, X) =b;, 1 =1,...,m]
X >0

Theorem: (Pataki) Let X be an extreme point of SDP-P. Then
7 = rank(X) satisfies 7(7 + 1) /2 < m.

Consequence: We may restrict our search to X : rank(X) < r,
where r := min{7r : (¥ 4+ 1) /2 > m} (note: r = v/2m).

Thus SDP-P is equivalent to the nonlinear program

min{(C, RRT) : A"(RRT) =b, R € R™*"}
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min
R {hC,RRT i : A∗(RRT ) = b, R ∈ Rn×r}

kocvara
inf
X hC,Xi := Trace(CX)
s.t. A∗(X) = b [hAi,Xi = bi, i = 1, . . . ,m]
X � 0


A first-order algorithm

min{(C, RR") : A*(RR") = b, R € R"*"} (%)
Often m < n and thus »r < n — avoid storing full X

When C and A; sparse, use first-order NLP code, maintaining the
sparsity

SDPLR: solve (x) by an Augmented Lagrangian code.
The subproblems (unconstrainend NLPSs) solved by an L-BFGS code.
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