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Convex programs

A general problem of mathematical programming:
min f(x) subjectto z € X CR" (MP)

where
n 1S the design dimension of the problem;

f : R™ — R is the objective function;
X C R™ is the feasible domain of the problem.

Assume:

® the function f and the feasible domain X are convex;

® the feasible domain X is defined by convex functions
gi :R*" - R,2=1,...,m:

X:={xeR"|gi(x) <0,2=1,...,m}.

Algorithms for convex optimization — p.4/33


kocvara
min f(x) subject to x ∈ X ⊂ Rn


Convex programs

A mathematical program satisfying the above assumption is called
convex mathematical program:

min f(x) subjectto g;(x) <0,i=1,...,m. (CP)

Why are we interested in this class of optimization problems? That is
because:

(i) Convex programs are computationally tractable: there exist
numerical methods which efficiently solve every convex program
satisfying “mild” additional assumption;

(i) In contrast, no efficient universal methods for nonconvex
mathematical programs are known.
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Convex functions

A function h : R™® — R is convex when
Ve, z' VA € [0,1] : h(Axz + (1 —XN)z") < Ah(x) + (1 — AN)h(z")

Convex (a) and nonconvex (b) functions in R®:

N
_—

(@) (b)
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Convex feasible region

Convex feasible region described by convex g;’s:
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Method of Newton

The “simplest” convex program— problem without constraints and with
a strongly convex objective:

min f(x) (UCP);

strongly convex—the Hessian matrix V2 f(x) is positive definite at
every point ¢ and that f(x) — oo as ||x||s — oo.

Method of choice: Newton’s method. The idea. at every iterate, we
approximate the function f by a quadratic function, the second-order
Taylor expansion:

F@) + (@ — )V (@) + (5 — 2) TV (@) (y — )

The next iterate—by minimization of this quadratic function.
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Method of Newton

Given a current iterate x, compute the gradient V f(x) and
Hessian H (x) of f at .
Compute the direction vector

d=—H(z) 'Vf(x).
Compute the new iterate
Tnew = € + d.

The method is

® extremely fast whenever we are “close enough” to the solution x*.
Theory: the method is locally quadratically convergent, i.e.,

[Znew — z*]]2 < cllz — 7|3,

provided that ||z — «*||2 < r, where r is small enough.

® rather slow when we are not “close enough” to =*.

Algorithms for convex optimization — p.9/33


kocvara
Given a current iterate x, compute the gradient ∇f(x) and
Hessian H(x) of f at x.
Compute the direction vector
d = −H(x)−1∇f(x).
Compute the new iterate
xnew = x + d.
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Interior-point methods

Transform the “difficult” constrained problem into an “easy”
unconstrained problem, or into a sequence of unconstrained problems.

Once we have an unconstrained problem, we can solve it by Newton’s
method.

The idea is to use a barrier function that sets a barrier against leaving
the feasible region. If the optimal solution occurs at the boundary of
the feasible region, the procedure moves from the interior to the
boundary, hence interior-point methods.

The barrier function approach was first proposed in the early sixties
and later popularised and thoroughly investigated by Fiacco and
McCormick.
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Classic approach

min f(x) subjectto g;(x) <0,i=1,...,m. (CP)

We introduce a barrier function B that is nonnegative and continuous
over the region {x | g;(x) < 0}, and approaches infinity as the

boundary of the region {x | g;(x) < 0} is approached from the
Interior.

(CP) — a one-parametric family of functions generated by the
objective and the barrier:

®(p;x) := f(x) + pB(x)
and the corresponding unconstrained convex programs

min ®(p; );

here the penalty parameter p is assumed to be nonnegative.
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Classic approach

The idea behind the barrier methods is now obvious:
We start with some p (say 4 = 1) and solve the unconstrained

auxiliary problem. Then we decrease p by some factor and solve
again the auxiliary problem, and so on.

® The auxiliary problem has a unique solution () for any g > 0.

® The central path, defined by the solutions (), ¢ > 0, is a
smooth curve and its limit points (for &1 — 0) belong to the set of
optimal solutions of (CP).
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One of the most popular barrier functions—(Frisch’s) logarithmic
barrier function,

B(z) = — Z log(—gi(x)).

Consider a one-dimensional CP

min —x subjectto x < 0.

Auxiliary problem:

®(p; x) := —x + pB(x)
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Barrier function (a) and function ® (b) for 4 = 1 and p = 0.3:

7 7
6 6
=
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min (CDl -+ CBz)

S. L.
—r1 — 2$2 -+ 2 S 0
—x1 <0, —x2 <0

The auxiliary function

® = x1 + z2 — p[log(z1 + 222 — 2) + log(z1) + log(z2)]
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Example

Level lines of the function ® for p = 1, 0.5, 0.25, 0.125:
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Central path

A\

X(Mg5)

X(M 0.25)
X(M 0.125)

X(Kyq)

N
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The “algorithm”

At i-th step, we are at a point = (u;) of the central path.

® decrease a bit u;, thus getting a new “target point” (p;41) 0on
the path;

® approach the new target point «(u;4-1) by running the Newton
method started at our current iterate x;.

Hope: x(u;) is in the region of quadratic convergence of the Newton
method approaching «(p;+1).

Hence, following the central path, Newton’s method is always efficient
(always in the region of quadratic convergence)
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Theory and practice

THEORY: Under some mild technical assumption, the method
converges to the solution of (CP):

r(p) — x* as u — 0.

PRACTICE: disappointing.
The method may have serious numerical difficulties.

® The idea to stay on the central path, and thus to solve the
auxiliary problems exactly, is too restrictive.

® The idea to stay all the time in the region of quadratic convergence
of the Newton method may lead to extremely short steps.

$» How to guarantee in practice that we are “close enough”? The
theory does not give any quantitative results.

® |If we take longer steps (i.e., decrease u more rapidly), then the
Newton method may become inefficient and we may even leave
the feasible region.
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Modern approach—-Brief history

The “classic” barrier methods—60’s and 70’s. Due to their
disadvantages, practitioners lost interest soon.

Linear programming:

Before 1984 linear programs solved exclusively by simplex method
(Danzig '47)

® good practical performance

® Dbad theoretical behaviour
(Examples with exponential behaviour)

Looking for polynomial-time method

1070 harhian' allin
LIl I INTICAVUILITIICAL L. LllllP

® polynomial-time (theoretically)
® Dbad practical performance

cnid maoathnAd
DU T1T1IOG LTV

1984 Karmakar: polynomial-time method for LP
reported 50-times faster than simplex

1986 Gill et al.: Karmakar = classic barrier method
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Asymptotic vs. Complexity analysis

Asymptotic analysis

Classic analysis of the Newton and barrier methods:
uses terms like “sufficiently close”, “sufficiently small”, “close enough”,
*asymptotic quadratic convergence”.

Does not give any quantitative estimates like:
® how close is “sufficiently close” in terms of the problem data?

» how much time (operations) do we need to reach our goal?
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Asymptotic vs. Complexity analysis

Complexity analysis

Answers the question:

Given an instance of a generic problem and a desired accuracy, how
many arithmetic operations do we need to get a solution?

The classic theory for barrier methods does not give a single
information in this respect.

Moreover, from the complexity viewpoint,

® Newton’s method has no advantage to first-order algorithms
(there is no such phenomenon as “local quadratic convergence”);

® constrained problems have the same complexity as the
unconstrained ones.
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Modern approach (Nesterov-Nemirovski)

It appears that all the problems of the classic barrier methods come

from the fact that we have too much freedom in the choice of the
penalty function B.

Nesterov and Nemirovski (SIAM, 1994).

1. There is a class of “good” (self-concordant) barrier functions.
Every barrier function B of this type is associated with a real
parameter 6(B) > 1.

2. If B is self-concordant, one can specify the notion of “closeness
to the central path” and the policy of updating the penalty
parameter p in the following way. If an iterate x; is close (in the
above sense) to x:(u,) and we update the parameter p; t0 ;1.1
then in a single Newton step we get a new iterate x;, 1 which is
close to (u;11). In other words, after every update of p we can
perform only one Newton step and stay close to the central path.
Moreover, points “close to the central path” belong to the interior
of the feasible region.
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Modern approach (Nesterov-Nemirovski)

3. The penalty updating policy can be defined in terms of problem
data:

1 14 0.1 1
Hit1 VO(B) | wi’
this shows, in particular, that reduction factor is independent on
the size of i, the penalty parameter decreases linearly.

4. Assume that we are close to the central path (this can be realized

by certain initialization step). Then every O(+/0(B)) steps of the
algorithm improve the quality of the generated approximate

solutions by an absolute constant factor. In particular, we need at
most

0(1)\/8(B) log (1 + “"’Hs(B)>

to generate a strictly feasible e-solution to (CP).
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Modern approach (Nesterov-Nemirovski)

Staying close to the central path in a single Newton step:
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The class of self-concordant function is sufficiently large and contains
many popular barriers, in particular the logarithmic barrier function.
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