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H2 space

H2 is the Hardy space with matrix functions

f̂(s), s ∈ C → Cn analytic in Re(s) > 0

||f̂ ||2 =

(
1

2π

∫ +∞

−∞
f̂?(jω)f̂(jω)dω

)1/2

< ∞

Paley-Wiener

L2[0 , +∞)
L−→ H2

f(t) −→ f̂(s) =
∫ +∞

−∞
f(t)e−stdt

Parseval

||f ||2 = ||f̂ ||2
RH2 is a subspace of H2 with all strictly proper

and real rational stable transfer matrices

s + 1

(s + 2)(s + 3)
∈ RH2

s + 1

(s + 2)(s− 3)
6∈ RH2

(s− 1)

(s + 1)
6∈ RH2



H2 norm

The H2 norm of the strictly proper stable LTI system

ẋ = Ax + Bw
z = Cx

is the energy (l2 norm) of its impulse response g(t)

||G||22 =
1

2π

∫ +∞

−∞
tr(G?(jω)G(jω))dω

||G||2 = max
wi(t)=δ

||z||2

• For MIMO systems, H2 norm is impulse-to-energy gain
or steady-state variance of z in response to white noise
• For MISO systems, H2 norm is energy-to-peak gain



Computing the H2 norm

Let G(s) ∼
[

A B
C 0

]

Defining the controllability Grammian and the

observability Grammian

Pc =
∫ ∞
0

eAtBB′eA′tdt Po =
∫ ∞
0

eA′tC′CeAtdt

solutions to the Lyapunov equations

A′Po + PoA + C′C = 0

APc + PcA′ + BB′ = 0

and hence

||G||22 = tr
[
CPcC′

]
= tr

[
B′PoB

]

(A, C) observable iff Po � 0

(A, B) controllable iff Pc � 0



LMI computation of the H2 norm

Dual Lyapunov equations formulated as dual LMIs

The following statements are equivalent

− ‖G‖22 < γ2

− ∃ P ∈ S++
n

A′P + PA + C ′C � 0 tr B′PB < γ2

− ∃ Q ∈ S++
n

AQ + QA′ + BB′ � 0 tr CQC ′ < γ2

− ∃ X ∈ S++
n and Z ∈ Rr×r[

A′X + XA XB
B′X −1

]
≺ 0

[
X C ′

C Z

]
� 0 tr Z < γ2

− ∃ Y ∈ S++
n and T ∈ Rm×m[

AY + Y A′ Y C ′

CY −1

]
≺ 0

[
Y B
B′ T

]
� 0 tr T < γ2



H∞ space

H∞ is the Hardy space with matrix functions

f̂(s), s ∈ C → Cn×m analytic in Re(s) > 0

||f̂ ||∞ = sup
Re(s)>0

σ(f̂(s)) = sup
ω∈R

σ(f̂(jω)) < ∞

RH∞ is a real rational subset of H∞ with all

proper and real rational stable transfer matri-

ces

s + 1

(s + 2)(s− 3)
6∈ RH∞

(s− 1)

(s + 1)
∈ RH∞

Godfrey Harold Hardy
(1877 Cranleigh - 1947 Cambridge)



H∞ norm

Let the proper stable LTI system G(s) = C(sI−
A)−1B + D

ẋ = Ax + Bw
z = Cx + Dw

The H∞ norm is the induced energy-to-energy
gain (l2 to l2)

‖G‖∞ = sup
‖w‖2=1

‖Gw‖2 = sup
‖w‖2=1

‖z‖2 = sup
ω

σ(G(jω))

It is the worst-case gain



Computing the H∞ norm

In contrast with the H2 norm, computation of

the H∞ norm requires a search over ω or an

iterative algorithm

A- Set up a fine grid of frequency points {ω1, · · · , ωl}

‖G‖∞ ∼ max
1≤k≤l

σ(G(jωk))

B- ‖G(s)‖∞ < γ iff R = γ21−D′D � 0 and the

Hamiltonian matrix

[
A + BR−1D′C BR−1B′

−C′(1 + DR−1D′)C −(A + BR−1D′C)′

]

has no eigenvalues on the imaginary axis



Bisection algorithm - γ-iterations

We can design a bisection algorithm

with guaranteed quadratic convergence

to find the minimum value of γ such that

the Hamiltonian has no imaginary eigenvalues

1- Select [γl γu] with γl > σ(D)

2- If (γu − γl)/γl ≤ ε stop;

‖G‖∞ ∼ (γu + γl)/2

otherwise go to the next step;

2- Set γ = 1/2(γl + γu) and compute Hγ

3- Compute the eigenvalues of Hγ

If Λ(Hγ)∩C0 set [γl γ] and go back to step 2

else set [γ γmax] and and go back to step 2



LMI computation of the H∞ norm

Refer to the part of the course on norm-bounded

uncertainty

sup
‖z‖2=1

‖w‖ = ‖∆‖ < γ−1

The following statements are equivalent

− ‖G‖∞ < γ

− ∃ P ∈ S++
n[

A′P + PA + C′C PB + C′D
B′P + D′C D′D − γ21

]
≺ 0

− ∃ P ∈ S++
n A′P + PA PB C′

B′P −γ1 D′

C D −γ1

 ≺ 0



State-feedback stabilization

Open-loop continuous-time LTI system

ẋ = Ax + Bu

with state-feedback controller

u = Kx

produces closed-loop system

ẋ = (A + BK)x

Applying Lyapunov LMI stability condition

(A + BK)′P + P (A + BK) ≺ 0 P � 0

we get bilinear terms...

Bilinear Matrix Inequalities (BMIs) are

non-convex in general !



State-feedback design:

linearizing change of variables

Project BMI onto P−1 � 0

(A + BK)′P + P (A + BK) ≺ 0
⇐⇒

P−1 [(A + BK)′P + P (A + BK)
]
P−1 ≺ 0

⇐⇒
P−1A′ + P−1K′B′ + AP−1 + BKP−1 ≺ 0

Denoting

Q = P−1 Y = KP−1

we derive a state-feedback design LMI

AQ + QA′ + BY + Y ′B′ ≺ 0 Q � 0

We obtained an LMI thanks to a one-to-one

linearizing change of variables



Finsler’s theorem

Recall Finsler’s theorem, already seen in the
first chapter of this course...

The following statements are equivalent

1. x′Ax > 0 for all x 6= 0 s.t. Bx = 0

2. B̃′AB̃ � 0 where BB̃ = 0

3. A + λB′B � 0 for some scalar λ

4. A + XB + B′X ′ � 0 for some matrix X

Paul Finsler
(1894 Heilbronn - 1970 Zurich)



State-feedback design: null-space projection

Item 2 of Finsler’s theorem may be used by

projecting onto the (full column rank) null-

space B̃ of B′

B′B̃ = 0

so that BMI

A′P + PA + K′B′P + PBK ≺ 0

is equivalent to the projected LMI

B̃′(AQ + QA′)B̃ ≺ 0 Q � 0

Feedback K can be recovered from

Lyapunov matrix Q as

K = −1
2B′Q−1

Here we obtained an LMI thanks to a

projection onto a null-space



State-feedback design: Riccati inequality

We can also use item 3 of Finsler’s theorem to
convert BMI

A′P + PA + K′B′P + PBK ≺ 0

into

A′P + PA− λPBB′P ≺ 0

where λ ≥ 0 is an unknown scalar

Now replacing P with λP we get

A′P + PA− PBB′P ≺ 0

which is related to the Riccati equation

A′P + PA− PBB′P + Q = 0

for some matrix Q � 0

Shows equivalence between state-feedback LMI
stabilizability and the linear quadratic regulator
(LQR) problem



Robust state-feedback design

for polytopic uncertainty

LTI system ẋ = Ax + Bu affected by polytopic

uncertainty

(A, B) ∈ co {(A1, B1), . . . , (AN , BN)}

and search for a robust state-feedback law u =

Kx

Start with analysis conditions

(Ai + BiK)′P + P (Ai + BiK) ≺ 0 ∀ i Q � 0

and we obtain the quadratic stabilizability LMI

AiQ + QA′i + BiY + Y ′B′
i ≺ 0 ∀ i Q � 0

with the linearizing change of variables

Q = P−1 Y = KP−1



State-feedback H2 control

Let the continuous-time LTI system

ẋ = Ax + Bww + Buu
z = Czx + Dzww + Dzuu

with state-feedback controller

u = Kx

Closed-loop system is given by

ẋ = (A + BuK)x + Bww
z = (Cz + DzuK)x + Dzww

with transfer function

G(s) = Dzw + (Cz + DzuK)(sI −A−BuK)−1Bw

between performance signals w and z

H2 performance specification

‖G(s)‖2 < γ

We must have Dzw = 0 (finite gain)



H2 design LMIs

As usual, start with analysis condition:

∃ K such that ‖G(s)‖2 < γ iff

tr (Cz + DzuK)Q(Cz + DzuK)′ < γ

(A + BuK)Q + Q(A + BuK) + BB′ ≺ 0

Remember equivalent statements about H2 anal-
ysis and obtain the overall LMI formulation

tr Z < γ2

[
Z CzX + DzuR

XC′z + R′D′
zu X

]
� 0

AX + XA′ + BuR + R′B′
u + BwB′

w ≺ 0

with resulting H2 suboptimal state-feedback

K = RX−1

Optimal H2 control: minimize γ2



Quadratic H2 design LMIs

Let the polytopic uncertain LTI system

M =

[
A Bw Bu

Cz Dzw Dzu

]
∈ co {M1, · · · , MN}

Γ∗q = min γ2

tr Z < γ2

[
Z Ci

zX + Di
zuR

XCi′
z + R′Di′

zu Q

]
� 0

[
AiX + XAi′ + Bi

uR + R′Bi′
u Bi

w

Bi′
w 1

]
≺ 0

with resulting robust H2 suboptimal state-feedback

K = RX−1

‖G‖2w.c. ≤
√

Γ∗q



State-feedback H∞ control

Similarly, with H∞ performance specification

‖G(s)‖∞ < γ

on transfer function between w and z we obtain

 AQ + QA′ + BuY + Y ′B′
u ? ?

CzQ + DzuY −γ21 ?
B′

w D′
zw −1

 ≺ 0

Q � 0

with resulting H∞ suboptimal state-feedback

K = Y Q−1

Optimal H∞ control: minimize γ



Mixed H2/H∞ control

P (s) :=

 A Bw Bu

C∞ D∞w D∞u

C2 0 D2u


oo

z

K

2P

u y

z
w

H2/H∞ problem

For a given admissible H∞ performance level

γ, find an admissible feedback, K ∈ K, s.t.:

α∗ = inf
K∈K

||G2(K)||2

s.t. ||G∞(K)||∞ ≤ γ



Mixed H2/H∞ control (2)

- K∗
2 = arg

[
inf

K∈K
||G2||2 = α∗2

]
- γ2 = ‖G∞(K∗

2)‖∞

- K∗
∞ = arg

[
inf

K∈K
||G∞||∞ = γ∗∞

]

Note that

- For γ < γ∗∞, the mixed problem has no solu-

tion

- For γ2 ≤ γ, the solution of the mixed problem

is given by (α∗2, K∗
2) and the H∞ constraint is

redundant

- For γ∗∞ ≤ γ < γ2, the pure mixed problem

is a non trivial infinite dimension optimization

problem



Mixed H2/H∞ control (3)

- Open problem without analytical solution nor

general numerical one

- Trade-off between nominal performance and

robust stability constraint

min
k

J(k) =

√
−

2 + 3k2

2k
under

k < 0

f(k) =
2√

k2(4− k2)
≤ γ

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.5
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3.5

k

f(
k)

 , 
J(

k)

f(k)

J(k)

γ∞

γ
2

K*
2

γ=1.2



Mixed H2/H∞ control via LMIs

Formulation of H∞ constraint AQ∞ + Q∞A′ + BuY∞ + Y∞′B′
u ? ?

CzQ∞ + D∞uY∞ −γ21 ?
B′

w D′
∞w −1

 ≺ 0

Q∞ � 0

and formulation of H2 constraint

tr Z < α[
Z C2X2 + D2uR2

X2C′2 + R2
′D′

2u X2

]
� 0

AX2 + X2A′ + BuR2 + R2
′B′

u + BwB′
w ≺ 0

Problem:

We cannot linearize simultaneously !

K = Y∞Q−1
∞ = R2X−1

2



Mixed H2/H∞ control via LMIs (2)

Remedy: Lyapunov Shaping Paradigm

Enforce X2 = Q∞ = Q !

Trade-off: Conservatism/tractability

Resulting mixed H2/H∞ design LMI

Γ∗l = min α
tr Z < α[

Z C2Q + D2uY
QC′2 + Y ′D′

2u Q

]
� 0

AQ + QA′ + BuY + Y ′B′
u + BwB′

w ≺ 0 AQ + QA′ + BuY + Y ′B′
u ? ?

CzQ + D∞uY −γ21 ?
B′

w D′
∞w −1

 ≺ 0

Q � 0

Guaranteed cost mixed H2/H∞:

α∗ ≤
√

Γ∗l



Mixed H2/H∞ control: example

Active suspension system (Weiland)

m2q̈2 + b2(q̇2 − q̇1) + k2(q2 − q1) + F = 0
m1q̈1 + b2(q̇1 − q̇2) + k2(q1 − q2)

+k1(q1 − q0) + b1(q̇1 − q̇0) + F = 0

z =

[
q1 − q0

F
q̈2

q2 − q1

]
y =

[
q̈2

q2 − q1

]
w = q0 u = F

G∞(s) from q0 to [q1 − q0 F ]
G2(s) from q0 to [q̈2 q2 − q1]

Trade-off between ‖G∞‖∞ ≤ γ1 and ‖G2‖2 ≤ γ2



Dynamic output-feedback

Continuous-time LTI open-loop system

ẋ = Ax + Bww + Buu
z = Czx + Dzww + Dzuu
y = Cyx + Dyww

with dynamic output-feedback controller

ẋc = Acxc + Bcy
u = Ccxc + Dcy

Denote closed-loop system as

˙̃x = Ãx̃ + B̃w
z = C̃x̃ + D̃w

with x̃ =

[
x
xc

]
and

Ã =

[
A + BuDcCy BuCc

BcCy Ac

]
B̃ =

[
Bw + BuDcDyw

BcDyw

]
C̃ =

[
Cz + DzuDcCy DzuCc

]
D̃ = Dzw + DzuDcDyw

Affine expressions on controller matrices



H2 output feedback design

H2 design conditions

tr Z < α[
Z C̃Q̃
? Q̃

]
� 0[

ÃQ̃ + Q̃Ã′ B̃
B̃′ −1

]
≺ 0

linearized with a specific change of variables

Denote

Q̃ =

[
Q Q̄′

Q̄ ×

]
P̃ = Q̃−1 =

[
P P̄
P̄ ′ ×

]

so that P̄ and Q̄ can be obtained from P and
Q via relation

PQ + P̄ Q̄ = 1

Always possible when controller has same order
than the open-loop plant



Linearizing change of variables
for H2 output-feedback design

Then define[
X U
Y V

]
=

[
P̄ PBu

0 1

] [
Ac Bc

Cc Dc

] [
Q̄ 0

CyQ 1

]
+

[
P
0

]
A
[
Q 0

]
which is a one-to-one affine relation with converse[

Ac Bc

Cc Dc

]
=

[
P̄−1 −P̄−1PBu

0 1

] [
X − PAQ U

Y V

] [
Q̄−1 0

−CyQQ̄−1 1

]
We derive the following H2 design LMI

tr Z < α
Dzw + DzuV Dyw = 0 Z CzQ + DzuY Cz + DzuV Cy

? Q 1
? ? P

 � 0 AQ + BuY + (?) A + BuV Cy + X ′ Bw + BuV Dyw

? PA + UCy + (?) PBw + UDyw

? ? −1

 ≺ 0

in decision variables Q, P , W (Lyapunov) and X, Y , U, V
(controller)

Controller matrices are obtained via the relation

PQ + P̄ Q̄ = 1

(tedious but straightforward linear algebra)



H∞ output-feedback design

Similarly two-step procedure for full-order H∞
output-feedback design:

• solve LMI for Lyapunov variables Q, P , W and

controller variables X, Y , U, V

• retrieve controller matrices via linear algebra

Alternative LMI formulation via projection onto

null-spaces (recall elimination lemma)

N ′

 AQ + QA′ QC ′
z Bw

? −γ1 Dzw

? ? −γ1

N ≺ 0

M ′

 A′P + PA PBw C ′
z

? −γ1 D′
zw

? ? −γ1

M ≺ 0[
Q 1
1 P

]
� 0

where N and M are null-space basis

[
B′

u D?
zu 0

]
N = 0

[
Cu Dyw 0

]
M = 0



Reduced-order controller

For reduced-order controller of order nc < n

there exists a solution P̄ ,Q̄ to the equation

PQ + P̄ Q̄ = 1

iff

rank (PQ− 1) = nc

⇐⇒

rank

[
Q 1
1 P

]
= n + nc

Static output feedback iff PQ = 1

Difficult rank constrained LMI problem or BMI

problem !


