COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II. 1

LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS STABILITY ANALYSIS

May 2004

State-space methods

Developed by Kalman and colleagues in the 1960s as an alternative to frequency-domain techniques (Bode, Nichols...) for optimal control and estimation

RADAR SRC-584

Starting in the 1980s, numerical analysts developed powerful linear algebra routines for matrix equations: numerical stability, low computational complexity, largescale problems

Matlab launched by Cleve Moler (1977-1984) heavily relies on LINPACK, EISPACK \& LAPACK packages

Matlab toolboxes development during the eighties and explosion for the millenium

- Math and analysis (optimization, statistics, spline...)
- Control (robust, predictive, fuzzy...)
- Signal and image processing (wavelet, identification...)
- Finance and economics (financial, GARCH...)

Linear systems and Lyapunov stability

The continuous-time linear time invariant (LTI) system

$$
\dot{x}(t)=A x(t) \quad x(0)=x_{0}
$$

where $x(t) \in \mathbb{R}^{n}$ is asymptotically stable, meaning

$$
\begin{aligned}
& \qquad \lim _{t \rightarrow \infty} x(t)=0 \quad \forall x_{0} \neq 0 \\
& \text { if and only if }
\end{aligned}
$$

- there exists a quadratic Lyapunov function $V(x)=x^{\prime} P x$ such that

$$
\begin{aligned}
& V(x(t))>0 \\
& \dot{V}(x(t))<0
\end{aligned}
$$

along system trajectories

- or matrix A satisfies

$$
\max _{1 \leq i \leq n} \text { real } \lambda_{i}(A)<0
$$

Linear systems and Lyapunov stability (2)

Note that $V(x)=x^{\prime} P x=x^{\prime}\left(P+P^{\prime}\right) x / 2$
so that Lyapunov matrix P can be chosen symmetric without loss of generality

Since $\dot{V}(x)=\dot{x}^{\prime} P x+x^{\prime} P \dot{x}=x^{\prime} A^{\prime} P x+x^{\prime} P A x$ positivity of $V(x)$ and negativity of $\dot{V}(x)$ along system trajectories can be expressed as an LMI

$$
\left.\exists P \in \mathbb{S}_{n}:\left[\begin{array}{r}
-\left[\begin{array}{ll}
\mathbf{1} & A^{\prime}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{0} & P \\
P & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{1} \\
A
\end{array}\right] \\
\mathbf{0}
\end{array}\right] \begin{array}{l}
\mathbf{0} \\
P
\end{array}\right] \succ \mathbf{0}
$$

Matrices P satisfying Lyapunov's LMI with $A=\left[\begin{array}{cc}0 & 1 \\ -1 & -2\end{array}\right]$

Linear systems and Lyapunov stability (3)

The Lyapunov LMI can be written equivalently as the Lyapunov equation

$$
A^{\prime} P+P A+Q=0
$$

where $Q \succ \mathbf{0}$

The following statements are equivalent

- the system $\dot{x}=A x$ is asymptotically stable
- for some matrix $Q \succ \mathbf{0}$ the matrix P solving the Lyapunov equation satisfies $P \succ \mathbf{0}$
- for all matrices $Q \succ \mathbf{0}$ the matrix P solving the Lyapunov equation satisfies $P \succ \mathbf{0}$

The Lyapunov LMI can be solved numerically by solving the linear system of $n(n+1) / 2$ equations in $n(n+1) / 2$ unknowns
$\left(A^{\prime} \oplus A^{\prime}\right) \operatorname{svec}(P)=\left(A^{\prime} \otimes \mathbf{1}+\mathbf{1} \otimes A^{\prime}\right) \operatorname{svec}(P)=-\operatorname{svec}(Q)$

Theorem of alternatives and Lyapunov LMI

Recall the theorem of alternatives for LMI

$$
F(x)=F_{0}+\sum_{i=1}^{n} x_{i} F_{i}
$$

Exactly one statement is true

- there exists x s.t. $F(x) \succ 0$
- there exists a nonzero $Z \succeq 0$ s.t.
trace $F_{0} Z \leq 0$ and trace $F_{i} Z=0, i=1, \cdots, n$
Alternative to Lyapunov LMI

$$
F(x)=\left[\begin{array}{cc}
-A^{\prime} P-P A & 0 \\
0 & P
\end{array}\right] \succ 0
$$

is the existence of a nonzero matrix

$$
Z=\left[\begin{array}{cc}
Z_{1} & 0 \\
0 & Z_{2}
\end{array}\right] \succeq 0
$$

such that

$$
A Z_{1}+Z_{1} A^{\prime}-Z_{2}=0
$$

Discrete-time Lyapunov LMI

Similarly, the discrete-time LTI system

$$
x_{k+1}=A x_{k} \quad x(0)=x_{0}
$$

is asymptotically stable iff

- there exists a quadratic Lyapunov function $V(x)=$ $x^{\prime} P x$ such that

$$
\begin{gathered}
V\left(x_{k}\right)>0 \\
V\left(x_{k+1}\right)-V\left(x_{k}\right)<0
\end{gathered}
$$

along system trajectories

- equivalently, matrix A satisfies

$$
\max _{1 \leq i \leq n}\left|\lambda_{i}(A)\right|<1
$$

This can be expressed as an LMI

$$
\exists P \in \mathbb{S}_{n}:\left[\begin{array}{cc}
{\left[\begin{array}{ll}
\mathbf{1} & A^{\prime}
\end{array}\right]\left[\begin{array}{cc}
P & \mathbf{0} \\
\mathbf{0} & -P
\end{array}\right]\left[\begin{array}{l}
\mathbf{1} \\
A
\end{array}\right]} \\
\mathbf{0} & \left.\begin{array}{l}
\mathbf{0} \\
P
\end{array}\right] \succ \mathbf{0}
\end{array}\right.
$$

\mathcal{D} stability regions

Let $D_{i} \in \mathbb{C}^{d \times d}$ and

$$
\mathcal{D}=\left\{s \in \mathbb{C}: D_{0}+D_{1} s+D_{1}^{\star} s^{\star}+D_{2} s^{\star} s \prec 0\right\}
$$

be a region of the complex plane

Matrix A is said \mathcal{D}-stable if $\Lambda(A) \in \mathcal{D}$
Equivalent to generalized Lyapunov LMI

Literally replace $s \mathbf{1}$ with $\mathbf{1} \otimes A$ and D with $D \otimes P!$

\mathcal{D} stability regions (2)

- symmetric with respect to real axis
- convex for $D_{2} \succeq 0$ or not
- parabolae, hyperbolae, ellipses...
- intersections of \mathcal{D} regions

A particular case is given by LMI regions

$$
\mathcal{D}=\left\{s \in \mathbb{C}: D(s)=D_{0}+D_{1} s+D_{1}^{\star} s^{\star} \prec 0\right\}
$$

such as
\mathcal{D}
real $(s)<-\alpha \quad$ dominant behavior
$|s-\alpha|<r \quad$ oscillations
$\operatorname{real}(s) \tan \theta<-|\operatorname{imag}(s)|$ damping cone

Example:

$$
\begin{aligned}
& D_{0}=\operatorname{diag}\left(0, \alpha_{1}-r^{2},-2 \alpha_{2}\right) \\
& D_{1}=\operatorname{diag}\left(D_{\theta},-\alpha_{1}, 1\right) \\
& D_{2}=\operatorname{diag}(0,1,0)
\end{aligned}
$$

Stability as a quadratic optimization problem

\mathcal{D}-stability of matrix A can be cast as a quadratic optimization problem ($d=1$)
$\wedge(A) \subset \mathcal{D}$ iff $\mu>0$ where

$$
\begin{aligned}
\mu=\min _{\substack{q \neq 0 \\
\text { s.t. }}} q^{\star}\left(A-s \in \mathcal{D}^{C}\right.
\end{aligned}
$$

where \mathcal{D}^{C} complementary of \mathcal{D} in \mathbb{C}

Equivalently, $(p=s q)$

$$
\begin{aligned}
\mu= & \min _{q \neq 0}\left[\begin{array}{ll}
q^{\star} & p^{\star}
\end{array}\right]\left[\begin{array}{c}
A^{\prime} \\
-\mathbf{1}
\end{array}\right]\left[\begin{array}{ll}
A & -\mathbf{1}
\end{array}\right]\left[\begin{array}{l}
q \\
p
\end{array}\right] \\
& \text { s.t. }\left[\begin{array}{ll}
q & p
\end{array}\right] D\left[\begin{array}{l}
q^{\star} \\
p^{\star}
\end{array}\right] \succeq \mathbf{0}
\end{aligned}
$$

Lyapunov matrix as Lagrangian variable

Define $\mathcal{A}=\left[\begin{array}{ll}A & -1\end{array}\right]$

If $\exists P \succ \mathbf{0}$ such that:

$$
\left[\begin{array}{ll}
q^{\star} & p^{\star}
\end{array}\right] \mathcal{A}^{\prime} \mathcal{A}\left[\begin{array}{l}
q \\
p
\end{array}\right]>\operatorname{tr}\left[P\left[\begin{array}{ll}
q & p
\end{array}\right] D\left[\begin{array}{l}
q^{\star} \\
p^{\star}
\end{array}\right]\right]
$$

then $\mu^{*}>0$ and equivalently

$$
D \otimes P-\mathcal{A}^{\prime} \mathcal{A} \prec \mathbf{0}
$$

By projection

$$
\left[\begin{array}{l}
\mathbf{1} \\
A
\end{array}\right]^{\prime}\left[\begin{array}{ll}
d_{0} P & d_{1} P \\
d_{1}^{\star} P & d_{2} P
\end{array}\right]\left[\begin{array}{l}
\mathbf{1} \\
A
\end{array}\right] \prec \mathbf{0} \quad P \succ \mathbf{0}
$$

we obtain the generalized Lyapunov LMI

Lyapunov matrix P can be interpreted as a Lagrange dual variable or multiplier

Rank-one LMI problem

Define $\mathcal{Q}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $\mathcal{P}=\left[\begin{array}{ll}0 & 1\end{array}\right]$ Define also dual map

$$
F^{D}(P)=\left[\begin{array}{l}
\mathcal{Q} \\
\mathcal{P}
\end{array}\right]^{\prime}\left[\begin{array}{ll}
d_{0} P & d_{1} P \\
d_{1}^{\star} P & d_{2} P
\end{array}\right]\left[\begin{array}{c}
\mathcal{Q} \\
\mathcal{P}
\end{array}\right]=D \otimes P
$$

such that trace $F^{D}(P) X=\operatorname{trace} F(X) P$
X is the non-zero rank-one matrix

$$
X=x x^{\star}=\left[\begin{array}{l}
q \\
p
\end{array}\right]\left[\begin{array}{l}
q \\
p
\end{array}\right]^{\star} \succeq \mathbf{0}
$$

It follows that LMI

$$
\begin{aligned}
& \mathcal{A}^{\prime} \mathcal{A} \succ F^{D}(P) \\
& P \succ \mathbf{0}
\end{aligned}
$$

is feasible iff $\mu>0$ in the primal

Alternatives for Lyapunov

Define the adjoint map
$G\left(Z_{1}, Z_{2}\right)=Z_{2}-\left[\begin{array}{ll}1 & A\end{array}\right]\left[\begin{array}{ll}d_{0} Z_{1} & d_{1} Z_{1} \\ d_{1}^{\star} Z_{1} & d_{2} Z_{1}\end{array}\right]\left[\begin{array}{ll}1 & A\end{array}\right]^{\prime}$ then from SDP duality $\mu>0$ iff dual LMI

$$
\begin{gathered}
G\left(Z_{1}, Z_{2}\right)=\mathbf{0} \\
Z_{1} \succeq \mathbf{0} \text { and } Z_{2} \succeq \mathbf{0} \\
\operatorname{rank} Z_{1}=1
\end{gathered}
$$

is infeasible

- This is the alternative LMI obtained before so we can remove the rank constraint !
- Adequate alternative proves the necessity for the dual

Uncertain systems and robustness

When modeling systems we face several sources of uncertainty, including

- non-parametric (unstructured) uncertainty
- unmodeled dynamics
- truncated high frequency modes
- non-linearities
- effects of linearization, time-variation..
- parametric (structured) uncertainty
- physical parameters vary within given bounds
- interval uncertainty (l_{∞})
- ellipsoidal uncertainty $\left(l_{2}\right)$
- diamond uncertainty $\left(l_{1}\right)$
- How can we overcome uncertainty ?
- model predictive control
- adaptive control
- robust control

A control law is robust if it is valid over the whole range of admissible uncertainty (can be designed off-line, usually cheap)

Uncertainty modeling

Consider the continuous-time LTI system

$$
\dot{x}(t)=A x(t) \quad A \in \mathcal{A}
$$

where matrix A belong to an uncertainty set \mathcal{A}
For unstructured uncertainties we consider norm-bounded matrices

$$
\mathcal{A}=\left\{A+B \Delta C:\|\Delta\|_{2} \leq \rho\right\}
$$

For structured uncertainties we consider polytopic matrices

$$
\mathcal{A}=\operatorname{co}\left\{A_{1}, \ldots, A_{N}\right\}
$$

There are other more sophisticated uncertainty models not covered here

Uncertainty modeling is an important and difficult step in control system design !

Robust stability

The continuous-time LTI system

$$
\dot{x}(t)=A x(t) \quad A \in \mathcal{A}
$$

is robustly stable when it is asymptotically stable for all $A \in \mathcal{A}$

If \mathcal{S} denotes the set of stable matrices, then robust stability is ensured as soon as

$$
\mathcal{A} \subset \mathcal{S}
$$

Unfortunately \mathcal{S} is a non-convex cone!

Non-convex set

 of continuous-time stable matrices$$
\left[\begin{array}{cc}
-1 & x \\
y & z
\end{array}\right]
$$

Robust and quadratic stability

Because of non-convexity of the cone of stable matrices, robust stability is sometimes difficult to check numerically, meaning that

computational cost is an exponential function of the number of system parameters

Remedy:
The continuous-time LTI system $\dot{x}(t)=A x(t)$ is quadratically stable if its robust stability can be guaranteed with the same quadratic Lyapunov function for all $A \in \mathcal{A}$

Obviously, quadratic stability is more conservative than robust stability:

Quadratic stability \Rightarrow Robust stability

but the converse is not always true

Quadratic stability for polytopic uncertainty

The system with polytopic uncertainty

$$
\dot{x}(t)=A x(t) \quad A \in \operatorname{co}\left\{A_{1}, \ldots, A_{N}\right\}
$$

is quadratically stable iff there exists a matrix P solving the LMIs

$$
A_{i}^{\prime} P+P A_{i} \prec \mathbf{0} \quad P \succ \mathbf{0}
$$

Proof by convexity

$$
\sum_{i=1}^{N} \lambda_{i}\left(A_{i}^{\prime} P+P A_{i}\right)=A^{\prime}(\lambda) P+P A(\lambda) \prec \mathbf{0}
$$

for all $\lambda_{i} \geq 0$ such that $\sum_{i=1}^{N} \lambda_{i}=1$
This is a vertex result: stability of a whole family of matrices is ensured by stability of the vertices of the family

Usually vertex results ensure computational tractability

Quadratic and robust stability: example

Consider the uncertain system matrix

$$
A(\delta)=\left[\begin{array}{ll}
-4 & 4 \\
-5 & 0
\end{array}\right]+\delta\left[\begin{array}{ll}
-2 & 2 \\
-1 & 4
\end{array}\right]
$$

with real parameter δ such that $|\delta| \leq \rho$
$=$ polytope with vertices $A(-\rho)$ and $A(\rho)$

stability	$\max \rho$
quadratic	0.7526
robust	1.6666

Quadratic stability for norm-bounded uncertainty

The system with norm-bounded uncertainty

$$
\dot{x}(t)=(A+B \Delta C) x(t) \quad\|\Delta\|_{2} \leq \rho
$$

is quadratically stable iff there exists a matrix P solving the LMIs

$$
\left[\begin{array}{cc}
A^{\prime} P+P A+C^{\prime} C & P B \\
B^{\prime} P & -\gamma^{2} I
\end{array}\right] \prec 0 \quad P \succ 0
$$

with $\gamma^{-1}=\rho$

This is the bounded-real Iemma

We can maximize the level of allowed uncertainty by minimizing scalar γ

Norm-bounded uncertainty as feedback

Uncertain system

$$
\dot{x}=(A+B \Delta C) x
$$

can be written as the feedback system

$$
\begin{aligned}
\dot{x} & =A x+B w \\
z & =C x \\
w & =\Delta z
\end{aligned}
$$

so that for the Lyapunov function $V(x)=x^{\star} P x$ we have

$$
\begin{aligned}
\dot{V}(x) & =2 x^{\star} P \dot{x} \\
& =2 x^{\star} P(A x+B w) \\
& =x^{\star}\left(A^{\prime} P+P A\right) x+2 x^{\star} P B w \\
& =\left[\begin{array}{c}
x \\
w
\end{array}\right]^{\star}\left[\begin{array}{cc}
A^{\prime} P+P A & P B \\
B^{\prime} P & 0
\end{array}\right]\left[\begin{array}{c}
x \\
w
\end{array}\right]
\end{aligned}
$$

Norm-bounded uncertainty as feedback (2)

Since $\Delta^{\star} \Delta \preceq \rho^{2} I$ it follows that

$$
\begin{gathered}
w^{\star} w=z^{\star} \Delta^{\star} \Delta z \preceq \rho^{2} z^{\star} z \\
w^{\star} w-\rho^{2} z^{\star} z=\left[\begin{array}{c}
x \\
w
\end{array}\right]^{\star}\left[\begin{array}{cc}
-C^{\prime} C & 0 \\
0 & \gamma^{2} 1
\end{array}\right]\left[\begin{array}{c}
x \\
w
\end{array}\right] \leq 0
\end{gathered}
$$

Combining with the quadratic inequality

$$
\dot{V}(x)=\left[\begin{array}{l}
x \\
w
\end{array}\right]^{\star}\left[\begin{array}{cc}
A^{\prime} P+P A & P B \\
B^{\prime} P & 0
\end{array}\right]\left[\begin{array}{l}
x \\
w
\end{array}\right]<0
$$

and using the S -procedure we obtain

$$
\left[\begin{array}{cc}
A^{\prime} P+P A & P B \\
B^{\prime} P & 0
\end{array}\right] \prec\left[\begin{array}{cc}
-C^{\prime} C & 0 \\
0 & \gamma^{2} \mathbf{1}
\end{array}\right]
$$

or equivalently

Norm-bounded uncertainty: generalization

Now consider the feedback system

$$
\begin{aligned}
\dot{x} & =A x+B w \\
z & =C x+D w \\
w & =\Delta z
\end{aligned}
$$

with additional feedthrough term $D w$

We assume that matrix $1-\Delta D$ is non-singular $=$ well-posedness of feedback interconnection so that we can write

$$
\begin{gathered}
w=\Delta z=\Delta(C x+D w) \\
(1-\Delta D) w=\Delta C x \\
w=(1-\Delta D)^{-1} \Delta C x
\end{gathered}
$$

and derive the linear fractional transformation (LFT) uncertainty description

$$
\dot{x}=A x+B w=\left(A+B(1-\Delta D)^{-1} \Delta C\right) x
$$

Norm-bounded LFT uncertainty

The system with norm-bounded LFT uncertainty

$$
\dot{x}=\left(A+B(1-\Delta D)^{-1}\right) x \quad\|\Delta\|_{2} \leq \rho
$$

is quadratically stable iff there exists a matrix P solving the LMIs

$$
\left[\begin{array}{cc}
A^{\prime} P+P A+C^{\prime} C & P B+C^{\prime} D \\
B^{\prime} P+D^{\prime} C & D^{\prime} D-\gamma^{2} \mathbf{1}
\end{array}\right] \prec \mathbf{0} \quad P \succ \mathbf{0}
$$

Notice the lower right block $D^{\prime} D-\gamma^{2} \mathbf{1} \prec \mathbf{0}$ which ensures non-singularity of $1-\Delta D$ hence well-posedness

LFT modeling can be used more generally to cope with rational functions of uncertain parameters, but this is not covered in this course..

Sector-bounded uncertainty

Consider the feedback system

$$
\begin{aligned}
\dot{x} & =A x+B w \\
z & =C x+D w \\
w & =f(z)
\end{aligned}
$$

where vector function $f(z)$ satisfies

$$
z^{\star} f(z) \geq 0 \quad f(0)=0
$$

which is a sector condition

$f(z)$ can also be considered as an uncertainty but also as a non-linearity

Quadratic stability for sector-bounded

 uncertaintyWe want to establish quadratic stability with the quadratic Lyapunov matrix $V(x)=x^{\star} P x$ whose derivative

$$
\begin{aligned}
\dot{V}(x) & =2 x^{\star} P(A x+B f(z)) \\
& =\left[\begin{array}{c}
x \\
f(z)
\end{array}\right]^{\star}\left[\begin{array}{cc}
A^{\prime} P+P A & P B \\
B^{\prime} P & 0
\end{array}\right]\left[\begin{array}{c}
x \\
f(z)
\end{array}\right]
\end{aligned}
$$

must be negative when

$$
\begin{aligned}
2 z^{\star} f(z) & =2(C x+D f(z))^{\star} f(z) \\
& =\left[\begin{array}{c}
x \\
f(z)
\end{array}\right]^{\star}\left[\begin{array}{cc}
0 & C^{\prime} \\
C & D+D^{\prime}
\end{array}\right]\left[\begin{array}{c}
x \\
f(z)
\end{array}\right]
\end{aligned}
$$

is non-negative, so we invoke the S -procedure to derive the LMIs

$$
\left[\begin{array}{cc}
A^{\prime} P+P A & P B+C^{\prime} \\
B^{\prime} P+C & D+D^{\prime}
\end{array}\right] \prec \mathbf{0} \quad P \succ \mathbf{0}
$$

This is called the positive-real lemma

Beyond quadratic stability: PDLF

Quadratic stability:

- arbitrary fast variation of parameters
- computationally tractable
- conservative or pessimistic (worst-case)

Robust stability:

- very slow variation of parameters
- computationally difficult (in general)
- exact (is it really relevant ?)

Conservatism stems from single Lyapunov function for the whole uncertainty set

For example, given an LTI system affected by box, or interval uncertainty

$$
\dot{x}(t)=A(\lambda(t)) x(t)=\left(A_{0}+\sum_{i=1}^{N} \lambda_{i}(t) A_{i}\right) x(t)
$$

where

$$
\lambda \in \Lambda=\left\{\lambda_{i} \in\left[\underline{\lambda_{i}}, \overline{\lambda_{i}}\right]\right\}
$$

we may consider parameter-dependent Lyapunov matrices, such as

$$
P(\lambda(t))=P_{0}+\sum_{i=1}^{N} \lambda_{i}(t) P_{i}
$$

Polytopic Lyapunov certificates

Quadratic Lyapunov function $V(x)=x^{\star} P(\lambda) x$ must be positive with negative derivative along system trajectories hence

$$
P(\lambda)=\sum_{i=1}^{N} \lambda_{i} P_{i} \quad P(\lambda) \succ \mathbf{0} \quad \forall \lambda \in \Lambda
$$

and we have to solve parameterized LMIs

$$
A^{\prime}(\lambda) P(\lambda)+P(\lambda) A(\lambda)+\dot{P}(\lambda) \prec 0 \quad \forall \lambda \in \Lambda
$$

Parameterized LMIs feature non-linear terms in λ so it is not enough to check vertices of \wedge, denoted by vert \wedge

Time-invariant uncertainty and PDLF

Suppose that uncertain parameter λ is constant $\dot{P}(\lambda)=0$

We must $x \in \mathbb{R}^{n \times(n+1) / 2}$ s.t.
$F(x, \lambda)=\left[\begin{array}{cc}P(\lambda) & \mathbf{0} \\ \mathbf{0} & -A^{\prime}(\lambda) P(\lambda)-P(\lambda) A(\lambda)\end{array}\right] \succ \mathbf{0}$
for all $\lambda \in \Lambda=$ infinite number of LMIs

Lagrangian duality or projection lemma leads to the sufficient condition
$\exists N$ matrices $P_{i} \in \mathbb{S}_{n}$ and a matrix $H \in \mathbb{R}^{2 n \times n}$

$$
\begin{aligned}
& P_{i} \succ \mathbf{0} \quad \forall i=1, \cdots, N \\
& {\left[\begin{array}{cc}
\mathbf{0} & P_{i} \\
P_{i} & \mathbf{0}
\end{array}\right]+\left[\begin{array}{c}
A_{i}^{\prime} \\
-\mathbf{1}
\end{array}\right] H^{\prime}+H\left[\begin{array}{cc}
A_{i} & -\mathbf{1}
\end{array}\right] \prec \mathbf{0}}
\end{aligned}
$$

A general relaxation procedure

Objective:

> Solving a finite number of LMIs instead of an infinite number of LMIs

A sufficient condition to ensure feasibility of the parameter-dependent $\operatorname{LMI} F(x, \lambda)$ is

$$
\begin{aligned}
& F(x, \lambda) \succ\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & h(\lambda) \mathbf{1}
\end{array}\right] \\
& h(\lambda) \geq 0
\end{aligned}
$$

for all $\lambda \in \Lambda$ and $h(\lambda) \in \mathbb{R}\left[\lambda_{1}, \cdots, \lambda_{N}\right]$

- $h(\lambda)$ is chosen to get LMIs conditions independent from λ
- coefficients of $h(\lambda)$ may be considered as additional variables

Multiconvexity

For

$$
h(\lambda)=\sum_{i=1}^{N} \lambda_{i}^{2}
$$

we get the following sufficient conditions

$$
\begin{gathered}
\exists N P_{i} \succ \mathbf{0} \text { and } \exists N \lambda_{i} \in \mathbb{R} \\
A_{i}^{\prime} P_{i}+P_{i} A_{i} \prec-\lambda_{i} \mathbf{1} \quad \forall i=1, \cdots, N \\
A_{i}^{\prime} P_{i}+P_{i} A_{i}+A_{j}^{\prime} P_{j}+P_{j} A_{j} \\
-\left(A_{i}^{\prime} P_{j}+P_{j} A_{i}+A_{j}^{\prime} P_{i}+P_{i} A_{j}\right) \succeq-\left(\lambda_{i}+\lambda_{j}\right) \mathbf{1} \\
\forall 1 \leq i<j \leq N
\end{gathered}
$$

which is a finite set of vertex LMIs. Proof is based on multiconvexity of quadratic functions

Nota: multiconvexity of h is ensured if

$$
\frac{\partial^{2} h(x)}{\partial x_{i}^{2}} \geq 0 \quad \forall i=1, \cdots, n
$$

Another sufficient condition

For

$$
h(\lambda)=\sum_{i=1}^{N} \sum_{j>i}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

we get the following sufficient conditions

$$
\begin{aligned}
& \exists N P_{i} \succ \mathbf{0} \\
& A_{i}^{\prime} P_{i}+P_{i} A_{i} \prec-\mathbf{1} \quad \forall i=1, \cdots, N \\
& A_{i}^{\prime} P_{j}+P_{j} A_{i}+A_{j}^{\prime} P_{i}+P_{i} A_{j} \prec \frac{2}{N-1} \mathbf{1} \\
& \forall 1 \leq i<j \leq N
\end{aligned}
$$

Nota: identical procedures are possible with

$$
F(\lambda)=\sum_{i=1}^{N} \lambda_{i} F_{i} \quad G(\lambda)=\sum_{i=1}^{N} \lambda_{i} G_{i}
$$

