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State-space methods

Developed by Kalman and colleagues in the 1960s as
an alternative to frequency-domain techniques (Bode,
Nichols...) for optimal control and estimation

RADAR SRC-584

Starting in the 1980s, numerical analysts developed
powerful linear algebra routines for matrix equations:
numerical stability, low computational complexity, large-
scale problems

Matlab launched by Cleve Moler (1977-1984) heavily
relies on LINPACK, EISPACK & LAPACK packages

Matlab toolboxes development during the eighties and
explosion for the millenium
• Math and analysis (optimization, statistics, spline...)
• Control (robust, predictive, fuzzy...)
• Signal and image processing (wavelet, identification...)
• Finance and economics (financial, GARCH...)



Linear systems and Lyapunov stability

The continuous-time linear time invariant (LTI)
system

ẋ(t) = Ax(t) x(0) = x0

where x(t) ∈ Rn is asymptotically stable,
meaning

lim
t→∞

x(t) = 0 ∀ x0 6= 0

if and only if

• there exists a quadratic Lyapunov function
V (x) = x′Px such that

V (x(t)) > 0
V̇ (x(t)) < 0

along system trajectories
• or matrix A satisfies

max
1≤i≤n

real λi(A) < 0



Linear systems and Lyapunov stability (2)

Note that V (x) = x′Px = x′(P + P ′)x/2
so that Lyapunov matrix P can be chosen
symmetric without loss of generality

Since V̇ (x) = ẋ′Px + x′P ẋ = x′A′Px + x′PAx positivity
of V (x) and negativity of V̇ (x) along system trajectories
can be expressed as an LMI

∃ P ∈ Sn :

 −
[

1 A′
] [

0 P
P 0

] [
1
A

]
0

0 P

 � 0

Matrices P satisfying Lyapunov’s LMI with A =
[

0 1
−1 −2

]



Linear systems and Lyapunov stability (3)

The Lyapunov LMI can be written equivalently

as the Lyapunov equation

A′P + PA + Q = 0

where Q � 0

The following statements are equivalent

• the system ẋ = Ax is asymptotically stable

• for some matrix Q � 0 the matrix P solving

the Lyapunov equation satisfies P � 0

• for all matrices Q � 0 the matrix P solving

the Lyapunov equation satisfies P � 0

The Lyapunov LMI can be solved numerically
by solving the linear system of n(n+1)/2 equa-
tions in n(n + 1)/2 unknowns

(A′ ⊕A′)svec(P ) = (A′ ⊗ 1 + 1⊗A′)svec(P ) = −svec(Q)



Theorem of alternatives and Lyapunov LMI

Recall the theorem of alternatives for LMI

F (x) = F0 +
n∑

i=1

xiFi

Exactly one statement is true
• there exists x s.t. F (x) � 0
• there exists a nonzero Z � 0 s.t.

trace F0Z ≤ 0 and trace FiZ = 0, i = 1, · · · , n

Alternative to Lyapunov LMI

F (x) =

[
−A′P − PA 0

0 P

]
� 0

is the existence of a nonzero matrix

Z =

[
Z1 0
0 Z2

]
� 0

such that

AZ1 + Z1A′ − Z2 = 0



Discrete-time Lyapunov LMI

Similarly, the discrete-time LTI system

xk+1 = Axk x(0) = x0

is asymptotically stable iff
• there exists a quadratic Lyapunov function V (x) =
x′Px such that

V (xk) > 0
V (xk+1)− V (xk) < 0

along system trajectories
• equivalently, matrix A satisfies

max
1≤i≤n

|λi(A)| < 1

This can be expressed as an LMI

∃ P ∈ Sn :

 [
1 A′ ] [

P 0
0 −P

] [
1
A

]
0

0 P

 � 0



D stability regions

Let Di ∈ Cd×d and

D = {s ∈ C : D0 + D1s + D?
1s? + D2s?s ≺ 0}

be a region of the complex plane

Matrix A is said D-stable if Λ(A) ∈ D

Equivalent to generalized Lyapunov LMI

∃ P ∈ Sn : −
[

1 1⊗A′ ] [
D0 D1

D?
1 D2

]
⊗ P

[
1

1⊗A

]
0

0 P

 � 0

Literally replace s1 with 1⊗A and D with D ⊗ P !



D stability regions (2)

• symmetric with respect to real axis
• convex for D2 � 0 or not
• parabolae, hyperbolae, ellipses...
• intersections of D regions

A particular case is given by LMI regions

D = {s ∈ C : D(s) = D0 + D1s + D?
1s? ≺ 0}

such as

D dynamics
real(s) < −α dominant behavior
|s− α| < r oscillations
real(s) tan θ < −|imag(s)| damping cone

α

r

Im

Reθ

Example:

D0 = diag(0, α1 − r2,−2α2)
D1 = diag(Dθ,−α1,1)
D2 = diag(0,1,0)



Stability as a quadratic optimization problem

D-stability of matrix A can be cast as a quadratic

optimization problem (d = 1)

Λ(A) ⊂ D iff µ > 0 where

µ = min
q 6=0

q?(A− s1)?(A− s1)q

s.t. s ∈ DC

where DC complementary of D in C

Equivalently, (p = sq)

µ = min
q 6=0

[
q? p?

] [
A′

−1

] [
A −1

] [
q
p

]

s.t.
[

q p
]
D

[
q?

p?

]
� 0



Lyapunov matrix as Lagrangian variable

Define A = [A − 1]

If ∃ P � 0 such that:[
q? p?

]
A′A

[
q
p

]
> tr

[
P

[
q p

]
D

[
q?

p?

]]
then µ∗ > 0 and equivalently

D ⊗ P −A′A ≺ 0

By projection

[
1
A

]′ [
d0P d1P
d?
1P d2P

] [
1
A

]
≺ 0 P � 0

we obtain the generalized Lyapunov LMI

Lyapunov matrix P can be interpreted as a

Lagrange dual variable or multiplier



Rank-one LMI problem

Define Q = [1 0] and P = [0 1]
Define also dual map

FD(P ) =

[
Q
P

]′ [
d0P d1P
d?
1P d2P

] [
Q
P

]
= D ⊗ P

such that trace FD(P )X = trace F (X)P

X is the non-zero rank-one matrix

X = xx? =

[
q
p

] [
q
p

]?

� 0

It follows that LMI

A′A � FD(P )
P � 0

is feasible iff µ > 0 in the primal

µ = min
X 6=0

traceA′AX

s.t. F (X) � 0
X � 0
rank X = 1



Alternatives for Lyapunov

Define the adjoint map

G(Z1, Z2) = Z2 − [1 A]

[
d0Z1 d1Z1
d?
1Z1 d2Z1

]
[1 A]′

then from SDP duality µ > 0 iff dual LMI

G(Z1, Z2) = 0
Z1 � 0 and Z2 � 0

rank Z1 = 1

is infeasible

• This is the alternative LMI obtained before

so we can remove the rank constraint !

• Adequate alternative proves the necessity for

the dual



Uncertain systems and robustness

When modeling systems we face several sources
of uncertainty, including

- non-parametric (unstructured) uncertainty
• unmodeled dynamics
• truncated high frequency modes
• non-linearities
• effects of linearization, time-variation..

- parametric (structured) uncertainty
• physical parameters vary within given bounds
• interval uncertainty (l∞)
• ellipsoidal uncertainty (l2)
• diamond uncertainty (l1)

- How can we overcome uncertainty ?
• model predictive control
• adaptive control
• robust control

A control law is robust if it is valid over the
whole range of admissible uncertainty (can be
designed off-line, usually cheap)



Uncertainty modeling

Consider the continuous-time LTI system

ẋ(t) = Ax(t) A ∈ A

where matrix A belong to an uncertainty set A

For unstructured uncertainties we consider
norm-bounded matrices

A = {A + B∆C : ‖∆‖2 ≤ ρ}

For structured uncertainties we consider
polytopic matrices

A = co {A1, . . . , AN}

There are other more sophisticated uncertainty
models not covered here

Uncertainty modeling is an important and dif-
ficult step in control system design !



Robust stability

The continuous-time LTI system

ẋ(t) = Ax(t) A ∈ A

is robustly stable when it is asymptotically
stable for all A ∈ A

If S denotes the set of stable matrices, then
robust stability is ensured as soon as

A ⊂ S
Unfortunately S is a non-convex cone !

Non-convex set
of continuous-time

stable matrices[
−1 x
y z

]



Robust and quadratic stability

Because of non-convexity of the cone of stable

matrices, robust stability is sometimes difficult

to check numerically, meaning that

computational cost is an exponential function
of the number of system parameters

Remedy:

The continuous-time LTI system ẋ(t) = Ax(t)

is quadratically stable if its robust stability can

be guaranteed with the same quadratic Lya-

punov function for all A ∈ A

Obviously, quadratic stability is more conser-

vative than robust stability:

Quadratic stability ⇒ Robust stability

but the converse is not always true



Quadratic stability for polytopic uncertainty

The system with polytopic uncertainty

ẋ(t) = Ax(t) A ∈ co {A1, . . . , AN}
is quadratically stable iff there exists a matrix
P solving the LMIs

A′iP + PAi ≺ 0 P � 0

Proof by convexity

N∑
i=1

λi(A
′
iP + PAi) = A′(λ)P + PA(λ) ≺ 0

for all λi ≥ 0 such that
N∑

i=1

λi = 1

This is a vertex result: stability of a whole
family of matrices is ensured by stability of the
vertices of the family

Usually vertex results ensure computational tractabil-
ity



Quadratic and robust stability: example

Consider the uncertain system matrix

A(δ) =

[
−4 4
−5 0

]
+ δ

[
−2 2
−1 4

]

with real parameter δ such that |δ| ≤ ρ

= polytope with vertices A(−ρ) and A(ρ)

stability max ρ
quadratic 0.7526
robust 1.6666



Quadratic stability for norm-bounded

uncertainty

The system with norm-bounded uncertainty

ẋ(t) = (A + B∆C)x(t) ‖∆‖2 ≤ ρ

is quadratically stable iff there exists a matrix

P solving the LMIs

[
A′P + PA + C′C PB

B′P −γ2I

]
≺ 0 P � 0

with γ−1 = ρ

This is the bounded-real lemma

We can maximize the level of allowed uncer-

tainty by minimizing scalar γ



Norm-bounded uncertainty as feedback

Uncertain system

ẋ = (A + B∆C)x

can be written as the feedback system

ẋ = Ax + Bw
z = Cx
w = ∆z

∆

w z

x = Ax+Bw
.

so that for the Lyapunov function V (x) = x?Px
we have

V̇ (x) = 2x?P ẋ
= 2x?P (Ax + Bw)
= x?(A′P + PA)x + 2x?PBw

=

[
x
w

]? [
A′P + PA PB

B′P 0

] [
x
w

]



Norm-bounded uncertainty as feedback (2)

Since ∆?∆ � ρ2I it follows that

w?w = z?∆?∆z � ρ2z?z
⇐⇒

w?w − ρ2z?z =

[
x
w

]? [
−C′C 0

0 γ21

] [
x
w

]
≤ 0

Combining with the quadratic inequality

V̇ (x) =

[
x
w

]? [
A′P + PA PB

B′P 0

] [
x
w

]
< 0

and using the S-procedure we obtain[
A′P + PA PB

B′P 0

]
≺

[
−C′C 0

0 γ21

]
or equivalently

[
A′P + PA + C′C PB

B′P −γ21

]
≺ 0 P � 0



Norm-bounded uncertainty: generalization

Now consider the feedback system

ẋ = Ax + Bw
z = Cx+Dw
w = ∆z

with additional feedthrough term Dw

We assume that matrix 1−∆D is non-singular

= well-posedness of feedback interconnection

so that we can write

w = ∆z = ∆(Cx + Dw)
(1−∆D)w = ∆Cx

w = (1−∆D)−1∆Cx

and derive the linear fractional transformation

(LFT) uncertainty description

ẋ = Ax + Bw = (A + B(1−∆D)−1∆C)x



Norm-bounded LFT uncertainty

The system with norm-bounded LFT uncer-

tainty

ẋ =
(
A + B(1−∆D)−1

)
x ‖∆‖2 ≤ ρ

is quadratically stable iff there exists a matrix

P solving the LMIs

[
A′P + PA + C′C PB + C′D

B′P + D′C D′D − γ21

]
≺ 0 P � 0

Notice the lower right block D′D − γ21 ≺ 0

which ensures non-singularity of 1−∆D hence

well-posedness

LFT modeling can be used more generally to

cope with rational functions of uncertain pa-

rameters, but this is not covered in this course..



Sector-bounded uncertainty

Consider the feedback system

ẋ = Ax + Bw
z = Cx + Dw
w = f(z)

where vector function f(z) satisfies

z?f(z) ≥ 0 f(0) = 0

which is a sector condition

f(z) can also be considered as an uncertainty
but also as a non-linearity



Quadratic stability for sector-bounded

uncertainty

We want to establish quadratic stability with

the quadratic Lyapunov matrix V (x) = x?Px

whose derivative

V̇ (x) = 2x?P (Ax + Bf(z))

=

[
x

f(z)

]? [
A′P + PA PB

B′P 0

] [
x

f(z)

]
must be negative when

2z?f(z) = 2(Cx + Df(z))?f(z)

=

[
x

f(z)

]? [
0 C′

C D + D′

] [
x

f(z)

]
is non-negative, so we invoke the S-procedure

to derive the LMIs

[
A′P + PA PB + C′

B′P + C D + D′

]
≺ 0 P � 0

This is called the positive-real lemma



Beyond quadratic stability: PDLF

Quadratic stability:
• arbitrary fast variation of parameters
• computationally tractable
• conservative or pessimistic (worst-case)

Robust stability:
• very slow variation of parameters
• computationally difficult (in general)
• exact (is it really relevant ?)

Conservatism stems from single Lyapunov function for
the whole uncertainty set

For example, given an LTI system affected by box,
or interval uncertainty

ẋ(t) = A(λ(t))x(t) = (A0 +
N∑

i=1

λi(t)Ai)x(t)

where

λ ∈ Λ = {λi ∈ [λi, λi]}
we may consider parameter-dependent Lyapunov matri-
ces, such as

P (λ(t)) = P0 +
N∑

i=1

λi(t)Pi



Polytopic Lyapunov certificates

Quadratic Lyapunov function V (x) = x?P (λ)x must be
positive with negative derivative along system trajecto-
ries hence

P (λ) =
N∑

i=1

λiPi P (λ) � 0 ∀ λ ∈ Λ

and we have to solve parameterized LMIs

A′(λ)P (λ) + P (λ)A(λ) + Ṗ (λ) ≺ 0 ∀λ ∈ Λ

Parameterized LMIs feature non-linear terms in λ so
it is not enough to check vertices of Λ, denoted by vertΛ

λ2
1 − λ1 + λ2 ≥ 0 on vert ∆

but not everywhere on ∆ = [0, 1]× [0, 1]



Time-invariant uncertainty and PDLF

Suppose that uncertain parameter λ is con-

stant Ṗ (λ) = 0

We must x ∈ Rn×(n+1)/2 s.t.

F (x, λ) =

[
P (λ) 0

0 −A′(λ)P (λ)− P (λ)A(λ)

]
� 0

for all λ ∈ Λ = infinite number of LMIs

Lagrangian duality or projection lemma leads

to the sufficient condition

∃ N matrices Pi ∈ Sn and a matrix H ∈ R2n×n

Pi � 0 ∀ i = 1, · · · , N[
0 Pi
Pi 0

]
+

[
A′i
−1

]
H ′ + H

[
Ai −1

]
≺ 0



A general relaxation procedure

Objective:

Solving a finite number of LMIs
instead of an infinite number of LMIs

A sufficient condition to ensure feasibility of

the parameter-dependent LMI F (x, λ) is

F (x, λ) �
[

0 0
0 h(λ)1

]

h(λ) ≥ 0

for all λ ∈ Λ and h(λ) ∈ R[λ1, · · · , λN ]

• h(λ) is chosen to get LMIs conditions inde-

pendent from λ

• coefficients of h(λ) may be considered as ad-

ditional variables



Multiconvexity

For

h(λ) =
N∑

i=1

λ2
i

we get the following sufficient conditions

∃ N Pi � 0 and ∃ N λi ∈ R

A′iPi + PiAi ≺ −λi1 ∀ i = 1, · · · , N

A′iPi + PiAi + A′jPj + PjAj

−(A′iPj + PjAi + A′jPi + PiAj) � −(λi + λj)1

∀ 1 ≤ i < j ≤ N

which is a finite set of vertex LMIs. Proof is
based on multiconvexity of quadratic functions

Nota: multiconvexity of h is ensured if

∂2h(x)

∂x2
i

≥ 0 ∀ i = 1, · · · , n



Another sufficient condition

For

h(λ) =
N∑

i=1

∑
j>i

(λi − λj)
2

we get the following sufficient conditions

∃ N Pi � 0

A′iPi + PiAi ≺ −1 ∀ i = 1, · · · , N

A′iPj + PjAi + A′jPi + PiAj ≺
2

N − 1
1

∀ 1 ≤ i < j ≤ N

Nota: identical procedures are possible with

F (λ) =
N∑

i=1

λiF i G(λ) =
N∑

i=1

λiGi


