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State-space methods

Developed by Kalman and colleagues in the 1960s as
an alternative to frequency-domain techniques (Bode,
Nichols...) for optimal control and estimation

RADAR SRC-584

Starting in the 1980s, numerical analysts developed
powerful linear algebra routines for matrix equations:
numerical stability, low computational complexity, large-
scale problems

Matlab launched by Cleve Moler (1977-1984) heavily
relies on LINPACK, EISPACK & LAPACK packages

Matlab toolboxes development during the eighties and
explosion for the millenium

e Math and analysis (optimization, statistics, spline...)
e Control (robust, predictive, fuzzy...)

e Signal and image processing (wavelet, identification...)
e Finance and economics (financial, GARCH...)



Linear systems and Lyapunov stability

The continuous-time linear time invariant (LTI)
system

2(t) = Az(t) x(0) = xq

where z(t) € R" is asymptotically stable,
meaning

im z(t) =0 V¥ xg#0

t—00

if and only if

e there exists a quadratic Lyapunov function
V(z) = 2’ Px such that

V(z(t)) > O
V(z(t)) < O

along system trajectories
e Or matrix A satisfies

max real \;(A) <0
1<i<n



Linear systems and Lyapunov stability (2)

Note that V(z) = 'Px = 2/(P + P )z /2
so that Lyapunov matrix P can be chosen
symmetric without loss of generality

Since V(z) = 2'Px + ' Pr = o' A'Px + ' PAzx positivity
of V(x) and negativity of V(x) along system trajectories
can be expressed as an LMI

Spes,: | L1 A’][g ]g”i] 0 ~ 0
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Matrices P satisfying Lyapunov’'s LMI with A = { _01 _12 }



Linear systems and Lyapunov stability (3)

The Lyapunov LMI can be written equivalently
as the Lyapunov equation

AP+PA4+Q=0
where @Q > 0

The following statements are equivalent

e the system z = Ax is asymptotically stable
e for some matrix Q > 0 the matrix P solving
the Lyapunov equation satisfies P = 0

e for all matrices Q >~ 0 the matrix P solving
the Lyapunov equation satisfies P = 0

The Lyapunov LMI can be solved numerically
by solving the linear system of n(n+1)/2 equa-

tions in n(n 4+ 1)/2 unknowns
(A"® ADsvec(P) = (A’ ®1+ 1 A)svec(P) = —svec(Q)



Theorem of alternatives and Lyapunov LMI

Recall the theorem of alternatives for LMI

n
F(z) =Fo+ ) z;F;
i=1
Exactly one statement is true
e there exists = s.t. F(z) =0
e there exists a nonzero Z > O s.t.
trace FpZ <0 and trace F;,Z =0,1=1,--- ,n

Alternative to Lyapunov LMI

F(z) =

_A'P_ PA 0]
, p| =0

is the existence of a nonzero matrix

_ 141 O
=[5 4]

such that

AZ1+ Z1A" — 75 =0



Discrete-time Lyapunov LMI
Similarly, the discrete-time LTI system
Tp4+1 = Az, x(0) = xg

is asymptotically stable iff
e there exists a quadratic Lyapunov function V(x) =
' Px such that

V(azk) >0
V($k+1) — V(ack;) <0

along system trajectories
e cquivalently, matrix A satisfies

max |[N(A)] < 1

1<i<n

This can be expressed as an LMI

, P 0 1
dPesS,: [1A}[O —P][A] L =0
0 =



D stability regions

Let D; € C%*d and

D={seC: Do—|—D15—|—D’fs*—|—D23*S<O}

be a region of the complex plane

Matrix A is said D-stable if A(A) € D

Equivalent to generalized Lyapunov LMI

dPesS,:

;1| Do Dr 1
—[1 1®A][D{ D2]®P[1®A] VR
0 p

Literally replace s1 with 1 ® A and D with D® P !



D stability regions (2)

e symmetric with respect to real axis
e convex for D, > 0 or not

e parabolae, hyperbolae, ellipses...

e intersections of D regions

A particular case is given by LMI regions
D={seC: D(s) =DO—|-D18—|-D1(8*-<O}

such as

D dynamics
real(s) < —« dominant behavior
s —al <r oscillations

real(s)tanf < —|imag(s)| damping cone

Alm

\ Example:

0 Re Do = diag(0, a1 — 7“2, —2a5)
D, = diag(DQ, —Q1, 1)
o D2:d|ag(07170)




Stability as a quadratic optimization problem

D-stability of matrix A can be cast as a quadratic
optimization problem (d = 1)

A(A) C D iff u > 0 where

= min ¢~(A—s1)*(A —sl)q
q70
st. seD¢

where D¢ complementary of D in C

Equivalently, (p = sq)




Lyapunov matrix as Lagrangian variable
Define A=[A —1]

If 4 >~ 0 such that:

a2 ] ol 1 vlo] ¢

then u* > 0 and equivalently
DPr—-—AA<0
By projection

/
1 ' [ doP dy 1
A] |88 k(4] <0 rro

we obtain the generalized Lyapunov LMI

Lyapunov matrix can be interpreted as a
LLagrange or multiplier



Rank-one LMI problem

Define @ =1[1 0] and P=[0 1]
Define also dual map

/
Depy — | € dol” di Q| _
=] |8 ][R =
such that trace FP(P)X = trace F(X)

X is the non-zero rank-one matrix
*

X =gx* = q 9 >0
p p
It follows that LMI
A'A -~ FP(P)
>~ 0
is feasible iff 4 > 0 in the primal
©u = min trace A/AX
X0
st. F(X)>0

X >0
rank X = 1



Alternatives for Lyapunov

Define the adjoint map

d d
G(Z1,22) = Zo—[1 A][d,? e ][1 Al
1 2
then from SDP duality pu > O iff LMI
G(71,72) =0
~ 0 and ~ 0
rank =1
is infeasible

e [ his is the alternative LMI obtained before
SO we can remove the rank constraint !
e Adequate alternative proves the necessity for

the dual



Uncertain systems and robustness

When modeling systems we face several sources
of uncertainty, including

- non-parametric (unstructured) uncertainty
e UnMmodeled dynamics
e truncated high frequency modes
e Non-linearities
e effects of linearization, time-variation..

- parametric (structured) uncertainty
e physical parameters vary within given bounds
e interval uncertainty (loo)
e cllipsoidal uncertainty (I»)
e diamond uncertainty (I1)

- How can we overcome uncertainty 7
e Mmodel predictive control

e adaptive control
e robust control

A control law is robust if it is valid over the
whole range of admissible uncertainty (can be
designed off-line, usually cheap)



Uncertainty modeling
Consider the continuous-time LTI system
2(t) = Ax(t) Ae A
where matrix A belong to an uncertainty set A

For unstructured uncertainties we consider
norm-bounded matrices

A={A+BAC : |A]z < p)

For structured uncertainties we consider
polytopic matrices

A=co{Aq,...,An}

There are other more sophisticated uncertainty
models not covered here

Uncertainty modeling is an important and dif-
ficult step in control system design !



Robust stability
The continuous-time LTI system
x(t) =Ax(t) Aec A

IS robustly stable when it is asymptotically
stable for all A€ A

If S denotes the set of stable matrices, then
robust stability is ensured as soon as

ACS
Unfortunately § is a non-convex cone |

Non-convex set
of continuous-time
stable matrices

[ 2]




Because of nhon-convexity of the cone of stable
matrices, robust stability is sometimes difficult
to check numerically, meaning that

computational cost is an exponential function
of the number of system parameters

Remedy:

The continuous-time LTI system z(t) = Ax(t)
is quadratically stable if its robust stability can
be guaranteed with the same quadratic Lya-
punov function for all A € A

Obviously, quadratic stability is more conser-
vative than robust stability:

Quadratic stability = Robust stability

but the converse is not always true



Quadratic stability for polytopic uncertainty

T he system with polytopic uncertainty

#(t) = Az(t) Acco{Aq,...,Axn}

IS quadratically stable iff there exists a matrix
P solving the LMIs

ALP 4+ PA; <0 P =0

Proof by convexity

N
> N(AP 4+ PA) =A (NP4 PAN) <0
1=1
N
for all A; > 0 such that > A\, =1
1=1

This is a vertex result: stability of a whole

family of matrices is ensured by stability of the
vertices of the family

Usually vertex results ensure computational tractabil-
ity



Quadratic and robust stability: example

Consider the uncertain system matrix

OB g B Bud

with real parameter § such that |§| < p
= polytope with vertices A(—p) and A(p)
stability | maxp

quadratic | 0.7526
robust 1.6666

+ d=0
4t | - |d|=1.6666
[d|<=0.7526




Quadratic stability for norm-bounded
uncertainty

The system with norm-bounded uncertainty

z(t) = (A+ BAC)z(t) [[All2<p

IS quadratically stable iff there exists a matrix
P solving the LMIs

B'P —~2]
with v~ 1 =

This is the bounded-real lemma

We can maximize the level of allowed uncer-
tainty by minimizing scalar ~



Norm-bounded uncertainty as feedback

Uncertain system

z = (A+ BAC)x
can be written as the feedback system

r = Ax+ Bw
z = (Cx
w = Az

—P X = Ax+Bw

A -——

so that for the Lyapunov function V(z) = z*Px
we have
V(x) 2¢* Px
2¢*P(Axz + Bw)
*(A'P 4+ PA)x + 2z*PBw
z |"[ AP+PA PB] [z
w B'P 0 w



Norm-bounded uncertainty as feedback (2)

Since A*A < p?] it follows that

wrw = 2*A*Az < p2z*z
<

* /
R S x —C'C 0 x
wrw pzz—[w] [ 0 721][w]§0

Combining with the quadratic inequality
*
: |z A'P+ PA PB x
R N A M B

and using the S-procedure we obtain

A'P+ PA PB . —-C'C 0
B'P 0 0 ~41

or equivalently

A'P+ PA+C'C PB
B'P —~21



Norm-bounded uncertainty: generalization

Now consider the feedback system

r = Ax+ Bw
z = Czxz+Dw
w = Az

with additional feedthrough term Dw

We assume that matrix 1 — AD is non-singular
— well-posedness of feedback interconnection
so that we can write
w= Az=A(Czx + Dw)
(1-AD)w = AC«x
w=(1-—AD)"1ACx

and derive the linear fractional transformation
(LFT) uncertainty description

t = Az + Bw = (A+ B(1 - AD)"1AC)z



Norm-bounded LFT uncertainty

The system with norm-bounded LFT uncer-
tainty

i=(A+B1-aD) ) [A2<p

IS quadratically stable iff there exists a matrix
P solving the LMIs

AP+ PA+C'C PB+C'D
[ BP+DC DD-~21|30 -0
Notice the lower right block D'D —~21 < 0
which ensures non-singularity of 1 — AD hence
well-posedness

LFT modeling can be used more generally to
cope with rational functions of uncertain pa-
rameters, but this is not covered in this course..



Sector-bounded uncertainty

Consider the feedback system

r = Ax+ Bw
z = (Cxz+ Dw
w = f(2)

where vector function f(z) satisfies

2*f(z) 20 f(0)=0

which is a sector condition

o(x) A

f(z) can also be considered as an uncertainty
but also as a non-linearity



Quadratic stability for sector-bounded
uncertainty

We want to establish quadratic stability with
the quadratic Lyapunov matrix V(x) = xz*Px
whose derivative
V(z) = 22*P(Az + Bf(2))
[ T ]*[A’P—l—PA PB] [ x ]
f(z) B'P 0 f(z)

must be negative when

227f(z) = 2(Cz+ Df(2))"f(2)
. x 0 C’ x
B [f(Z)] !C D—I-D’”f(Z)]

IS non-negative, so we invoke the S-procedure
to derive the LMIs

[A’P—I—PA PB4+ !

B'P+C D—I—D’]<O P >0

This is called the positive-real lemma



Beyond quadratic stability: PDLF

Quadratic stability:

e arbitrary fast variation of parameters

e computationally tractable

e conservative or pessimistic (worst-case)

Robust stability:

e very slow variation of parameters

e computationally difficult (in general)
e exact (is it really relevant ?7)

Conservatism stems from single Lyapunov function for
the whole uncertainty set

For example, given an LTI system affected by box,
or interval uncertainty

N
2(t) = AA®)z(t) = (Ao + > M) A)x(t)
=1

where
xeAN={\eN, \]}

we may consider parameter-dependent Lyapunov matri-
ces, such as

N
P(A@®) =P+ Z Ai(t) P
=i



Polytopic Lyapunov certificates

Quadratic Lyapunov function V(x) = z*P(\)x must be
positive with negative derivative along system trajecto-
ries hence

N
PA) =Y MNP PA) =0 VXA
i=1
and we have to solve parameterized LMIs

A V)P + POV)AN) + P(A) <0 VYAEA

Parameterized LMIs feature non-linear terms in A so
it is not enough to check vertices of A, denoted by vertA

A2 —A14+ X2 >0 o0n vert A
but not everywhere on A = [0, 1] x [0, 1]



Time-invariant uncertainty and PDLF

Suppose that uncertain parameter \ is con-
stant P(\) =0

We must = € Rnx(nt+1)/2 g ¢

P(N) 0 _
0 —A' WP = P(A)A)

for all A € A = infinite number of LMIs

F(xz,\) = 0

LLagrangian duality or projection lemma leads
to the sufficient condition
3 N matrices P, € S, and a matrix H € R2nxn

P~0 VYi=1,---,N

8 4] ot



Objective:

Solving a finite number of LMIs
instead of an infinite number of LMIs

A sufficient condition to ensure feasibility of
the parameter-dependent LMI F'(z, \) is

0 0
F(x,)\) = [O h()x)l]

h()\) > 0

for all Ae A and h()\) € R[A1, -+, AN]

e h()\) is chosen to get LMIs conditions inde-
pendent from A

e coefficients of h(\) may be considered as ad-
ditional variables



Multiconvexity
For
N
h() = Y A2
i=1

we get the following sufficient conditions

IN P =0and 3N A\ €R
A2P2+PZAZ'< -1 Ve=1,--- N
—(A}P; + PjA; + ALP, + PiA;) = —(N + A1
V1<i<j<N

which is a finite set of vertex LMIs. Proof is
based on multiconvexity of quadratic functions

Nota: multiconvexity of h is ensured if

9°h() >0 Vi=1,---.n

2 -
&Ci




Another sufficient condition

For

N
AO) =3 S (O — A2

i=1j>i
we get the following sufficient conditions

IN P =0

AP+ PA;<—-1 Vi=1,---,N

2

1
1
V1<i<j<N

Nota: identical procedures are possible with

N N
FO) =Y NF; GO) = NG



