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Handling nonconvexity

So far we have studied convex LMI sets

We have seen that additional variables, or

liftings can prove useful in describing convex

sets with LMIs

c

c2

1

convex set nonconvex set

But LMI are also frequently used to cope with

non-convex sets !

This chapter is dedicated to the joint use of

• convex LMI relaxations, and

• additional variables = liftings



Combinatorial optimization

Typical combinatorial optimization problem

min xTQx
s.t. xi ∈ {−1, 1}

Examples: MAXCUT, knapsack..

Antiweb AW 2
9 graph

Basic non-convex constraints

x2
i = 1

Exponential # of points = NP-hard problem !



LMI relaxation

Basic idea..

For each i replace non-convex constraint

x2
i = 1

with relaxed convex constraint

x2
i ≤ 1

which is an LMI constraint

[
1 xi
xi 1

]
� 0

Not bad idea, but we can do better..



(Better) LMI relaxation

Replace all non-convex constraints

x2
i = 1, i = 1,2, . . . , n

with relaxed LMI constraint

X =


1 x1 x2 · · · xn
x1 1 x12 x1n
x2 x12 1 x2n
... . . . ...
xn x1n x2n · · · 1

 � 0

where xij are additional variables = liftings

Always less conservative than previous

relaxation because X � 0 implies[
1 xi
xi 1

]
� 0

for each i = 1,2, . . . , n



Rank constrained LMI

In the original problem

g? = min xTQx

s.t. x2
i = 1

let X = xxT and then

xTQx = traceQxxT = traceQX

and

x2
i = Xii = 1

so that the problem can be written as a

rank constrained LMI

g? = min traceQX
s.t. Xii = 1

X � 0
rankX = 1



Example of rank constrained LMI

X =

[
y x
x 1

]

Convex set X � 0 (x2 ≤ y)

Non-convex set X � 0, rankX = 1 (x2 = y)



Relaxing the rank constraint

All the nonconvexity is concentrated into the

rank constraint, so we just drop it !

The obtained LMI relaxation is called

Shor’s relaxation

p? = min traceQX
s.t. Xii = 1

X � 0

Naum Zuselevich Shor (Inst Cybernetics, Kiev)

in the 1980s was among the first to recognize

the relevance of this approach

Since the feasible set is relaxed = enlarged

we get a lower bound for the original

non-convex optimization problem

p? ≤ g?



Shor’s relaxation

Systematic approach: can be applied to

general polynomial optimization problems

Example:

x2
1x2 = x1

{
x2

1 = x3

x3x2 = x1


X11 = X30

X32 = X10

X � 0
rankX = 1

 X11 = X30

X32 = X10

X � 0

Algorithm:

• introduce lifting variables to reduce

polynomials to quadratic and linear terms

• build the rank-one LMI problem

• solve the LMI problem by relaxing

the non-convex rank constraint



Relaxed LMI via duality

Consider again the original problem

min xTQx

s.t. x2
i = 1

and build Lagrangian

L(x, y) = xTQx−
∑
i yi(x

2
i − 1)

= xT (Q− Y )x+ trace Y

where Y is a diagonal matrix and Q − Y � 0

must be enforced to ensure that Lagrangian is

bounded below

Associated dual problem reads

max trace Y
s.t. Q− Y � 0

Y diagonal

This is an LMI problem !



Relaxed LMI via duality

The dual LMI problem

max trace Y
s.t. Q � Y

Y diagonal

has for dual the primal LMI problem

min traceQX
s.t. Xii = 1

X � 0

which is Shor’s original LMI relaxation !

More generally it can be shown that

LMI rank dropping
=

Lagrangian relaxation



Example of LMI relaxation

Original nonconvex 0-1 quadratic problem

g? = min 2x1x2 + 4x1x3 + 6x2x3

s.t. x2
i = 1

Q =

 0 1 2
1 0 3
2 3 0


Primal and dual LMI solutions

X =

 1 1 −1
1 1 −1
−1 −1 1

 Y =

 −1 0 0
0 −2 0
0 0 −5


yield lower bound

p? = traceQX = d? = trace Y = −8

(strong duality holds here)

Since rankX = 1 we recover here the optimum

x = [1 1 − 1]T

such that X = xxT and hence

g? = p? = d?

the relaxation is exact !



Example of LMI relaxation

LMI relaxation of ±1 constraints

X =

 1 X12 X13
X12 1 X23
X13 X23 1

 � 0}

So we optimize the linear objective function

traceQX = 2X12 + 4X13 + 6X23

and the optimal is a vertex [1 − 1 − 1]



How good are LMI relaxations ?

We have seen that we can obtain lower bounds

for non-convex polynomial minimization

with the help of liftings and relaxations

But can we measure the gap between the global

optimum and the relaxed optimum ?

In other words

How much conservative
are LMI relaxations ?

Answers only in a (too) few specific cases..



LMI relaxation for MAXCUT

MAXCUT combinatorial optimization problem:

given a graph with arcs (i, j) with weights aij ≥ 0
find a partition maximizing total weight of linking arcs

Non-convex quadratic problem

g? = max 1
4
∑
i,j aij(1− xixj)

s.t. x2
i = 1

with convex LMI relaxation

d? = max 1
4
∑
i,j aij(1−Xij)

s.t. Xii = 1
X = XT � 0

With a geometric proof using randomization

Goemans and Williamson showed in 1995 that

1 ≥
g?

d?
≥ 0.8786

independently of the data (graph) !



LMI relaxations for quadratic problems

Non-convex quadratic problem

g? = max xTAx

s.t. x2
i = 1

with convex LMI relaxation

d? = max traceAX
s.t. Xii = 1

X = XT � 0

For A � 0 Nesterov showed recently that

1 ≥
g?

d?
≥

2

π
= 0.6366



Beyond Shor’s relaxation

Recent work (2000) to narrow relaxation gap

• gradually adding lifting variables

• hierarchy of nested LMI relaxations

• theoretical proof of convergence

Dual point of views:

• theory of moments (Lasserre)

• sum-of-squares decompositions (Parrilo)

Tradeoff between conservatism and

computational effort



Polynomial multipliers

Polynomial optimization problem

g? = min g0(x)
s.t. gi(x) ≥ 0, i = 1, . . . ,m

where gi(x) are real-valued multivariate

polynomials in vector indeterminate x ∈ Rn

Non-convex problem in general (includes 0-1

or quadratic problems) = NP-hard

Since g? is the global optimum, polynomial

g0(x)− g? = q0(x) +
∑m
i=1 gi(x)qi(x) ≥ 0

is globally positive (non-negative)

Recall Lagrangian when building dual..

Multipliers qi(x) are now polynomials !



SOS polynomials

How can we ensure that a real valued

polynomial is globally non-negative ?

p(x) ≥ 0, ∀x ∈ Rn

Hilbert’s 17th pb about algebraic sum-of-squares

decompositions of rational functions (Intl Congress

of Mathematicians, Paris, 1900)

David Hilbert
(1862 Königsberg - 1943 Göttingen)



SOS polynomials

A form is a homogeneous polynomial

= all monomials have same degree

An obvious condition for a polynomial or form

p(x) to be non-negative is that is a

sum-of-squares (SOS) of other polynomials

p(x) =
∑
i q

2
i (x)

Unfortunately, not every non-negative

polynomial or form is SOS

p(x) SOS =⇒ p(x) ≥ 0

Sufficient non-negativity condition only..



Motzkin’s polynomial

Counterexample:

p(x) = 1 + x2
1x

2
2(x2

1 + x2
2 − 3)

cannot be written as an SOS but it is globally
non-negative (vanishes at |x1| = |x2| = 1)



SOS polynomials

Let n denote the number of variables and d the degree

Non-negativity and SOS are sometimes equivalent:

n = 2 bivariate forms
univariate polynomials (dehomogen)

d = 2 quadratic forms
n = 3, d = 4 quartic forms of 3 variables

In all other cases, the set of SOS polynomials (a cone)
is a subset of the set of non-negative polynomials

Checking whether a polynomial is non-negative
is NP-hard when d ≥ 4

Note however that the set of SOS polynomials is dense
in the set of polynomials nonnegative over the n-dimensional
box [−1, 1]n

Most importantly

The cone of SOS polynomials
is LMI representable

as we will see in the sequel..



LMI formulation of SOS polynomials

Polynomial

p(x) =
∑
α
pαx

α

of degree |α| ≤ 2d (α = vector of powers of

indeterminates x) is SOS iff

p(x) = zTXz X � 0

where z is a vector with all monomials with

degree not greater than d

Cholesky factorization

X = QTQ

such that

p(x) = zTQTQz = ‖Qz‖2 =
∑
i(Qz)2

i
=

∑
i q

2
i (x)

Number of squares q2
i (x) = rankX



LMI formulation of SOS polynomials

Comparing monomial coefficients in expression

p(x) = zTXz =
∑
α
pαx

α ≥ 0

we get an LMI

traceHαX = pα ∀α
X � 0

where Hα are Hankel-like matrices

SOS polynomials described by an intersection between
a subspace and the PSD cone



SOS example

Consider the homogeneous form

p(x) = 2x4
1 + 5x4

2 + 2x3
1x2 − x2

1x
2
2

= zTXz

With monomial vector

z =

 x2
1
x2

2
x1x2


a general bivariate form of degree 4 reads

zTXz = X11x
4
1 +X22x

4
2 + 2X31x

3
1x2

+2X32x1x
3
2 + (X33 + 2X21)x2

1x
2
2

p(x) SOS iff there exists X � 0 such that

X11 = 2 X22 = 5
2X31 = 2 2X32 = 0
X33 + 2X21 = −1



SOS example

One particular solution is

X =

 2 −3 1
−3 5 0
1 0 5

 = QTQ

with Cholesky factor

Q =
1√
2

[
2 −3 1
0 1 3

]
So p(x) is the sum of rankX = 2 squares

p(x) = 1
2
(2x2

1 − 3x2
2 + x1x2)2 + 1

2
(x2

2 + 3x1x2)2



Parametrized SOS

Consider the 4th-degree univariate polynomial

p(x) = 1 + 2ax+ x2 + 2bx3 + x4

parametrized in a, b ∈ R2

Which values of a and b
make p(x) non-negative
or equivalently SOS ?

Primal LMI

traceHiX = pi(a, b)
X � 0

with Hi Hankel matrices, and corresponding

reduced LMI (null-space parametrization)

 1 a −y
a 1 + 2y b
−y b 1

 � 0



Parametrized SOS (2)

For y = 0, p(x) is SOS iff a2 + b2 ≤ 1

For other values, LMI set in 3D space (a, b, y)

Projection in the plane (a, b)



Finding polynomial multipliers

Returning to our global optimization problem

g? = min g0(x)
s.t. gi(x) ≥ 0, i = 1, . . . ,m

the problem of finding polynomial multipliers

qi(x) such that

p(x) = g0(x)− g? = q0(x) +
m∑
i=1

gi(x)qi(x) ≥ 0

is SOS can be formulated as an LMI as soon

as the degrees of the qi(x) are fixed

Depending on parity let deg p(x) = 2k − 1 or

2k - then the LMI problem of finding an SOS

p(x) is referred to as the

LMI relaxation of order k



LMI relaxations: illustration

Non-convex quadratic problem

min h0(x) = −2x2
1 − 2x2

2 + 2x1x2 + 2x1 + 6x2 − 10
s.t. g1(x) = −x2

1 + 2x1 ≥ 0
g2(x) = −x2

1 − x2
2 + 2x1x2 + 1 ≥ 0

g3(x) = −x2
2 + 6x2 − 8 ≥ 0.

LMI relaxation built by replacing each

monomial xi1x
j
2 with lifting variable yij

For example, quadratic expression

g2(x) = −x2
1 − x

2
2 + 2x1x2 + 1 ≥ 0

is replaced with linear expression

−y20 − y02 + 2y11 + 1 ≥ 0

Lifting variables yij satisfy non-convex

relations such as y10y01 = y11 or y20 = y2
10



LMI relaxations: illustration (2)

Relax these non-convex relations by enforcing

LMI constraint

M1(y) =

 1 y10 y01
y10 y20 y11
y01 y11 y02

 � 0

Moment matrix of first order

relaxing monomials of degree up to 2

You have recognized Shor’s relaxation !

First LMI (=Shor’s) relaxation of original global

optimization problem is given by

min −2y20 − 2y02 + 2y11 + 2y10 + 6y01 − 10
s.t. −y20 + 2y10 ≥ 0

−y20 − y02 + 2y11 + 1 ≥ 0
−y02 + 6y01 − 8 ≥ 0
M1(y) � 0



LMI relaxations: illustration (3)

To build second LMI relaxation, we must

increase size of moment matrix so that it

captures expressions of degrees up to 4

Second order moment matrix reads

M2(y) =



1 y10 y01 y20 y11 y02
y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03
y20 y30 y21 y40 y31 y22
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04


� 0

Constraints are localized on moment matrices,

meaning that original constraint

g1(x) = −x2
1 + 2x1 ≥ 0

becomes localizing matrix constraint

M1(g1y) =

 −y20 + 2y10 −y30 + 2y20 −y21 + 2y11

−y30 + 2y20 −y40 + 2y30 −y31 + 2y21

−y21 + 2y11 −y31 + 2y21 −y22 + 2y12

 � 0



LMI relaxations: illustration (3)

Second LMI feasible set included in first LMI

feasible set, thus providing a tighter relaxation

min −2y20 − 2y02 + 2y11 + 2y10 + 6y01 − 10
s.t. M1(g1y) � 0, M1(g2y) � 0, M1(g3y) � 0

M2(y) � 0

Similary, we can build up 3rd, 4th, 5th LMI

relaxations..



Hierarchy of LMI relaxations

The LMI relaxation of order k reads

d?k = min
∑
α(g0)αyα

s.t. Mk(y) =
∑
αAαyα � 0

Mk−di(giy) =
∑
αA

gi
αyα � 0 ∀i

with y0 = 1 (normalization)

di is half the degree of gi(x)

Mk(y) is the moment matrix

Mk−di(giy) are the localization matrices

The dual LMI

p?k = max
∑
α traceA0X +

∑
i traceAgi0Xi

s.t. traceAαX
+
∑
i traceAgiαXi = (g0)α ∀α 6= 0

corresponds to p(x) SOS



Hierarchy of LMI relaxations

If feasible set gi(x) ≥ 0 is compact, and under

mild additional assumptions, Lasserre proved

in 2000 that

p?k = d?k ≤ g
?

with asymptotic convergence guarantee

limk→∞ p
?
k = g?

Moreover, in practice, convergence is fast:

p?k is very close to g? for small k



Camelback function

For the well-known six-hump camelback function

with two global optima and six local optima, the global
optimum is reached at the first LMI relaxation (k = 1)
without any problem splitting



LMI hierarchy: example

Quadratic problem

min −2x1 + x2 − x3

s.t. x1(4x1 − 4x2 + 4x3 − 20) + x2(2x2 − 2x3 + 9)
+x3(2x3 − 13) + 24 ≥ 0

x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6
0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3.

Number of LMI variables (M) and size of

relaxed LMI problem (N) increase quickly with

relaxation order:

Relaxation LMI opt M N
1 -6.0000 9 24
2 -5.6923 34 228
3 -4.0685 83 1200
4 -4.0000 164 4425
5 -4.0000 285 12936
6 -4.0000 454 32144

..yet fourth LMI relaxation solves globally the

problem



Complexity

d: overall polynomial degree (2δ = d or d+ 1)

m: number of polynomial constraints

n: number of polynomial variables

M : number of LMI decision variables

N : size of LMI

M =

(
n+ 2δ

2δ

)
− 1

N =

(
n+ δ
δ

)
+m

(
n+ δ − 1
δ − 1

)

When n is fixed:

• M grows polynomially in O(δn)

• N grows polynomially in O(mδn)



LMI relaxations: conclusion

LMI relaxations prove useful to solve general

non-convex polynomial optimization problems

Shor’s relaxation = rank dropping = Lagrangian

relaxation = first order LMI relaxation

Sometimes one can measure the gap between

the original problem and its relaxation

A hierarchy of successive LMI relaxations can

be built with additional lifting variables and

constraints

Theoretical guarantee of asymptotic conver-

gence to global optimum without any problem

splitting (no branch and bound scheme)


