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Geometry of LMI sets

Given symmetric matrices Fi we want to

characterize the shape in Rn of the LMI set

F = {x ∈ Rn : F (x) = F0 +
∑n
i=1 xiFi � 0}

Matrix F (x) is PSD iff its diagonal minors fi(x)

are nonnegative

Diagonal minors are multivariate polynomials

of indeterminates xi

So the LMI set can be described as

F = {x ∈ Rn : fi(x) ≥ 0, i = 1, . . . , n}

which is a semialgebraic set

Moreover, it is a convex set



Example of 2D LMI feasible set

F (x) =

 1− x1 x1 + x2 x1
x1 + x2 2− x2 0
x1 0 1 + x2

 � 0

Feasible iff all principal minors nonnegative

System of polynomial inequalities fi(x) ≥ 0

1st order minors

f1(x) = 1− x1 ≥ 0

f2(x) = 2− x2 ≥ 0

f3(x) = 1 + x2 ≥ 0



2nd order minors

f4(x) = (1− x1)(2− x2)− (x1 + x2)2 ≥ 0

f5(x) = (1− x1)(1 + x2)− x2
1 ≥ 0

f6(x) = (2− x2)(1 + x2) ≥ 0



3rd order minor

f7(x) = (1 + x2)((1− x1)(2− x2)− (x1 + x2)2)
−x2

1(2− x2) ≥ 0



LMI feasible set = intersection of

semialgebraic sets fi(x) ≥ 0

for i = 1, . . . ,7



Example of 3D LMI feasible set

LMI set

F = {x ∈ R3 :

 1 x1 x2
x1 1 x3
x2 x3 1

 � 0}

arising in SDP relaxation of MAXCUT

Semialgebraic set

F = {x ∈ R3 : 1 + 2x1x2x3 − (x2
1 + x2

2 + x2
3) ≥ 0,

x2
1 ≤ 1, x2

2 ≤ 1, x2
3 ≤ 1



Intersection of LMI sets

Intersection of LMI feasible sets

F (x) � 0 x1 ≥ −2 2x1 + x2 ≤ 0

is also an LMI F (x) 0 0
0 x1 + 2 0
0 0 −2x1 − x2

 � 0



SDP representability

LMI sets are convex semialgebraic sets.. but are all
convex semialgebraic sets representable by LMIs ?

We say that a convex set X ⊂ Rn is SDP representable
if there exists an affine mapping F (x, u) such that

x ∈ X ⇐⇒ ∃u : F (x, u) � 0

In words, if X is the projection of the solution set of the
LMI F (x, u) � 0 onto the x-space and u are additional,
or lifting variables

We say that a convex set X ⊂ Rn is LMI representable
if there exists an affine mapping F (x) such that

x ∈ X ⇐⇒ F (x) � 0

In other words, additional variables u are not allowed

Similarly, a convex function f : Rn → R is SDP or LMI
representable if its epigraph

F = {x, t : f(x) ≤ t}
is an SDP or LMI representable set



Conic quadratic forms

The Lorentz, or ice-cream cone

L = {
[
x
t

]
∈ Rn+1 : ‖x‖2 ≤ t}

is SDP (LMI) representable as

L =

{[
x
t

]
:

[
tIn x

xT t

]
� 0

}

As a result, all (convex quadratic) conic

representable sets are also SDP representable

The SOCP cone is included in the SDP cone

In the sequel we first give a list of

conic representable sets (following

Ben-Tal and Nemirovski)



Quadratic forms

The Euclidean norm {x, t ∈ R2 : ‖x‖2 ≤ t}
is conic representable by definition

The squared Euclidean norm

{x, t ∈ R2 : xTx ≤ t}

is conic representable as

∥∥∥∥∥
[

x
t−1

2

]∥∥∥∥∥
2
≤ t+1

2



Quadratic forms (2)

More generally, the convex quadratic set

{x ∈ Rn, t ∈ R : xTAx+ bTx+ c ≤ 0}
with A = AT � 0 is conic representable as

∥∥∥∥∥
[

Dx
t+bTx+c

2

]∥∥∥∥∥
2

≤ t−bTx−c
2

where D is the Cholesky factor of A = DTD



Who is Cholesky ?

André Louis Cholesky (1875-1918) was a French
military officer (graduated from Ecole Polytechnique)
involved in geodesy

He proposed a new procedure for solving
least-squares triangulation problems

He fell for his country during World War I

Work posthumously published in
Commandant Benôıt. Procédé du Commandant Cholesky.
Bulletin Géodésique, No. 2, pp. 67-77, Toulouse,
Privat, 1924.

Nice biography in
C. Brezinski. André Louis Cholesky. Bulletin of the
Belgian Mathematical Society, Vol. 3, pp. 45-50, 1996.





Hyperbola

The branch of hyperbola

{x, y ∈ R2 : xy ≥ 1, x > 0}

is conic representable as

∥∥∥∥∥
[
x−y

2
1

]∥∥∥∥∥
2
≤ x+y

2



Geometric mean of two variables

The hypograph of the geometric mean

of 2 variables

{x1, x2, t ∈ R3 : x1, x2 ≥ 0,
√
x1x2 ≥ t}

is conic representable as

∃u : u ≥ t,
∥∥∥∥∥
[

u
x1−x2

2

]∥∥∥∥∥
2
≤ x1+x2

2



Geometric mean of several variables

The hypograph of the geometric mean

of 2k variables

{x1, . . . , x2k, t ∈ R
2k+1 : xi ≥ 0,

√
x1 · · ·x2k ≥ t}

is also conic representable

Proof: iterate the previous construction

Example with k = 3:

(x1x2 · · ·x8)1/8 ≥ t
√
x1x2 ≥ x11√
x3x4 ≥ x12√
x5x6 ≥ x13√
x7x8 ≥ x14


√
x11x12 ≥ x21√
x13x14 ≥ x22

}
√
x21x22 ≥ x31 ≥ t

Useful idea in other SDP representability problems



Rational functions

Usually similar ideas, we can show that

the increasing rational power functions

f(x) = xp/q, x ≥ 0

with rational p/q ≥ 1, as well as the decreasing

g(x) = x−p/q, x ≥ 0

with rational p/q ≥ 0, are both

conic representable



Rational functions

Example:

{x, t : x ≥ 0, x7/3 ≤ t}

Start from conic representable

t̂ ≤ (x̂1 · · · x̂8)1/8

and replace

t̂ = x̂1 = x ≥ 0
x̂2 = x̂3 = x̂4 = t ≥ 0
x̂5 = x̂6 = x̂7 = x̂8 = 1

to get

x ≤ x1/8t3/8

x7/8 ≤ t3/8

x7/3 ≤ t

Same idea works for any rational p/q ≥ 1

• lift = use additional variables, and

• project in the space of original variables



Even power monomial

The epigraph of even power monomial

F = {x, t : x2p ≤ t}

where p is a positive integer

is conic representable

Note that

{x, t : x2p ≤ t}

⇐⇒

{x, y, t : x2 ≤ y}
{x, y, t : y ≥ 0, yp ≤ t}

both conic representable

Use lifting y and project back onto x, t

Similarly, even power polynomials are conic

representable (combinations of monomials)



Even power monomial

F = {x, t : x4 ≤ t}



Largest eigenvalue

The epigraph of the function largest eigenvalue

of a symmetric matrix

{X = XT ∈ Rn×n, t ∈ R : λmax(X) ≤ t}

is SDP (LMI) representable as

X � tIn

Eigenvalues of matrix

[
1 x1

x1 x2

]



Sums of largest eigenvalues

Let

Sk(X) =
k∑
i=1

λi(X), k = 1, . . . , n

denote the sum of the k largest eigenvalues of

an n-by-n symmetric matrix X

The epigraph

{X = XT ∈ Rn×n, t ∈ R : Sk(X) ≤ t}

is SDP representable as

t− ks− trace Z � 0
Z � 0

Z −X + sIn � 0

where Z and s are additional variables



Determinant of a PSD matrix

The determinant

det(X) =
n∏
i=1

λi(X)

is not a convex function of X, but the function

fq(X) = −detq(X), X = XT � 0

is convex when q ∈ [0, 1/n] is rational

The epigraph

{fq(X) ≤ t}
is SDP representable as[

X ∆
∆T diag ∆

]
� 0

t ≤ (δ1 · · · δn)q

since we know that the latter constraint (hypograph of
a concave monomial) is conic representable

Here ∆ is a lower triangular matrix of additional
variables with diagonal entries δi



Application: extremal ellipsoids

A little excursion in the world of ellipsoids and
polytopes..

Crystal structure

Various representations of an ellipsoid in Rn

E = {x ∈ Rn : xTPx+ 2xT q + r ≤ 0}
= {x ∈ Rn : (x− xc)TP (x− xc) ≤ 1}
= {x = Qy + xc ∈ Rn : yTy ≤ 1}
= {x ∈ Rn : ‖Rx− xc‖ ≤ 1}

where

Q = R−1 = P−1/2 � 0



Ellipsoid volume

Volume of ellipsoid E = {Qy + xc : yTy ≤ 1}

vol E = kn detQ

where kn is volume of n-dimensional unit ball

kn =


2(n+1)/2π(n−1)/2

n(n−2)!! for n odd

2πn/2

n(n/2−1)! for n even

n 1 2 3 4 5 6 7 8
kn 2.00 3.14 4.19 4.93 5.26 5.17 4.72 4.06

Unit ball has maximum volume for n = 5 !



Outer and inner ellipsoidal approximations

Let S ⊂ R
n be a solid = a closed bounded

convex set with nonempty interior

• the largest volume ellipsoid Ein contained in

S is unique and satisfies

Ein ⊂ S ⊂ nEin

• the smallest volume ellipsoid Eout containing

S is unique and satisfies

Eout/n ⊂ S ⊂ Eout

These are Löwner-John ellipsoids

Factor n reduces to
√
n if S is symmetric

How can these ellipsoids be computed ?



Ellipsoid in polytope

Let the intersection of hyperplanes

S = {x ∈ Rn : aTi x ≤ bi, i = 1, . . . ,m}
describe a polytope = bounded nonempty polyhedron

The largest volume ellipsoid contained in S is

E = {Qy + xc : yTy ≤ 1}
where Q, xc are optimal solutions of the LMI

max det1/nQ
Q � 0
‖Qai‖2 ≤ bi − aTi xc, i = 1, . . . ,m



Polytope in ellipsoid

Let the convex hull of vertices

S = conv {x1, . . . , xm}
describe a polytope

The smallest volume ellipsoid containing S is

E = {x : (x− xc)TP (x− xc) ≤ 1}
where P , xc = −P−1q are optimal solutions of the LMI

max t

t ≤ det1/nP[
P q
qT r

]
� 0

xTi Pxi + 2xTi q + r ≤ 1, i = 1, . . . ,m



Sums of largest singular values

Let

Σk(X) =
k∑
i=1

σi(X), k = 1, . . . , n

denote the sum of the k largest singular values

of an n-by-m matrix X

Then the epigraph

{X = XT ∈ Rn×n, t ∈ R : Σk(X) ≤ t}

is SDP representable since

σi(X) = λi

([
0 XT

X 0

])

and the sum of largest eigenvalues of a

symmetric matrix is SDP representable



Schur complement

We can use the Schur complement to convert

a non-linear matrix inequality into an LMI

[
A(x) B(x)
BT(x) C(x)

]
� 0

C(x) � 0

⇐⇒ A(x)−B(x)C−1(x)BT(x) � 0
C(x) � 0

Issai Schur
(1875 Mogilyov - 1941 Tel Aviv)



Elimination lemma

To remove decision variables we can use the

elimination lemma

A(x) +B(x)XCT(x) + C(x)XTBT(x) > 0
⇐⇒

B̃T(x)A(x)B̃(x) > 0 C̃T(x)A(x)C̃(x) > 0

where B̃ and C̃ are orthogonal complements

of B and C respectively, and x is a decision

variable independent of matrix X

Can be shown with SDP duality..

Particular case: Finsler’s theorem



Positive polynomials

The set of univariate polynomials that are

positive on the real axis is a convex set that

can be described by an LMI

Can be proved with cone duality (Nesterov) or

with theory of moments (Lasserre)

The even polynomial

p(s) = p0 + p1s+ · · ·+ p2ns
2n

satisfies p(s) ≥ 0 for all s ∈ R if and only if

pk =
∑
i+j=kXij, k = 0,1, . . . ,2n

= traceHkX

for some matrix X = XT � 0



Sum-of-squares decomposition

The expression of pk with Hankel matrices Hk
comes from

p(s) = [1 s · · · sn]X[1 s · · · sn]?

hence X � 0 naturally implies p(s) ≥ 0

Conversely, existence of X for any polynomial

p(s) ≥ 0 follows from the existence of a sum-

of-squares decomposition (with at most two

elements) of

p(s) =
∑
k q

2
k(s) ≥ 0

Matrix X has entries Xij =
∑
k qkiqkj



Primal and dual formulations

Global minimization of polynomial

p(s) =
n∑

k=0

pks
k

Global optimum p∗: maximum value of p̂ such

that p(s)− p̂ stays globally nonnegative

Primal LMI

max p̂ = p0 − traceH0X
s.t. traceHkX = pk, k = 1, . . . , n

X � 0

Dual LMI

min p0 +
∑n
k=1 pkyk

s.t. H0 +
∑n
k=1Hkyk � 0

with Hankel structure (moment matrix)



Positive polynomials and LMIs

Example: Global minimization of the polynomial

p(s) = 48− 92s+ 56s2 − 13s3 + s4

We just have to solve the dual LMI

min 48− 92y1 + 56y2 − 13y3 + y4

s.t.

 1 y1 y2

y1 y2 y3

y2 y3 y4

 � 0

to obtain p∗ = p(5.25) = −12.89



Complex LMIs

The complex valued LMI

F (x) = A(x) + jB(x) � 0

is equivalent to the real valued LMI

[
A(x) B(x)
−B(x) A(x)

]
� 0

If there is a complex solution to the LMI

then there is a real solution to the same LMI

Note that matrix A(x) = AT (x) is symmetric

whereas B(x) = −BT (x) is skew-symmetric



Rigid convexity

Helton & Vinnikov showed that a convex 2D set

F = {x ∈ R2 : p(x) ≥ 0}
defined by a polynomial p(x) of minimum degree d
is LMI representable without lifting variables
iff F is rigidly convex, meaning that

for every point x ∈ X and almost every line through x
then the line intersects p(x) = 0 in exactly d points

Example: F = {x1, x2 ∈ R2 : p(x) = x2 − x4
1 ≥ 0}

with 2 line intersections
is not rigidly convex because 2 < d = 4

.. but it is LMI representable with lifting variables
see the previous construction for even power monomials


