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Geometry of LMI sets

Given symmetric matrices F; we want to
characterize the shape in R™ of the LMI set

F={zeR": F(z) = Fo+ X", z;F; > 0}

Matrix F(x) is PSD iff its diagonal minors f;(x)
are nonnegative

Diagonal minors are multivariate polynomials
of indeterminates x;

So the LMI set can be described as
F={zeR": fi(z)>0,i=1,...,n}
which is a semialgebraic set

Moreover, it is a convex set



Example of 2D LMI feasible set

l—xz1 x1+ x> 1
Flx)=|z14+20 2—xo 0 >~ 0
1 0 1+xp

Feasible iff all principal minors nonnegative

System of polynomial inequalities f;(x) > 0

1st order minors

filz) =1—-21 >0
fo(r) =2—-20>0
f3(z) =14222>0




2nd order minors

fa(@) =1 —21)(2—22) — (z1 +22)2 >0
fo(x) =1 —z1)(14+22)—27>0
fe(z) =(2—22)(1+22) >0




3rd order minor

f7(z) = (14 22)((1 —21)(2 —22) — (z1 + 72)?)
—z2(2—22) >0




L MI feasible set = intersection of
semialgebraic sets f;(x) > 0
fori.=1,...,7




Example of 3D LMI feasible set

LMI set
1 1 x5 |
F={zecR3: |z 1 z3| >0}
|z x3 1 |

arising in SDP relaxation of MAXCUT

Semialgebraic set

f:{xER:g: —|— x1x2$3—($1—|—$2+$§)>0
<1,23<1,25<1



Intersection of LMI sets
Intersection of LMI feasible sets

F(r) =0 x1>-2 2x1+29<0

is also an LMI

F(x) 0 0
0 1+ 2 0 ~ 0
0 0 —2x1 — T2



SDP representability

LMI sets are convex semialgebraic sets.. but are all
convex semialgebraic sets representable by LMIs 7

We say that a convex set X C R"™ is SDP representable
if there exists an affine mapping F(x,u) such that

r€X < Ju : F(x,u) =0

In words, if X is the projection of the solution set of the
LMI F(x,u) = 0 onto the z-space and u are additional,
or lifting variables

We say that a convex set X C R" is LMI representable
if there exists an affine mapping F(x) such that

r€e€X < F(x) >0

In other words, additional variables v are not allowed

Similarly, a convex function f : R" — R is SDP or LMI
representable if its epigraph

F=A{z,t: f(z) <t}
is an SDP or LMI representable set



Conic quadratic forms

The Lorentz, or ice-cream cone

L=

x
t

e R ¢ lzl2 <t}
is SDP (LMI) representable as

SGRERE

As a result, all (convex quadratic) conic
representable sets are also SDP representable

t_[n xXr
xl ¢

The SOCP cone is included in the SDP cone

In the sequel we first give a list of
conic representable sets (following
Ben-Tal and Nemirovski)



Quadratic forms

The Euclidean norm {z,t € R? : ||z|> < t}
IS conic representable by definition

The squared Euclidean norm

{z,t e R? : zlz <t}

IS conic representable as




Quadratic forms (2)

More generally, the convex quadratic set

{x e R"teR : P Az + bl +c< 0}
with A = AT >~ 0 is conic representable as

T
< t—b* x—c
— 2

H [ t—l—bTa:—I—c ]
2

where D is the Cholesky factor of A = DI'D

S ) B T o -]
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Who is Cholesky 7

André Louis Cholesky (1875-1918) was a French

military officer (graduated from Ecole Polytechnique)
involved in geodesy

He proposed a new procedure for solving
least-squares triangulation problems

He fell for his country during World War 1

Work posthumously published in

Commandant Benoit. Procédé du Commandant Cholesky.
Bulletin Géodeésique, No. 2, pp. 67-77, Toulouse,
Privat, 1924.

Nice biography in
C. Brezinski. André Louis Cholesky. Bulletin of the
Belgian Mathematical Society, Vol. 3, pp. 45-50, 1996.
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Hyperbola

The branch of hyperbola

{w,yERQ cxy > 1, x > 0}

IS conic representable as

7).




Geometric mean of two variables

The hypograph of the geometric mean
of 2 variables

{$1,(132,t S Rs D x1, 22 2 0, VIL1TL2 > t}

IS conic representable as

05 ;;,““‘ 5 “:‘
e o
':3‘: *




Geometric mean of several variables

The hypograph of the geometric mean

of 2 variables

{:Cl,...,ai‘Qk;,tE

Rz’f+1

IS also conic representable

2 >0, BT g > 1)

Proof: iterate the previous construction

Example with k£ = 3:

VT1T2 =2 T11
VT3Tsa > T12
VITsTe > T13
VIT7T3 > T1a

VIL11T12
VL1314

>
>

(z122---28) /8 >t

T
x21 } \/T21T22 > 31 > T
22

Useful idea in other SDP representability problems



Rational functions

Usually similar ideas, we can show that
the increasing rational power functions

with rational p/q > 1, as well as the decreasing

g(z) = P x>0

with rational p/q > 0, are both
conic representable



Rational functions
Example:
{z,t 1 x>0, 27/3<¢t}

Start from conic representable
[< (21---7g)t/8

and replace

t=721=x2>0
To=x3=x4=12>0
x5 =g =7 =g =1
to get
r < z1/843/8
27/8 < (3/8
z7/3 < t

Same idea works for any rational p/q > 1
e |ift = use additional variables, and
e project in the space of original variables



Even power monomial

The epigraph of even power monomial
F={zt 2P <t}
where p is a positive integer

IS conic representable

Note that

{z,y,t : 22 <y}
{z,y,t : y>0, yP <t}

both conic representable

Use lifting y and project back onto z,t

Similarly, even power polynomials are conic
representable (combinations of monomials)



Even power monomial

F={x,t: z* <t}




Largest eigenvalue

The epigraph of the function largest eigenvalue
of a symmetric matrix

(X =XT eRY™ teR : Amax(X) <t}
is SDP (LMI) representable as

X X tlp




Sums of largest eigenvalues

Let

k
S(X)= > NX), k=1,...,n
1=1

denote the sum of the k largest eigenvalues of
an n-by-n symmetric matrix X

The epigraph
(X =XT eR™™ teR : Sp(X) <t}

is SDP representable as

t— ks —traceZ >0
Z >0
/Z — X +sl, ~0

where Z and s are additional variables



Determinant of a PSD matrix

The determinant
det(X) = [ [ 2:(X)
i=1

is not a convex function of X, but the function
fo(X) = —det!(X), X=X">0
is convex when ¢ € [0, 1/n] is rational

The epigraph
{fo(X) <t}

iIs SDP representable as

X A
AT diag A =0
t S (51"'571)(]

since we know that the latter constraint (hypograph of
a concave monomial) is conic representable

Here A is a lower triangular matrix of additional
variables with diagonal entries §;



A little excursion in the world of ellipsoids and
polytopes..

Crystal structure

Various representations of an ellipsoid in R™

E = {zeR”: TPz 4+ 22Tqg+r <0}
= {zeR": (:c—a:c)TP(CU—ﬂUc)Sl}
= {s=Qy+a.cR" : yTy<1}
= {z €R" : |[Rz — x| < 1}

where

Q=R 1=pP12+0



Volume of ellipsoid E = {Qy 4+ z. : yly <1}
vol £ = kp det @

where k, is volume of n-dimensional unit ball

2(n+1)/2,(n—1)/2

- n(n—2)TI for n odd
e 2/ 2
2(n/2=1)1 for n even

1 2 3 4 5 6 7 8

n
ko | 2.00 3.14 4.19 4.93 526 5.17 4.72 4.06

Unit ball has maximum volume for n =5 |



Outer and inner ellipsoidal approximations

Let S C R" be a solid = a closed bounded
convex set with nonempty interior

e the largest volume ellipsoid Ej, contained in
S is unique and satisfies

Ein C S Cnkjy,

e the smallest volume ellipsoid E,,t containing
S is unique and satisfies

Eout/n C S C Eout
These are Lowner-John ellipsoids
Factor n reduces to /n if S is symmetric

How can these ellipsoids be computed 7



Ellipsoid in polytope

Let the intersection of hyperplanes
S={zeR":alx<b,i=1,...,m}

describe a polytope = bounded nonempty polyhedron

The largest volume ellipsoid contained in S is

E={Qy+z.: yly<1}
where (@, z. are optimal solutions of the LMI

max det!/”Q
Q=0
|Qaill2 < b —alz., i=1,...,m




Polytope in ellipsoid
Let the convex hull of vertices
S =conv{zxi,...,zn}
describe a polytope
The smallest volume ellipsoid containing S is
E={z : (zx —z)"P(x—x.) <1}
where P, x. = —P~1q are optimal solutions of the LMI

max t
t < detl/"p

P q
e
:v;fervi—I—Qac;qu—l—rSl, 1=1,....m

P



Sums of largest singular values

Let

k
Zk(X):ZUz(X>a k=1,...,n
i=1
denote the sum of the k largest singular values
of an n-by-m matrix X

Then the epigraph

(X =XT eR™™ teR : Z(X) <t}

|

and the sum of largest eigenvalues of a
symmetric matrix is SDP representable

is SDP representable since

0o x7T
O'i(X)z)‘z'<[X 0




Schur complement

We can use the Schur complement to convert
a non-linear matrix inequality into an LMI

A(z) — B(z)C~Y(2)BT(z) = 0

[ A(xz) B(x) ] <0
C(x) =0

B'(z) C(z) | =" <+
C(x) 0

Issai Schur
(1875 Mogilyov - 1941 Tel Aviv)



Elimination lemma

To remove decision variables we can use the
elimination lemma

A(z) + B(2)XCT(2) + C(z)XTBT(z) > 0
S
BT(2)A(z)B(z) >0 CT(2)A(x)C(x) >0

where B and C are orthogonal complements
of B and C respectively, and = is a decision
variable independent of matrix X

Can be shown with SDP duality..

Particular case: Finsler's theorem



The set of univariate polynomials that are
positive on the real axis is a convex set that
can be described by an LMI

Can be proved with cone duality (Nesterov) or
with theory of moments (Lasserre)

The even polynomial

p(s) = pg +p1s+ - + pops"

satisfies p(s) > 0 for all s € R if and only if

ZZ+]:]€XZ]7 k=0,1,...,2n
trace H; X

Pk

for some matrix X = X1 =0



Sum-of-squares decomposition

The expression of p,. with Hankel matrices H,
comes from

p(s) =1 s -+ S"|X[1 s --- S"*

hence X > 0 naturally implies p(s) > 0

Conversely, existence of X for any polynomial
p(s) > 0 follows from the existence of a sum-
of-squares decomposition (with at most two
elements) of

p(s) = Lrap(s) >0

Matrix X has entries X;; = > Qk; Gk



Global minimization of polynomial

p(s) = 3 pps”

k=0
Global optimum p*: maximum value of p such
that p(s) — p stays globally nonnegative

Primal LMI

max p = pg — trace HpoX
s.t. trace H . X =pr, k=1,...,n
X =0

Dual LMI

min po + >-7—1 PrYk
st. Ho+>p—qHpyr =0

with Hankel structure (moment matrix)



Positive polynomials and LMIs
Example: Global minimization of the polynomial
p(s) = 48 — 925 + 5652 — 13> + s*
We just have to solve the dual LMI

min 48 — 92y; + 56y> — 13y3 + y4
1 y1
s.t. y1 y2 y3 | =0
Y2 Y3 Ya

to obtain p* = p(5.25) = —12.89

100

p(s)

=20
o]




Complex LMIs

The complex valued LMI

F(z) = A(z) +jB(z) = 0

IS equivalent to the real valued LMI

A(z) B(z)

_B(x) A(z) | Z°

If there is a complex solution to the LMI
then there is a real solution to the same LMI

Note that matrix A(z) = AL(z) is symmetric
whereas B(z) = —B!'(2) is skew-symmetric



Rigid convexity
Helton & Vinnikov showed that a convex 2D set
F={zxcR?: p(z) >0}

defined by a polynomial p(x) of minimum degree d
is LMI representable without lifting variables
iff F is rigidly convex, meaning that

for every point x € X and almost every line through «
then the line intersects p(x) = 0 in exactly d points

Example: F = {z1,22 € R? : p(z) = x2 — x‘l‘ > 0}
with 2 line intersections
is not rigidly convex because 2 <d=24

4

. but it is LMI representable with lifting variables
see the previous construction for even power monomials



