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Duality

- Versatile notion

- Theoritical results and numerical methods

- Certificates of infeasibility

Lagrangian duality has many applications and

interpretations (price or tax, game, geome-

try...)

Applications of SDP duality:

• numerical solvers design

• problems reduction

• new theoretical insights into control problems

In the sequel we will recall some basic facts

about Lagrangian duality and SDP duality



Lagrangian duality

Let the primal problem

p? = min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · , m
hi(x) = 0 i = 1, · · · , p

Define Lagrangian L(., ., .) Rn × Rm × Rp → R

L(x, λ, µ) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

µihi(x)

where λ, µ are Lagrange multipliers vectors or

dual variables

Let the Lagrange dual function

g(λ, µ) = inf
x∈D

L(x, λ, µ)

- g is always concave

- g(λ, µ) = −∞ if there is no finite infimum



Lagrangian duality (2)

A pair (λ, µ) s.t. λ � 0 and g(λ, µ) > −∞ is
dual feasible

For any primal feasible x and dual feasible pair
(λ, µ)

g(λ, µ) ≤ p∗ ≤ f0(x)

min
x

x4 − 3x2 − x

under x2 − 1 ≤ 0



Lagrangian duality (3)

Lagrange dual problem

d? = max
λ,µ

g(λ, µ)

s.t. λ � 0

The Lagrange dual problem is a convex opti-

mization problem

Primal Dual

inf
x∈Rn

sup
λ,µ

L(x, λ, µ)

s.t. λ � 0

sup
λ,µ

inf
x∈Rn

L(x, λ, µ)

s.t. λ � 0

A Lagrangian relaxation consists in solving the

dual problem instead of the primal problem



Weak and strong duality

Weak duality (max-min inequality):

p? ≥ d?

because

g(λ, µ) ≤ f0(x) +
m∑

i=1

λi fi(x)︸ ︷︷ ︸
≤0

+
p∑

i=1

µi hi(x)︸ ︷︷ ︸
=0

≤ f0(x)

for any primal feasible x and dual feasible λ, µ

The difference p?− d? ≥ 0 is called duality gap

Strong duality (saddle-point property):

p? = d?

Sometimes, constraint qualifications ensure that

strong duality holds

Example: Slater’s condition = strictly feasible

convex primal problem



Geometric interpretation of duality

Consider the primal optimization problem

p? = min
x∈R

f0(x)

s.t. f1(x) ≤ 0

with Lagrangian and dual function

L(x, λ) = f0(x) + λf1(x) g(λ) = inf
x

L(x, λ)

The dual problem:

d? = max
λ

g(λ)

s.t. λ � 0



Geometric interpretation of duality (2)

Set of values G = (f1(x), f0(x)), ∀ x ∈ D

L(x, λ) = f0(x) + λf1(x) =
[

λ 1
] [

f1(x)
f0(x)

]

g(λ) = inf
x∈D

L(λ, x) = inf
x∈D

{[
λ 1

] [
u
v

]
(u, v) ∈ G

}
Supporting hyperplane with slope −λ[

λ 1
] [

u
v

]
≥ g(λ) (u, v) ∈ G



Geometric interpretation of duality (3)

Three supporting hyperplanes, including the

optimum λ? yielding d? < p?

No strong duality here

p∗ − d∗ > 0

Duality gap 6= 0



Geometric interpretation of duality (4)

B = {(0, s) ∈ R× R : s < p∗}

- Separating hyperplane theorem for G and B
- The separating hyperplane is a supporting
hyperplane to G in (0, p∗)
- Slater’s condition ensures the hyperplane is
non vertical



Optimality conditions

Suppose that strong duality holds, let x? be

primal optimal and (λ?, µ?) be dual optimal,

f0(x
?) = g(λ?, µ?)

= inf
x

f0(x) +
m∑

i=1

λ?
i fi(x) +

p∑
i=1

µ?
i hi(x)


≤ f0(x

?) +
m∑

i=1

λ?
i fi(x

?) +
p∑

i=1

µ?
i hi(x

?)

≤ f0(x
?)

λ?
i fi(x

?) = 0 i = 1, · · · , m

This is complementary slackness condition

λ?
i > 0 ⇒ fi(x

?) = 0 or fi(x
?) < 0 ⇒ λ?

i = 0

In words, the ith optimal Lagrange multiplier

is zero unless the ith constraint is active at the

optimum



LP duality

Primal LP (standard form):

p? = min
x∈Rn

c′x

s.t. Ax = b b ∈ Rp

x � 0

Lagrange dual function:

g(λ, µ) = inf
x∈D

(c′x + µ′(b−Ax)− λ′x)

=

{
b′µ if c−A′µ− λ = 0
−∞ otherwise

Lagrange dual problem:

max
λ∈Rn

g(λ, µ) =

{
b′µ if c−A′µ− λ = 0
−∞ otherwise

s.t. λ � 0



LP duality (2)

Dual LP:

d? = max
µ∈Rp

b′µ

s.t. λ = c−A′µ � 0

Complementary slackness:

(x?)′λ? = 0

If primal (dual) is feasible then strong duality

holds

Strong duality fails for LPs when both dual and

primal are infeasible

min
x

x

s.t.

[
0
1

]
x �

[
−1
1

]



KKT optimality conditions

fi, hi are differentiable and strong duality holds

hi(x
?) = 0, i = 1, · · · , p, (primal feasible)

fi(x
?) ≤ 0, i = 1, · · · , m, (primal feasible)

λ?
i � 0, i = 1, · · · , m, (dual feasible)

λ?
i fi(x

?) = 0, i = 1, · · · , m, (complementary)

∇f0(x
?) +

p∑
i=1

λ?
i∇fi(x

?) +
p∑

i=1

µ?
i∇hi(x

?) = 0

Necessary Karush-Kuhn-Tucker conditions

satisfied by any primal and dual optimal pair

x? and (λ?, µ?)

For convex problems, KKT conditions

are also sufficient



History of KKT conditions

“Nonlinear programming” paper written jointly by
Albert W. Tucker and Harold W. Kuhn (Princeton Univ)
launched the theory of NLP in 1950

Later on, it turned out that this theorem had been
proved already:

• First in 1939 in a MSc thesis by William Karush
supervised by Lawrence M. Graves (Univ Chicago)

• Second in 1948 by Fritz John in a paper rejected by
the Duke Math J, later on published in a collection of
essays for Richard Courant’s 60th birthday



Feasibility of inequalities

∃ x ∈ Rn :

{
fi(x) ≤ 0 i = 1, · · · , m
hi(x) = 0 i = 1, · · · , p

Dual function: g(., .) : Rm × Rp → R

g(λ, µ) = inf
x∈D

m∑
i=1

λifi(x) +
p∑

i=1

µihi(x)

The dual feasibility problem is

∃ (λ, µ) ∈ Rm × Rp :

{
g(λ, µ) > 0
λ � 0

Theorem of weak alternatives

At most, one of the two (primal and dual) is

feasible



Feasibility of inequalities (2)

If fi are convex functions, hi are affine func-

tions and some type of constraint qualification

holds:

Theorem of strong alternatives

Exactly one of the two alternative holds

A dual feasible pair (λ, µ) gives a certificate

(proof) of infeasibility of the primal

Example of Farkas’lemma

∃ x ∈ Rn :

{
Ax � 0
c′x < 0

∃ λ ∈ Rm :

{
A′λ + c = 0
λ � 0



Conic duality

Let the primal:

p? = min
x∈Rn

f0(x)

s.t. fi(x) �Ki
0 i = 1, · · ·m

Lagrange dual function: g(.) : Rm → R

g(λ) = inf
x∈D

f0(x) +
m∑

i=1

λ′ifi(x)

Lagrange dual problem:

d? = max
λ∈Rm

g(λ)

s.t. λi �K∗i 0, i = 1, · · · , m



Conic duality (2)

• Weak duality

• Strong duality:

- if primal is s.f. with finite p? then p? = d?

reached by dual

- if dual is s.f. with finite d? then p? = d?

reached by primal

- if primal and dual are s.f. then p? = d?

• Complementary slackness:

λ?′
i fi(x

?) = 0
λ?

i �K?
i
0 ⇒ fi(x

?) = 0

fi(x
?) ≺Ki

0 ⇒ λ?
i = 0

• KKT conditions:

fi(x
?) �Ki

0
λ?

i �K?
i
0

∇f0(x
?) +

m∑
i=1

∇fi(x
?)′λ?

i = 0



Example of conic duality

Example
Consider the primal conic program

min x1

s.t.

 x1 − x2

1
x1 + x2

 �L3
0 ⇔ x1 + x2 > 0

4x1x2 ≥ 1

with dual

max −λ2

s.t.

 λ1 + λ3 = 1
−λ1 + λ3 = 0
λ ∈ L3

⇔ λ1 = λ3 = 1/2

1/2 ≥
√

1/2 + λ2
2

The primal is strictly feasible and bounded below with
p? = 0 which is not reached since dual problem is infea-
sible d? = −∞



SDP duality

Primal SDP:

p? = min
x∈Rn

c′x

s.t. F0 +
n∑

i=1

xiFi � 0

Lagrange dual function:

g(Z) = inf
x∈D

(
c′x + tr ZF (x)

)
=

{
tr F0Z if tr FiZ + ci = 0 i = 1, · · · , n
−∞ otherwise

Dual SDP:

d? = max
Z∈Sm

tr F0Z

s.t. tr FiZ + ci = 0 i = 1, · · · , n
Z � 0

Complementary slackness:

tr F (x?)Z? = 0 ⇐⇒ F (x?)Z? = Z?F (x?) = 0



Example of SDP duality gap

Example
Consider the primal semidefinite program

min x1

s.t.

 0 x1 0
x1 −x2 0
0 0 −1− x1

 � 0

with dual

max −z6

s.t.

 z1 (1− z6)/2 z4

(1− z6)/2 0 z5

z4 z5 z6

 � 0

In the primal necessarily x1 = 0 (x1 appears in a row
with zero diagonal entry) so the primal optimum is

x?
1 = 0

Similarly, in the dual necessarily (1 − z6)/2 = 0 so the
dual optimum is

z?
6 = 1

There is a nonzero duality gap here (p? = 0) > (d? = −1)



Conic theorem of alternatives

fi(x) �Ki
0 Ki ⊆ Rki

Lagrange dual function

g(λ) = inf
x∈D

m∑
i=1

λ′ifi(x) λi ∈ Rki

Weak alternatives:

1− fi(x) �Ki
0 i = 1, · · · , m

2− λi �K?
i
0 g(λ) > 0

Strong alternatives:

fi Ki-convex and ∃ x ∈ relintD

1− fi(x) ≺Ki
0 i = 1, · · · , m

2− λi �K?
i
0 g(λ) ≥ 0



Theorem of alternatives for LMIs

For the LMI feasible set

F (x) = F0 +
∑
i

xiFi ≺ 0

Exactly one statement is true
1- ∃ x s.t. F (x) ≺ 0
2- ∃ 0 6= Z � 0 s.t.
trace F0Z � 0 and trace FiZ = 0 for i = 1, · · · , n

Useful for giving certificate of infeasibility of

LMIs

Rich literature on theorems of alternatives for

generalized inequalities, e.g. nonpolyhedral con-

vex cones

Elegant proofs of standard results (Lyapunov,

ARE) in linear systems control, see later..



S-procedure

S-procedure: also frequently useful in robust

and nonlinear control, also an outcome of the

theorem of alternatives

if there exist real numbers λi ≥ 0 such that

p∑
i=1

λiAi ≺ 0

then

∃ x 6= 0 ∈ Cn s.t. x′Aix ≥ 0, i = 1, . . . , p

The converse also holds (no duality gap)

• when p = 1 for real quadratic forms (from

the theorem of alternatives)

• when p = 2 for complex quadratic forms



Finsler’s theorem

Finsler’s theorem: a very useful trick in robust

control, directly follows from the theorem of

alternatives

The following statements are equivalent

x?Ax > 0 for all x 6= 0 s.t. Hx = 0
H̃?AH̃ � 0 where HH̃ = 0
A + λH?H � 0 for some scalar λ
A + XH + H?X? � 0 for some matrix X

1− ∃ τ ∈ R | τHH∗ + A � 0

2− ∃ Z ∈ Sn
+ : tr(H∗ZH) = 0 and tr(AZ) ≤ 0

3− ∃ X ∈ Cm×n | HX + (XH)∗ + A � 0

4− ∃ Z ∈ Sn
+ : ZH = 0 and tr(AZ) ≥ 0



Reformulations
Linear LMI constraint = projection in subspace

Using explicit subspace basis, more efficient
formulations (less decision variables) can be obtained

Example: original problem

max 2x1 + 2x2

s.t.

[
1 + x1 x2

x2 1− x1

]
� 0

with dual

min trace

[
1 0
0 1

]
Z

s.t. trace

[
−1 0
0 1

]
Z = 2

trace

[
0 −1
−1 0

]
Z = 2

Z � 0



Reformulations (2)

Denoting

Z =

[
z11 z21

z21 z22

]
the linear trace constraints on Z can be written[

−1 0 1
0 −2 0

]  z11

z21

z22

 =

[
2
2

]
Particular solution and explicit null-space basis z11

z21

z22

 =

 −1
−1
1

 +

 1
0
1

 z̄

so we obtain the equivalent dual problem
with less variables

min 2z̄

s.t.

[
z̄ − 1 −1
−1 z̄ + 1

]
� 0

and primal

min trace

[
1 1
1 −1

]
X̄

s.t. trace

[
1 0
0 1

]
X̄ = 2

X̄ � 0


