
Jérémie Guiochet
LAAS CNRS, Toulouse, France

jeremie.guiochet@laas.fr
www.laas.fr/~guiochet

Safety of rehabilitation robots

Outline
  Chapter 1 - Introduction
  Chapter 2 - Dependability of systems
  Chapter 3 - Risk management concepts
  Chapter 4 –Three risk analysis techniques into details

(HAZOP, FMECA, FTA)

  Chapter 5 - A scenario based risk analysis approach
(UML-HAZOP)

Chapter 1. Introduction

Ariane 5
1996

Therac 25
1985

USA Blackout
2003

Critical systems
  Threats :

  Hardware (failures of electronic components e.g. sensors)
  Mechanical (failure of a mechanical part e.g. jamming)
  Software (presence of bugs and failures e.g. reboot)
  Humans (human errors e.g. unexpected comportment)
  Environment (hazardous conditions e.g. no light)

  Understand threats causes and consequences and treat them:
  Prevent : use methods and tool to prevent the presence of threats
  Eliminate : find threats in the system and eliminate them
  Forecast : estimate causes/consequences of threats
  Tolerate : develop the system to tolerate some threats

Critical systems
  Robotic systems now belongs to critical systems

daVinci

Three Laws of Robotics – Isaac Asimov (1950)

  1. A robot must not harm a human being, nor through
inaction allow one to come to harm.

  2. A robot must always obey human beings, unless that is
in conflict with the first law.

  3. A robot must protect itself from harm, unless that is in
conflict with the first or second laws.

Rehabilitation robotics = critical systems?

  Potential to harm ?
  Types of systems

  Mobility aid
  Manipulation aid
  Therapeutic aid

Mobility Aids: Potential/Future

  > 5 million wheelchair users in the U.S.
  Safe and reliable mobile robotic assistive devices.
  Intelligent homes, buildings communicate with smart

wheelchairs
  Extend to other assistive devices (e.g. scooters)

Mobility Aids: State of the Art

  All-terrain chairs
  Tracked Systems (Ishimatsu, Hirose)

  Wheeled/legged systems (Krovi, Kumar, Wellman)
  Walkers (SmartWalker, Robuwalker, NurseBot)
  Prosthetics legs systems ()
  Other systems (e.g. guides for blind people)

Mobility Aids: State of the Art

• All-Terrain Chairs
• Tracked Systems
(Ishimatsu, Hirose)

• Wheeled/Legged Systems
(Krovi, Kumar, Wellman)

• Independence iBot (Johnson and Johnson)

Example : RobuWalker

Mobility Aids: Significant Accomplishments

  Intelligent chairs
  Automated navigation tasks/behaviors
  Input modalities to mobile systems provide access to

users who may lack fine motor control
  Gesture recognition, voice command, vision-based

interaction, sip and puff devices
  Ability to drive on all terrains (stairs/curbs)
  User monitoring (geolocalization, physiological

parameters, etc.)

Manipulation Aids

Raptor (Applied Resources)

Manipulation Aids
Current

– Prosthetic arms
– Feeders
– Robots

Manus (Exact Dynamics)

Winsford Feeder

PROVAR Assistive
Robot System (VA Palo Alto)

o  Prosthetics arms
o  Feeders
o  Multifunction manipulators

Therapeutic Aids Therapeutic Aids: Examples

UCLA/UCI

MIT ManusLokomat (Hocoma)

Schematic (Stanford)

Challenges (Research)
  Identify movement training algorithms that maximize

motor learning and neural recovery, by combining
robotics, brain imaging, and neurocomputational modelling

  Automated tools to aid the diagnosis and assessment
process (parametric to enable customization)

  Safe and effective human-robot interaction for hands-off
assistive robotics
  find, track, follow, and understand the activity of the patient
  provide appropriate feedback
  motivate, engage patient

Challenges (Technology)
  Develop combined therapeutic/assistive rehabilitation

robotic systems that are lightweight enough to be worn
while performing activities of daily living.

  Inexpensive, safe, back-driveable robots

Roadmap of the domain “Intelligent
prosthetics “ !!

!
!"

"#
$"

!"
"#

$"
!%

%
&'

(
)*

&%
!%

%
&'

(
)*

&%

!"#" !"#$!"!"

!"#$%&'(")*"+,-%$*./*0&1(%"1' *2+%*1.*#3$."(#*(44"%''%'

5%"'.$6*/%%2-

+
$,

-%
&

.&
/

0
+

$,
-%

&
.&

/
0 8"' ("1%$/&#(")

9%$(03%$&4*"%$:.+'*'61%,' ("1%$/&# (")

!"#$%&'(")*"&1+$&4*/%%4*&"2*/+"#1(."(")*./*0$.'13%1(#'

!,0$.:%2*;<=*#."1$.4

5+00.$1*./*("2(:(2+&4*0$(.$(1(>%2*?@A*1&'7*0%$/.$,&"#%*

B%C*,&1%$(&4'D*&$1(/(#&4 '7("

!"!$

9%$(03%$&4*"%$:.+'*'6'1%,*#."1$.4

8%"1$&4*"%$:.+'*'6'1%,*#."1$.4

!,0$.:%2*'6'1%,'

!"#$%&'())*+

E$(&4,%13.2.4.)6

!"
"

#$
"

!"
"

#$
"

!%
%&

'(
)*

&
%

!%
%&

'(
)*

&
%

!"#" !"#$!"!"

,-"."/0-&1(' 2030-420".&"3&'+'2$/'

5)$.&'"32#4%$&)*423"%/' 6"7(*4%&")$.&84%7#4%$&)*423"%/'

9.2$* *0:$.2&$.; 0%"./$.2'

<$.(0.$&0.2$%4-20;$&'+'2$/'

+$
,

-%
&

.&
/0

+$
,

-%
&

.&
/0

=''$''/$.2&/"7$*'>)%"-$7(%$'

?$*3&*$4%.0.:&'+'2$/'

@.7$%'24.70.:&28$%4)0$'

?"-04*&0'"*420".

=-20; 02+&/".02"%0.:&'+'2$/'

=''$''/$.2&"3&28$%4)$(20-&A$.$302'

9.' 0:82&0.&8(/4.&A$84;0"%>)$%-$)20".&2"&%"A"2'

!"!$

@.7$%' 24.70.:&A%40.&7$:%47420".

!$")*$&*"-420".&'+'2$/'

<4/$&A4'$7&28$%4)$(20-&'+'2$/'&3"%&-".'(/$%'

?84)$&'80320.:&'+'2$/'

B$/$.204&4''0'20;$&'+'2$/'

=(2"."/"('&0.2$%4-20;$&7$;0-$'

=--$)24.-$&"3&%"A"20- &'+'2$/'

6(*20&70'-0)* 0.4%+&-"")$%420".

!(A*0- &)%$'$.2420".&"3&'+'2$/'

C40*"%0.:&2"&0.70; 07(4*&.$$7'

?)$$-8&0.2$%34-$'

=%2030-04*&'D0.

!"
"#

$"
!"

"#
$"

!%
%

&'
(

)*&
%

!%
%

&'
(

)*&
%

!"#" !"#$!"!"

,;07$.-$&A4'$7&%$'$4%-8

!%"2"-"*'&3"%&0.2$%")$%4A0* 02+

+$
,-

%
&

.&
/0

+$
,-

%
&

.&
/0 9.7""%&)"' 020".0.:

=/A0$.2&0.2$* *0:$.-$

6".02"%0.:&0.'07$&28$&A"7+&>&0.2%4&7$2$-20".

9.-%$4'0.:&7$/":%4)80-&)%$''(%$

E"')024*&/".02"%0.:

F84.:$'&0.&28$&8$4*28&-4%$&'+'2$/

G$2#"%D&2$-8."*":+

!"!$

H"A"2'&3"%&70'$4'$&/4.4:$/$.2

=-20;420".&"3&)420$.2&>&'$*3I-4%$

9.&8"/$&0.2$%4-20;$&%"A"2'

G$#&)4%4/$2$%' &/".02"% 0.:

!"
"#

$"
!"

"#
$"

!%
%&

'(
)*

&%
!%

%&
'(

)*
&%

!"#" !"#$!"!"

0&1(%"1'*C(13*"%+$.4.)(#&4*,.1.$*2('.$2%$'

,%13.2.4.)6*/.$*("2(:(2+&4*&''%'',%"1

+$
,-

%
&.

&
/0

+$
,-

%
&.

&
/0

$%#.:%$6*0$.#%''%'

1%#3".4.)6*&2&01(")*1.*13%*0&1(%"1

,%13.2.4.)6*/.$*1$(&4'

-+2)%1*/.$*13%$&06

13%$&06*&1*3.,%*F-&'(#*/+"#1(."&4(16G

4&-.+$ '3.$1&)%*F13%$&0('1'G

,.1.$*#."1$.4*0$.#%''%'

!"!$

13%$&06*&1*3.,%*F("#$%&'%23(.-20".4*02+J

$%3&-(4(1&1 (."*&'*&*#."1("+.+'*0$.#%''

&''%'',%"1*./*0&1(%"1'

G$#&)4%4/$2$%'&/".02"%0.:

(,0$.:%2*3&$2C&$%

"
#$
!%
&!!'
(
)
*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2
31
.0
44#$
01
.!,
5(
6./
0
.#7
6!2

"
#$
!8
&!!'
(
)
*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2
'
(
9
(
.#60
*
!:
01
.)4;!<

(
$
1
#.#=
0
!)1
*
!>
(
7
#)4!

!!!!!!!!!!!?
/
0
5),
@
!!2

"
#$
!A
&!!'
(
)*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2'

(
9
(
.#60*

!+
(
.(
5!

!!!!!!!!!!7(
(
5*
#1
)
.#(
1
!)
1
)
4@
6#6!)

1
*
!./
0
5)
,
@
!!2

"
#$
!B
&!!'
(
)*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2C
).#0
1
.!+
(
1
#.(
5#1
$
!5(
9
(
.6!!!

!
"
#

A
u
th

o
riz

e
d
 lic

e
n
s
e
d
 u

s
e
 lim

ite
d
 to

: L
A

A
S

. D
o
w

n
lo

a
d
e
d
 o

n
 S

e
p
te

m
b
e
r 2

9
, 2

0
0
9
 a

t 1
1
:3

2
 fro

m
 IE

E
E

 X
p
lo

re
. R

e
s
tric

tio
n
s
 a

p
p
ly

.

Source : Rehabilitation Robotics in Robotics for Healthcare; A Roadmap Study for the European Commission G. Gelderblom, M. De Wilt, G.
Cremers, A. Rensma, IEEE 11th International Conference on Rehabilitation Robotics, Japan, June 2326, 2009

Roadmap of the domain “Robotised motor
coordination analysis and therapy »

!!

!

!"
"#

$"
!"

"#
$"

!%
%

&'
(

)*
&%

!%
%

&'
(

)*
&%

!"#" !"#$!"!"

!"#$%&'(")*"+,-%$*./*0&1(%"1' *2+%*1.*#3$."(#*(44"%''%'

5%"'.$6*/%%2-

+
$,

-%
&

.&
/

0
+

$,
-%

&
.&

/
0 8"' ("1%$/&#(")

9%$(03%$&4*"%$:.+'*'61%,' ("1%$/&# (")

!"#$%&'(")*"&1+$&4*/%%4*&"2*/+"#1(."(")*./*0$.'13%1(#'

!,0$.:%2*;<=*#."1$.4

5+00.$1*./*("2(:(2+&4*0$(.$(1(>%2*?@A*1&'7*0%$/.$,&"#%*

B%C*,&1%$(&4'D*&$1(/(#&4 '7("

!"!$

9%$(03%$&4*"%$:.+'*'6'1%,*#."1$.4

8%"1$&4*"%$:.+'*'6'1%,*#."1$.4

!,0$.:%2*'6'1%,'

!"#$%&'())*+

E$(&4,%13.2.4.)6

!"
"

#$
"

!"
"

#$
"

!%
%&

'(
)*

&
%

!%
%&

'(
)*

&
%

!"#" !"#$!"!"

,-"."/0-&1(' 2030-420".&"3&'+'2$/'

5)$.&'"32#4%$&)*423"%/' 6"7(*4%&")$.&84%7#4%$&)*423"%/'

9.2$* *0:$.2&$.; 0%"./$.2'

<$.(0.$&0.2$%4-20;$&'+'2$/'

+$
,

-%
&

.&
/0

+$
,

-%
&

.&
/0

=''$''/$.2&/"7$*'>)%"-$7(%$'

?$*3&*$4%.0.:&'+'2$/'

@.7$%'24.70.:&28$%4)0$'

?"-04*&0'"*420".

=-20; 02+&/".02"%0.:&'+'2$/'

=''$''/$.2&"3&28$%4)$(20-&A$.$302'

9.' 0:82&0.&8(/4.&A$84;0"%>)$%-$)20".&2"&%"A"2'

!"!$

@.7$%' 24.70.:&A%40.&7$:%47420".

!$")*$&*"-420".&'+'2$/'

<4/$&A4'$7&28$%4)$(20-&'+'2$/'&3"%&-".'(/$%'

?84)$&'80320.:&'+'2$/'

B$/$.204&4''0'20;$&'+'2$/'

=(2"."/"('&0.2$%4-20;$&7$;0-$'

=--$)24.-$&"3&%"A"20- &'+'2$/'

6(*20&70'-0)* 0.4%+&-"")$%420".

!(A*0- &)%$'$.2420".&"3&'+'2$/'

C40*"%0.:&2"&0.70; 07(4*&.$$7'

?)$$-8&0.2$%34-$'

=%2030-04*&'D0.

!"
"#

$"
!"

"#
$"

!%
%

&'
(

)*&
%

!%
%

&'
(

)*&
%

!"#" !"#$!"!"

,;07$.-$&A4'$7&%$'$4%-8

!%"2"-"*'&3"%&0.2$%")$%4A0* 02+

+$
,-

%
&

.&
/0

+$
,-

%
&

.&
/0 9.7""%&)"' 020".0.:

=/A0$.2&0.2$* *0:$.-$

6".02"%0.:&0.'07$&28$&A"7+&>&0.2%4&7$2$-20".

9.-%$4'0.:&7$/":%4)80-&)%$''(%$

E"')024*&/".02"%0.:

F84.:$'&0.&28$&8$4*28&-4%$&'+'2$/

G$2#"%D&2$-8."*":+

!"!$

H"A"2'&3"%&70'$4'$&/4.4:$/$.2

=-20;420".&"3&)420$.2&>&'$*3I-4%$

9.&8"/$&0.2$%4-20;$&%"A"2'

G$#&)4%4/$2$%' &/".02"% 0.:

!"
"#

$"
!"

"#
$"

!%
%&

'(
)*

&%
!%

%&
'(

)*
&%

!"#" !"#$!"!"

0&1(%"1'*C(13*"%+$.4.)(#&4*,.1.$*2('.$2%$'

,%13.2.4.)6*/.$*("2(:(2+&4*&''%'',%"1

+$
,-

%
&.

&
/0

+$
,-

%
&.

&
/0

$%#.:%$6*0$.#%''%'

1%#3".4.)6*&2&01(")*1.*13%*0&1(%"1

,%13.2.4.)6*/.$*1$(&4'

-+2)%1*/.$*13%$&06

13%$&06*&1*3.,%*F-&'(#*/+"#1(."&4(16G

4&-.+$ '3.$1&)%*F13%$&0('1'G

,.1.$*#."1$.4*0$.#%''%'

!"!$

13%$&06*&1*3.,%*F("#$%&'%23(.-20".4*02+J

$%3&-(4(1&1 (."*&'*&*#."1("+.+'*0$.#%''

&''%'',%"1*./*0&1(%"1'

G$#&)4%4/$2$%'&/".02"%0.:

(,0$.:%2*3&$2C&$%

"
#$
!%
&!!'
(
)
*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2
31
.0
44#$
01
.!,
5(
6./
0
.#7
6!2

"
#$
!8
&!!'
(
)
*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2
'
(
9
(
.#60
*
!:
01
.)4;!<

(
$
1
#.#=
0
!)1
*
!>
(
7
#)4!

!!!!!!!!!!!?
/
0
5),
@
!!2

"
#$
!A
&!!'
(
)*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2'

(
9
(
.#60*

!+
(
.(
5!

!!!!!!!!!!7(
(
5*
#1
)
.#(
1
!)
1
)
4@
6#6!)

1
*
!./
0
5)
,
@
!!2

"
#$
!B
&!!'
(
)*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2C
).#0
1
.!+
(
1
#.(
5#1
$
!5(
9
(
.6!!!

!
"
#

A
u
th

o
riz

e
d
 lic

e
n
s
e
d
 u

s
e
 lim

ite
d
 to

: L
A

A
S

. D
o
w

n
lo

a
d
e
d
 o

n
 S

e
p
te

m
b
e
r 2

9
, 2

0
0
9
 a

t 1
1
:3

2
 fro

m
 IE

E
E

 X
p
lo

re
. R

e
s
tric

tio
n
s
 a

p
p
ly

.

Source : Rehabilitation Robotics in Robotics for Healthcare; A Roadmap Study for the European Commission G. Gelderblom, M. De Wilt, G.
Cremers, A. Rensma, IEEE 11th International Conference on Rehabilitation Robotics, Japan, June 2326, 2009

The number of clinical trials found in ClinicalTrial.gov which used robots as the
experimental intervention. Year indicates the study’s start date. Data as of June 9, 2009.
Source : Towards Establishing Clinical Credibility for Rehabilitation and Assistive Robots;
Katherine M. Tsui and Holly A. Yanco, 2009
Through Experimental Design

Towards Establishing Clinical Credibility for

Rehabilitation and Assistive Robots

Through Experimental Design

Katherine M. Tsui and Holly A. Yanco

University of Massachusetts Lowell

1 University Avenue

Lowell, MA 01854

Email: {ktsui, holly}@cs.uml.edu

Abstract—The number of clinical trials using robots has

increased over the last ten years. It is not practical for all
experiments to be clinical trials through the development cycle
of a rehabilitation or assistive robot. How can system developers
incorporate aspects of the clinical trials to gain credibility among
clinicians during development period evaluations?

In this paper, we begin a discussion about how to bridge
the gap between pre-clinical experiments and Phase 1 clinical
trials using rehabilitation and assistive robots. We examine the
importance of clearly defined inclusion and exclusion criterion.
We also discuss establishing a baseline either with a control
group or pre-experiment evaluation and the necessity for first
conducting experiments with able-bodied participants. Also, we
discuss the need for a common language between the system
developers and the clinicians.

I. INTRODUCTION

Traditionally in robotics, the system developers conduct

experiments on the physical robots and their control algo-

rithms. Roboticists are primarily interested in performance

measures such as time to task completion, accuracy, and power

consumption. Thus, the experiments performed are focused

around those measures. As robots become more commonplace

in the real-world, experiments which have relevance to people

who are not the system developers must also be conducted.

Over the last twenty years, robotics research in the domains

of medicine and health care have dramatically increased. Many

projects are in the development phase; however a number

of the rehabilitation robots have made the transition from

the laboratory setting to the clinic. Examples include the

MIT-Manus [24] and the University of California Irvine’s T-

WREX [21], which are both upper limb rehabilitation devices.

There have been several commercialized systems as well. For

example, Intuitive Surgical has shipped over 1,171 units of

the da Vinci Surgical System worldwide as of March 2009

[22]. DEKA’s iBOT Mobility System power wheelchair sold

400 units in 2007 [9]. Hocoma’s Lokomat, used for gait

rehabilitation, had over 160 units installed in clinics worldwide

as of June 2008 [20].

The number of clinical trials using robots has increased over

the last ten years according to the US National Institute of

Health’s clinical trial listing ClinicalTrial.gov [35]. A total

Fig. 1. The number of clinical trials found in ClinicalTrial.gov which used
robots as the experimental intervention. Year indicates the study’s start date.
Data as of June 9, 2009.

of 76 clinical trials involving robots as interventions were

listed as open or completed as shown in Figure 1.1 The

majority of the clinical trials were surgical in nature (40 of

76). Robots have also been used as therapy in clinical trials

(34 of 76), especially in the last five years. The remaining

two applications of robots in clinical trials were used for tele-

presecence and as a non-theraputic assistive device. In this

paper, we focus on non-surgical health care robots, specifically

rehabilitation and assistive robots.

Used in the US, European Union, and Japan, the Good

Clinical Practice Protocol requires clearly stated objectives,

checkpoints, and types and frequency of measurement [34]. It

requires a detailed description of the proposed study and pre-

ventative biasing measures. The expected duration of the trial,

treatment regiment and record keeping strategies must also be

detailed. Further, discontinuation criteria for participants or the

partial/whole trial must be clearly defined.

As rehabilitation and assistive robots are considered medical

devices and can be prescribed to the end-user, it is logical to

1Search term used was “robot” and “robotics.” Three trials, listed as
terminated, are not included in this data.

Preliminary Hazard Identification
  Considering the three following case studies, what are the

main hazards ?
  Therapeutic aid : Training (Lokomat)
  Mobility aid : Autonomous wheelchair (Sabre)
  Manipulation aid : Feeder (Meal Buddy)

Therapeutic aid : Training (Lokomat)

Mobility aid :Autonomous wheelchair (Sabre)

Manipulation aid: Feeder (Meal Buddy)

First conclusions
  Ensure safety:

  A process to analyse safety
  Who ? What ? When ?

  Methods for safety analysis
  Models for quantitative or qualitative analysis

  Tools for safety analysis
  Computer assisted safety analysis for the application of methods

  Technologies to improve safety
  From industrial robots
  From other domains
  New technologies

Standards from machinery to advanced
robots

  Safety of machinery
  Safety of industrial robots
  Safety of advanced robots

  Generic safety standards
  Safety of medical robots
  Safety of rehabilitation robots

Safety of machinery

178 M. Nokata and N. Tejima

tion robots cannot be reduced in the same manner as for industrial robots, and re-
sidual risk may be difficult to tolerate. Therefore, it is necessary to develop ra-
tional protective measures for rehabilitation robots based both on the basic con-
cepts of safety standards and from the point of view of enhancing users' QOL
(Quality of Life).

10.2.2 Safety Standard for Machinery

The safety standard system for machinery has been established in a pyramidal
structure shown in Fig. 10.1. In this system, standards on the top prescribe basic
concepts of safety, standards below them prescribe common technologies, and
standards at the bottom prescribe precise technologies for each type of machinery,
such as manipulating industrial robots.

The basic concepts of safety are protective measures according to risk assess-
ment and disclosure of residual risk. According to ISO/IEC Guide 51:1999, safety
is defined as “freedom from unacceptable risk” and risk is defined as “combina-
tion of the probability of occurrence of harm and the severity of that harm”. Toler-
able risk is defined as “risk which is accepted in a given context based on the cur-
rent values of society”. A level of tolerable risk is not clearly stated in the standard
and should be decided according to the current values of society, state-of-the-art
technology, legal problems and so on.

Safety is relatively described by risk in terms of probabilities. There can be no
absolute safety: some risk will remain, defined as residual risk. Nobody can say
that accidents or disasters can be avoidable absolutely. For a guarantee of safety,
there must be ground for tolerating accidents after an adequate risk reduction pro-
cess is implemented.

Fig. 10.1. A pyramidal structure of the safety standard system for machinery

Machinery Directive
98/37/EC

Industrial Robots - Relevant Robot Safety
Standards

  Europe :
  ISO 10218 Robots for industrial environments – Safety

requirements

  Other countries
  ANSI/RIA R15.06-1999 Industrial robots and robot systems

– Safety requirements
  AS 2939-1987 Industrial robot systems – Safe design and

usage

Guard Types

Safety of advanced robotics
  Generic safety standards

  ISO/IEC Guide 51 : Safety aspects — Guidelines for their
inclusion in standards

  IEC 61508 Functional safety of electrical / electronic /
programmable electronic safety-related systems

  Advanced Robotics
  Nothing… except in ISO 10218 (Robots for industrial

environments – Safety requirements)
  “If a person enters the collaborating workspace the robot performs a

safety-rated monitored stop.” p5

  => incompatible with advanced robotics (simultaneous movements)

ISO/FDIS 10218-2
  Definition of collaborative robot: Robot designed for direct contact with a human

within a defined collaborative workspace.
  The design of the robot system and cell layout is a key process in the elimination of

hazards and reduction of risks.
  The safety function shall fulfil a least safety category d- or Safety Integrity Level

(SIL) 2
  Persons/Operators shall be safeguarded by a combination of protective devices and

compliance with robot performance features.
  section 5.11.5: Collaborating robot operation

  Collaboration is only
  used for pre-determined tasks,
  possible when all required protective measures are active, and
  for robots with features specifically designed for collaborating operation complying with ISO

10218-1:2006 Clause 5.10.

  Operation in the collaborating workspace – one or more of the following condition need
to be fulfilled
  If a person enters the collaborating workspace the robot performs a safety-rated monitored stop.
  Hand guided mode under the conditions of a defined hand over position, a hand guided device that

meets the requirements of ISO 10218-1:2006 and a clear visibility over the entire collaborative
workspace.

  Speed and position monitoring, for example under the observance of a safe distance.
  Power and force limiting by design or control.

Safety of medical robots
  Medical robots as “medical devices”

  Directive 2007/47/EEC amending Council Directive 93/42/EEC
concerning medical devices

  ISO 14971 - Risk management for medical devices

  Nothing specific for medical robots

Safety of rehabilitation robots
  Generic

  Machinery standards ?
  Robotics standards ?

  Domain specific standards (not robotic specific)
  Mobility aid
  Manipulation aid
  Therapeutics

Industrial robots Vs advanced Robots
Industrial
robotics

Advanced robotics New hazards Examples

No movement if
human presence

Simultaneous movements Bad synchronization / Non
human legible movements

Human is “far” Human is close / Physical
contact

Impacts / forces too high

Teach pendant Advanced interaction (cognitive) Mode confusion /
communication errors /
understanding errors

Automatic Autonomous Hazardous decisions / Bad
decisions

Heavy/Stiff/Powerful Light/Compliant/Limited power
(“intrinsically safe”)

Precision hazards

Mono function Multi function Tasks too complex

Structured
environment

Unstructured environment Hazardous situations
(Robustness issues)

Conclusion
  Rehabilitation robotics = advanced robotics
  New functionalities + new hazards => no specific safety

standards (application of some machinery or industrial
robotics concepts but impossibility to reach a complete
conformity)

  Apply methods and tools from other critical systems

How dependability techniques could be
used in a risk management process for
advanced robotics ?

Chapter 2. Dependabilty concepts

Credits : Most of the slides have been generously given by Jean-Claude Laprie
(Resist courseware http://resist.isti.cnr.it/)

Dependability: ability to deliver service that can justifiably be trusted

Service delivered by a system: its behavior as it is perceived by its user(s)
User: another system that interacts with the former
Function of a system: what the system is intended to do
(Functional) Specification: description of the system function
Correct service: when the delivered service implements the system function
(Service) Failure: event that occurs when the delivered service deviates from
correct service, either because the system does not comply with the specification,
or because the specification did not adequately describe its function
Failure modes: the ways in which a system can fail, ranked according to failure
severities
Part of system state that may cause a subsequent service failure: error
Adjudged or hypothesized cause of an error: fault

Dependability: ability to avoid failures that are unacceptably frequent or severe

Failures unacceptably frequent or severe: dependability failure

Absence
of catastrophic

consequences on
the user(s) and
the environment

Continuity
of service

Readiness
for usage

Absence of
unauthorized
disclosure of
information

Absence
of improper

system
alterations

Ability to
undergo

repairs and
evolutions

Safety Reliability Confidentiality Availability Integrity Maintainability

Security
Absence of unauthorized access to, or handling of, system state

Dependability

Authorized actions

Safety Reliability Confidentiality Availability Integrity Maintainability

Fault
Prevention

Fault
Tolerance

Fault
Removal

Fault
Forecasting

Faults Errors Failures
Activation Propagation Causation

Faults Failures … … Causation

Dependability attributes

 Availability, Reliability, Safety, Confidentiality, Integrity, Maintainability: Primary
attributes

 Secondary attributes
  Specialization

  Robustness: dependability with respect to external faults
  Survivability: dependabilty in the presence of active fault(s)
  Resilience: dependability when facing functional, environmental, or

technological changes
 Distinguishing among various types of (meta-)information

 Accountability: availability and integrity of the person who performed an
operation

 Authenticity: integrity of a message content and origin, and possibly
some other information, such as the time of emission

 Non-repudiability: availability and integrity of the identity of the sender
of a message (non-repudiation of the origin),
or of the receiver (non-repudiation of reception)

Fault Error Failure

Deviation of the
delivered service

from correct
service, i.e.,

implementing the
system function

Part of system
state that may

cause a
subsequent

failure

Adjudged or
hypothesized cause of

an error

Failure … … Fault

System does not
comply with
specification

Specification does not
adequately describe

function

Dependability Threats

Propagation Activation Causation

Error Error Error

activation

propagation prop.

Service
Interface

Incorrect
Service:
Outage

Correct
Service

Failure

Correct Service
Incorrect
Service:
Outage

Failure

Internal fault,
dormant

vulnerability

activation

(computation
process)

Means for Dependability

Preventing
occurrence or
introduction of

faults

Fault
Prevention

Delivering correct
service in spite of

faults

Fault
Tolerance

Reducing the
presence of

faults

Fault
Removal

Estimating the present
number, the future

incidence and the likely
consequences of faults

Fault
Forecasing

Fault Avoidance

Fault Acceptance

Concept Dependability High Confidence Survivability Trustworthiness

Goal

1) ability to deliver
service that can
justifiably be trusted
2) ability of a system to
avoid service failures
that are unacceptably
frequent or severe

consequences of the
system behavior are
well understood and
predictable

capability of a system
to fulfill its mission in a
timely manner

assurance that a
system will perform as
expected

Threats
present

1) development faults
(e.g., software flaws,
hardware errata, malicious
logic)

2) physical faults (e.g.,
production defects, physical
deterioration)

3) interaction faults (e.g.,
physical interference, input
mistakes, attacks, including
viruses, worms, intrusions)

• internal and external
threats
• naturally occurring
hazards and malicious
attacks from a
sophisticated and well-
funded adversary

1) attacks (e.g.,
intrusions, probes, denials
of service)

2) failures (internally
generated events due to,
e.g., software design
errors, hardware
degradation, human
errors, corrupted data)

3) accidents (externally
generated events such as
natural disasters)

1) hostile attacks (from
hackers or insiders)

2) environmental
disruptions (accidental
disruptions, either man-
made or natural)

3) human and operator
errors (e.g., software
flaws, mistakes by human
operators)

References

‘Information
technology frontiers for
a new millenium’, Blue
Book 2000, NTSC

A. Ellison et al.,
‘Survivable network
systems’, SEI Report,
1999

F. Schneider, ed.,
‘Trust in cyberspace’,
National Academy
Press, 1999

Dependability and similar notions

Attributes

Availability
Reliability
Safety
Confidentiality
Integrity
Maintainability

Dependability Means

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Threats
Faults
Errors
Failures

Security

Fault
forecating

Ordinal or qualitative evaluation

Probabilistic or
quantitative evaluation

Modeling
Operational testing

Fault
tolerance

Error detection

System recovery
Error handling
Fault handling

Development

Static verification
Dynamic verification

Verification
Diagnosis
Correction
Non-regression verification Fault

removal
Operational life Corrective or preventive maintenance

Means

Fault
prevention

Attributes

Availability/Reliability
Safety
Confidentiality
Integrity
Maintainability

Threats
Faults
Errors
Failures

Development
Physical
Interaction

Dependability

Dependability threats:
faults, errors, failures

Error of a programmer

Fault
Impaired instructions or data

Activation
Faulty component and inputs

Error

Propagation
When delivered service deviates (value, timing) from

implementing function

Failure

Short-circuit in integrated circuit
Failure

Fault
Stuck-at connection, modification of circuit function

Activation
Faulty component and inputs

Error

Propagation
When delivered service deviates (value, timing) from

implementing function

Failure

Causation

Operator Error
Inappropriate human-system interaction

Fault

Error

Propagation
When delivered service deviates (value, timing) from

implementing function

Failure

Electromagnetic perturbation

Fault

Error

Activation
Faulty component and inputs

Fault
Impaired memory data

Propagation
When delivered service deviates (value, timing) from

implementing function

Failure

Faults Errors Failures

Phase of creation
or occurrence

Development faults

Operational faults

System boundaries
Internal faults

External faults

Phenomenological
cause

Natural faults

Human-made faults

Persistence
Permanent faults

Transient faults

Faults Failures … …

Intent
Malicious faults

Non-malicious faults

Capability

Accidental faults

Incompetence faults

Deliberate faults

Signaled failures

Unsignaled failures
Detectability

Consistency
Consistent failures

Inconsistent
(Byzantine) failures

Consequences

Minor failures

Catastrophic failures

%

%

%

Content failures
Domain

Timing failures

Propagation Activation Causation Causation

Failures

Détectability

Signalled failures
[delivered service is detected as incorrect, and signalled as such]
Unsignalled failures
[incorrect service deivery is not detected]

Consistency

Consistent failures
[incorrect service identically perceived by all users]
Inconsistent, or Byzantine, failures
[some, or all, users perceive differently incorrect service]

Consequences

Minor failures
[harmful consequences are of similar cost to the benefits
provided by correct service delivery]

Catastrophic failures
[cost of harmful consequences is orders of magnitude, or
even incommensurably higher than the benefits provided
by correct service delivery]

• • •

Domain

Value failures
[value of delivered service deviates from implementing system function]

Timing failures
[timing of service delivery (instant or duration) deviates
from implementing system function]

Failure
domain

Value
(correct timing)

Timing
(correct value)

Value and
timing

Value failures

Service delivered
too early

Early timing failures

Service delivered
too late

Late timing failures

Suspended
service

Halt failures

Erratic
service

Erratic failures

Non signalling of incorrect service: unsignalled failure

Signalling incorrect service in absence of failure: false alarm

•  halt failures: fail-halt system

•  minor failures: fail-safe system

Failure of detecting mechanisms

System whose all failures are, to an acceptable extent

Faults

Phase of creation
or occurrence

Development faults
[occur during (a) system development, (b) maintenance
during the use phase, and (c) generation of procedures
to operate or to maintain the system] Operational faults
[occur during service delivery of
the use phase]

System
boundaries

Internal faults
[originate inside the system
boundary]
External faults
[originate outside the system boundary and
propagate errors into
 the system by interaction or interference]

Phenomenological
cause

Natural faults
[caused by physico-chemical natural phenomena without human participation]
Human-made faults
[result from human actions]

Intent

Malicious faults
[introduced by a human with the malicious
objective of causing harm to the system]
Non-malicious faults
[introduced without a malicious objective]

Deliberate faults
[result of a decision] Capability

Accidental faults
[introduced inadvertently]

Incompetence faults
[result from lack of professional competence by the
authorized human(s),
or from inadequacy of the development organization]

Persistence

Permanent faults
[presence is assumed to be continuous in time]

Transient faults
[presence is bounded in time]

Development faults Physical faults Interaction faults

Faults

Perm. Perm. Perm. Perm. Perm. Perm. Trans. Perm. Trans. Trans. Trans. Perm. Trans. Trans. Perm.

Non
malicious

Malicious Non
malicious

Non
malicious

Non
malicious

Non
malicious

Malicious

Internal Internal External

Development Operational

Accid. Inc. Accid. Accidental Accidental Accid. Delib. Incompetence Deliberate Delib. Delib.

Persistence

Intent

System boundaries

Phase of creation or
occurrence

Capability

Phenomenological
cause

Human
-made

Natural Natural Natural Human
-made

Malicious
logic

Physical
Deterior.

Physical
Interference

Intrusion
Attempts

Viruses
Worms

Input Mistakes

Overload

Configuration Mistakes

Design Flaws

Production Defects

Human-made Faults

Non-malicious Malicious Intent

Accidental
(Mistakes)

Deliberate
(Bad decisions)

Deliberate Incompetence
Capability

Interaction
(operators,
maintainers)

&
Development
(designers)

Malicious logic
faults:

logic bombs,
Trojan horses,

trapdoors,
viruses, worms,

zombies

Intrusion
attempts

Individuals
&

organizations

Development faults Physical faults Interaction faults

Hardware Software System

State of the art from statistics

June 1980: False alerts at the North American Air Defense (NORAD)

June 1985 - January 1987: Excessive radiotherapy doses (Therac-25)

November 1988: Internet worm

15 January 1990: 9 hours outage of the long-distance phone in the USA

February 1991: Scud missed by a Patriot (Dhahran, Gulf War)

November 1992: Crash of the communication system of the London ambulance
service

26 and 27 June 1993: Authorization denial of credit card operations in France

4 June 1996: Failure of Ariane 5 maiden flight

13 April 1998: Crash of the AT&T data network

February 2000: Distributed denials of service on large Web sites

May 2000: Virus I love you

July 2001: Worm Code Red

August 2003: Propagation of the electricity blackout in the USA and Canada

August 1986 - 1987: the "wily hacker" penetrates several tens of sensitive
computing facilities

October 2006: 83,000 e-mail addresses, credit card info, banking transaction files
stolen in UK

Faults

Ph
ys

ic
al

D
ev

el
op

m
en

t

In
te

ra
ct

io
n

A
va

ila
bi

lit
y/

R

el
ia

bi
lit

y

Sa
fe

ty

C
on

fid
en

tia
lit

y

Lo
ca

liz
ed

D
is

tr
ib

ut
ed

Failures

✔ ✔ ✔
✔ ✔ ✔

✔ ✔ ✔ ✔
✔ ✔ ✔
✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔
✔ ✔ ✔
✔ ✔ ✔ ✔
✔ ✔ ✔ ✔
✔ ✔ ✔ ✔
✔ ✔ ✔ ✔
✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔ ✔

Fault examples

Number of failures

[consequences and outage
durations depend upon
application]

Dedicated computing
systems

(e.g., transaction
processing, electronic

switching, Internet backend
servers)

Controlled systems
(e.g., civil airplanes, phone
network, Internet frontend

servers)

Faults Rank Proportion Rank Proportion

Physical internal 3 ~ 10% 2 15-20%

Physical external 3 ~ 10% 2 15-20%

Human interactions 2 ~ 20% 1 40-50%

Development 1 ~ 60% 2 15-20%

Accidental faults

0

1000

2000

3000

4000

5000

6000

7000

SEI/CERT Statistics: vulnerabilities reported

Malicious faults

The geographic spread of Sapphire in the 30 minutes after release.

Slammer/Sapphire worm

The fastest computer worm in history. As it began spreading throughout the Internet, it doubled in size every 8.5
seconds. It infected more than 90 percent of vulnerable hosts within 10 minutes.The worm began to infect hosts
slightly before 05:30 UTC on Saturday, January 25, 2003. Sapphire exploited a buffer overflow vulnerability in
computers on the Internet running Microsoft's SQL Server or MSDE 2000 (Microsoft SQL Server Desktop
Engine). This weakness in an underlying indexing service was discovered in July 2002; Microsoft released a patch for
the vulnerability before it was announced. The worm infected at least 75,000 hosts, perhaps considerably more, and
caused network outages and such unforeseen consequences as canceled airline flights, interference with elections,
and ATM failures.

[From: http://www.caida.org/publications/papers/2003/sapphire/sapphire.html]

Global Information Security Survey 2004 — Ernst & Young
Loss of availability: Top ten incidents

Percentage of respondents that indicated the following incidents resulted in an unexpected or
unscheduled outage of their critical business

0% 20% 40% 60% 80%

Hardware failures

Major virus, Trojan horse, or Internet worms

Telecommunications failure

Software failure

Third party failure, e.g., service provider

System capacity issues

Operational erors, e.g., wrong software loaded

Infrastructure failure, e.g., fire, blackout

Former or current employee misconduct

Distributed Denial of Servive (DDoS) attacks

Non malicious
76%

Malicious
24%

Fault Removal

Reducing the presence of faults

Diagnosis

Correction

Non-regression verification

Verification Checking whether the system satisfies
verification conditions

general specific

Verification

Dynamic Static

Static analysis

System

Effective execution

Reviews and
inspections

Static
analysis

Theorem
proving

System
behavior
model

Model
checking

Symbolic
inputs

System
model

Symbolic
execution

Valued
 inputs

System

Test

Specification

Design

Implementation

Reviews and manual inspection

68

•  Specification review
•  User requirements, consistence, feasibility
•  Use of checklists

•  Design review
•  Algorithms, interface modules
•  Cheklists
•  modelling, simulation

•  Coding review : critical code reading
•  Inspection (e.g. : several developers read the code with “classical faults”

lists
•  Audit : verification of programming best practices (control structure,

comments, variables names, etc.)
•  Many other approaches

Software reviews and automatic inspections

69

  Program Characteristics
  Instruction lines amount / quantity of types and variables
  Crossing references
  Complexity metrics
  etc.

  Detected faults
  variables : unused, missing initialisation
  loops : infinite, imbricated
  Dead instructions
  Global variables
  … see next slide

Static analyzer Code under
verification

Characteristics and
syntax and

structural faults

Test

70

  Oracle issue : observe outputs and decide if they are
consistent with verification conditions
  Manual estimation of excepted outputs

  To identify a fault, it is required that
  The fault is activated with a test input
  Error is propagating to affect an observable output
  A verification condition is violated

System Under
Test

Test inputs Test
outputs

Oracle
Verdict

(correct/incorrect
outputs)

Exhaustive test is impossible

71

  Input domain is huge, even infinate
  Conditions of execution for a robot is infinate

  Users actions
  Environment

 Partial Verification => test plan / test case should be
justified
  Main functionalities
  Critical scenarios

Formal method (proof and model checking)

72

  Formal specification : use of notations to describe
  Hypothesis on the environments
  Requirements
  A design to satisfy requirements

  Formal verification : use of formal methods for
  Analyse specifications considering consistence and

completeness criteria
  Test specifications
  Prove that design satisfy requirements

Example : Model checking

73

q

p

G(p → Fq)

Model
Checker

Logical formula

State machine

Counter example

p

q

YES!

NO!

Automata

74

4

3

5

2 1

locked

bedpos

loaded

loaded
locked

Multiplet

€

M = S,S0 ,T,P,L

€

S

€

S0 Set of initial state

Finite set of states

€

P Finite set of propositions

€

T ⊆ S × S Transition set

€

L(p) :P 2S Assign to each proposition
the set of states where p is
verified

2

2

5

4

3

1

3

4

2

t 0 1 2

Execution paths : tree

75

Temporal Logic: CTL (Computation Tree Logic)

Properties on execution paths

p
p
p

p

p

p
p
p

p

p

p

p

p
p

p

p

p

p

p

p

p

It finally exists a path where p is
verified: EF p

Property p is finally verified for all
paths : AF p

Property p is verified for all tracks
(invariant) : AG p

76

2

2

5

4

3

1

3

4

2

1

3

4

3

4

3

loaded

locked

bedpos

loaded

loaded

loaded

loaded

loaded

locked

bedpos

bedpos

bedpos

Example : AG EF

It is always possible to reach a state where loaded is verified : AG EF loaded

Fault Forecasting

Identification, analysis of
consequences, and classification

of failures

Probabilistic evaluation of the extent
to which some dependability

attributes are satisfied

Ordinal or
qualitative
evaluation

Probabilistic or
quantitative evaluation

Estimation of presence, creation and consequences of faults

Operational testing

Evaluation test
according to

operational input
profile

Behavior model of system /
failure, maintenance actions,

solicitations

Modelling

Failure mode and effect (and criticality)
analysis [FME(C)A]

Reliability diagrams

Fault trees

State diagrams

Markov chains

Petri nets

Ordinal evaluation Probabilistic evaluation

Failure mode and effect (and criticality)
analysis

80

  Identification for each component:
  Failure modes
  Consequences of failures

  Example : interplanetary sonde (JPL-NASA)

Item / Function FEA/EAA

Potential Failure Mode CPU Reset

Potential Effect(s) of Failure Loss of all state information

Severity 0.5

Potential Cause(s) Mechanisms of
Failure

Power surge or drop; internal
software error

Probability 0.3

Current design controls Store state information

Effectiveness 0.9

SEE
CHAPTER

4

Fault tree analysis

81

  Top-down approach to failure
analysis starting with an
undesirable event called a top
event, and then determining how
this top event can be caused by
individual or combined lower level
failures or events

SEE
CHAPTER

4

From qualitative to quantitative

82

  Fault forecasting : use of mathematical tools for
calculation of reliability and availability

  Statistics and probabilities

a

c

Time

Failure intensity (average number of
failures per unit of time)

Reliability growth

Improved ability to deliver
correct service

[stochastic increase  
of times to failure]

Decreasing failure intensity

Non-stationary stochastic
processes

Stable reliability

Preserved ability to deliver
correct service

[stochastic equality  
of times to failure]

Constant failure intensity

Stationary stochastic
processes

Reliability decrease

Degraded ability to deliver
correct service

[stochastic decrease  
of times to failure]

Increasing failure intensity

Before version X

Version X

Version X+1

Version X+2

Version X+3

Version X+4

IBM Data

18

16

14

12

10

8

6

4

2

0

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
u
n
iq

u
e

 f
a
u
lt
s
 /
 3

m
o
n
th

s

Relative month where failure first reported

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

Version X+1 X+2 X+3 X+4 X+5

0

.1

.2

.3

.4

p
a

c
k
s
 p

e
r

1
k
 l
in

e
s
 p

e
r

m
o
n
th

 (
/5

0
)

Yr 3Yr 2Yr 1

Hardware replacement rate trend

Field
data

AT&T Data

86

Correct service
X = 1

Incorrect service
X = 0

Failure

Repair

Initial reliability: k=1

€

Rk u() = P X ν() = 1,∀ ν ∈ tk−1,tk−1+u[]{ } = P θk > u{ }
Reliability

€

A t() = P X t() = 1{ } = E X t(){ } = P tk−1< t< tk−1+θk{ }
k=1

∞
∑

Availability

87

θ : time of realization until occurrence of event X

Fonction Symbole Definition
Statistical
estimation

Distribution

Complementary
distribution

Probability of
density

Chance rate

€

F t()

€

F t()

€

f t()

€

z t()

€

P θ ≤t{ }

€

P θ > t{ }

€

P θ ≤t +Δt{ } − P θ ≤t{ }
Δt

€

P θ ≤t +Δt θ ≥t{ }
Δt

€

N 0() − N t()
N 0()

€

N t()
N 0()

€

N t +Δt() − N t()
N 0() Δt

€

N t +Δt() − N t()
N t() Δt

N(0) : cardinality of the sample

N(t) : number of systems of the
sample where event X does not
occur

Mean time to occurrence of event X :

€

E θ() = t f t() dt
0

∞

∫ = F t() dt
0

∞

∫

88

€

f t()

€

F t()

€

F t()

€

F t()

€

f t()

€

z t()

€

z t()

€

1− F t()

€

1− F t()

€

F t()

€

f v()dv
0

t

∫

€

f t()
f v()dv

t

∞

∫

€

dF(t)

dt

€

−
dF (t)

dt

€

1

1−F t()
dF(t)

dt

€

−
1

F t()
dF (t)

dt

€

f v()dv
t

∞

∫

€

e
− z v() dv

0

t

∫

€

1−e
− z v() dv

0

t

∫

€

z t() e
− z v() dv

0

t

∫

Hypothesis : exponential distribution of θ:

€

F t() = 1−e−λt F t() = e−λt f t() = λ e−λt z t() = λ E θ() =
1

λ

89

0

MTTF(t)

t

€

MTTFK = E θk{ } = RK u() du
0
∞
∫

Mean time until next failure

Mean time to first failure :

€

MTFF = MTTF1= MTTF 0() = R1u() du
0
∞
∫

MTTF : Mean Time To Failure, MTFF :
Mean Time to First Failure,

Stable reliability Growth reliability

Realiability

1

0

Rk(u)

u

k=1 k=2 …

t

1

0

Rk(u)

u

k=1

k > k0

MTTF(k)

k1 2 3 …

Reliability diagrams

90

Component
1

Component
2

Component
n

Serial : non redundant systems

Paralell: redundant system

Component
1

Component
2

Component
n

91

€

R = Rk
k=1

n

∏

€

Rk t() = exp − λk v() dv
0

t
∫

€

R t() = exp − λk v() dv
0

t
∫

k=1

n

∑

€

λ t() = λk t()
k=1

n

∑

€

1−R = 1−Rk()
k=1

n

∏

€

R = 1− 1−Rk()
k =1

n

∏

Model calculation

Rk : reliability of the component k,
k=1,…,n

R : reliability of the system

Parallel systems

R = P {System without any failure}

R = P {component 1 with no failure and …. and component n without failure}

Serial systems

System failure only if failure of all the components

€

R = P component k without failure{ }
k=1

n

∏If failure are stochastically
independent

Serial-Parallel systems

92

C1

C11

€

R11 = R111 ⋅R112

€

R1 = 1− 1−R11() 1−R12()

€

R2 = 1− 1−R21() 1−R22() 1−R23()

€

R = R1 ⋅R2

C111 C112

C12

C2

C21

C22

C23

Availability estimation

93

Ak : availability component k, k=1,…,n A : availability of the system

€

A = 1− 1− Ak()
k=1

n

∏Parallel systems

€

A = Ak
k=1

n

∏Serial Systems

Fault Tolerance

Delivering service implementing system function in spite of faults

Error detection: identification of error presence

Error handling: error removal from system state, if possible
before failure occurrence

Fault handling: avoiding fault(s) to be activated again

System recovery: transformation of erroneous state in a state free from
detected error and from fault that can be activated again

Concurrent detection, during service delivery

Preemptive detection: service delivery suspended, search for latent
errors and dormant faults

Rollback: brings the system back into a state saved prior to error
occurrence

Saved state: recovery point

Rollforward: new state (free from detected error) found

Compensation: erroneous state contains enough redundancy for
enabling error masking

Addition of error detection mechanisms in component

Self-checking component

Error detection

Error handling

Diagnostics: identifies and records the error cause(s), in terms of
localisation and category

Isolation: performs physical or logical exclusion of the faulty component(s)
from further contribution to service delivery, i.e., makes the fault(s)
dormant

Reconfiguration: either switches in spare components or reassigns tasks
among non-failed components

Reinitialization: checks, updates and records the new configuration, and
updates system tables and records

Fault handling

☞ Intermittent faults

  Isolation and reconfiguration not necessary

Error handling Non recurrence
of error

Fault diagnosis Absence
of fault

Intermittent
fault

  Identification

Error detection and system recovery
or

Detection - recovery

Fault masking and system
recovery

or
Masking

Error detection

Error handling

Systematic application
even in error absence

2

Rollback 2

1

Rollforward 2

1

Compensation 1 2

1

Fault handling 3 3 3 3

Prevention of error
propagation

Fail-fast

Error detection
(defensive

programming)
and exception

handling

Service continuity

Error detection
and

recovery points

Design diversity

Recovery
blocks

Two-fold
diversity

+
acceptance

test

N-Version
programming

Three-fold
diversity

+
vote

N-self-checking
programming

Four-fold
diversity

+
switching

Two-fold
diversity

+
comparison

Double
programming

Soft faults Solid faults

Development of fault tolerance

 Aim: failure independency

☞ Obstacles: common specification, common difficulties, inter-
variant synchronizations and decisions

 Operational use

☞ Civil avionics: generalized, at differing levels

☞ Railway signalling: partial

☞ Nuclear control: partial

 Dependability improvement

☞ Gain (max for physical fault tolerance compared to SW)

☞ Contribution to verification of specification

Design diversity

Example 1
Redundancy

  A fail-safe dual
channel robot
control for surgery
applications

  U. Laible et al. / Safety Science 42
(2004) 423–436

5.5. Error reaction

If an error of the robot system has been detected by any of the internal or external
monitoring functions, an error reaction is initiated. This error reaction can be per-
formed independently by the control channel and by the monitoring channel.

Depending on the nature of the detected error different reactions are initiated. If
the cause of the error does not affect the ability to control the drives properly by the
control system, the axis are stopped by the control keeping the desired path by
initiating a so-called ‘‘feed-hold’’. If the detected error is serious and could possibly
result in an uncontrolled movement, the reaction manager shuts down the power
supply of the drive via the emergency stop circuit. Through selflocking the axes stop
in a tolerable time.

Considering the medical requirements (Chapter 3.2) the axis have to be stopped
within a maximum deviation of 1 mm measured at the TCP. The RC runs with a

TC
P/

IP

cp
cv
RM
fh

: command position
: command velocity
: reaction manager
: feed hold

I/O

position
control

cvt+3 [1...7]

sh
are

d m
em

ory

RM

CP4

RM

CP5

cpt+3 [1...7]

RM

SY1

drive 1...7

M

I/O I/O

drive power
supply off supply off

TC
P/

IP

moni-
toring

channel

F

F

RM

SY2

fh

: Protocol Data Units (PDU)
: Channel blocks
: realtime comparator
: synchronisation

CPi
SYi

path
interpolation

F

path
preparation

decoder

RM

state
machine

communication

operator control computer

position
control

cvt [1...7]

cpt [1...7]

F

fh path
interpolation

F

path
preparation

decoder

RM

state
machine

communicationcontrol
channel

drive power

Fig. 7. Redundant RC compares command position values.

U. Laible et al. / Safety Science 42 (2004) 423–436 433
cess to defined data interfaces is possible. Using these interfaces, the internal process
data flow and control data flow can be recorded and used as test results for variance
comparison.

6.2. Verification of the fail-safe behavior

The verification of the fail-safe behavior of the surgery robot system is an essential
part of the analytical QA activities and is done by the execution of error simulations.
These simulations are also necessary in order to prove to the notified body, that the
FMEA is adequate and acceptable.

For this purpose safety-critical defects are intentionally introduced to hardware
and software components e.g. by manipulating wires or the RAM. The kind and
number of defects used for error simulations, are derived from the FMEA. For each
error, the corresponding defect or defects have to be initiated in order to verify the
detectability and the appropriate error reaction.

7. Summary

All safety functions described within this paper were realized in a commercial
control system as part of the robotic surgery system of the company Universal
Robot Systems GmbH (URS). The control system was realized on a cPCI-System
with two CPU boards and five I/O boards (Fig. 8).

Fig. 8. Robotic surgery system (Photo: URS).

U. Laible et al. / Safety Science 42 (2004) 423–436 435

  Safety PLC (Programmable
Logical Controller)

  Cut power of the robot
arm => no power : the
brakes are engaged in the
robot arm.

  Command the converters
of the motors to slow
down.

  After a delay, the power
going towards the motor
via the converters is cut
=> no power on that line :
the brakes on the wheel
motors are engaged.

KUKA omnirob© concept

Example 2
Protection System

Verification and evaluation of fault tolerance

Faults (deficiencies) in algorithms and mechanisms of fault tolerance

Fault tolerance
Coverage

Modelling Test

Evaluation / Influence

Fault forecasting

Improvement

Fault removal

Test

Dynamic
verification

Static
verification

Model checking

Fault injection

Activity
Target
system

Inputs

Faults

Outputs
Correct/Incorrect

Error detection,
error and fault
handling

Fault injection

Target system
Simulation

model
Prototype or
actual system

Injection

Informational

In simulation By software
• Memory

• Executive

• Processor

Physical

By hardware
• Radiations

• Interferences

• Pins

  Representativity
of faults

Fault prevention

Prevention techniques
  Requirement/specification/analysis/design methods

  Semi-formal (UML)
  Formal (Petri nets, automata, ESTEREL, LUSTRE)
  Certified technologies and tools (High integrity components,

code generation, safety kernels)
  Application of development process methods

  Unified Process (Rational Unified Process)
  Agile methods

  Preventive maintenance

Too many technologies and methods to be exhaustive
 fault prevention is all actions aiming at increase quality
of the system development and life

References
(in addition to those mentioned in the slides)

A.Avizienis, J.C. Laprie, B. Randell, C. Landwehr, Basic Concepts and Taxonomy
of Dependable and Secure Computing, IEEE Transactions on Dependable and
Secure Computing, Vol. 1, no. 1, pp. 11-33, January-March 2004

J.C. Laprie, From Dependability to Resilience, 38th IEEE/IFIP Int. Conf. On
Dependable Systems and Networks, Anchorage, Alaska, June 2008, Sup. Vol.,
pp. G8-G9

Chapter 3. Risk Management

Definitions and concepts of risk
management

Unwanted effects: harm
  Harm: physical injury or damage to the health of people, or

damage to property or the environment.
  Three attributes of a harm are usually defined the nature

of the harm, its severity and its probability of
occurrence.

Nature of harm

Severity – Table Example

Probability of occurrence or likelihood

Risk
Risk: combination of the probability of occurrence of harm and the
severity of that harm.

Tolerable risk: risk which is accepted in a given context based on the
current values of society.

Other Risk Estimation
R = N x C x F x Q
  R: risk related to the considered hazard
  Q: probability of occurrence of harm
  F: frequency and duration of exposure
  C: severity of possible harm that can result
  N: number of exposed people

Safety
  Safety: freedom from unacceptable risk.

Council Directive 93/42/EEC of 14 June
1993 concerning medical devices

  Medical device means any instrument,[..] material or
other article, whether used alone or in combination,
including the software necessary for its proper application
intended […] to be used for human beings for the
purpose of:
  diagnosis, prevention, monitoring, treatment or alleviation of

disease,
  diagnosis, monitoring, treatment, alleviation of or compensation

for an injury or handicap,
  investigation, replacement or modification of the anatomy or of

a physiological process,
  […];

Council Directive 93/42/EEC of 14 June
1993 concerning medical devices

  Active medical device : Any medical device operation
of which depends on a source of electrical energy or any
source of power other than that directly generated by the
human body or gravity and which acts by converting this
energy.

Many rehabilitation robots can be
considered as active medical device

Directive 93/42/EEC classes

1. Determine system class :
  The classification rules are based on the vulnerability of the

human body taking account of the potential risks associated
with the technical design and manufacture of the devices
  Class I : non invasive devices, unless specific rules applied…
  Class IIa : invasive devices intended for short-term, unless…
  Class IIb : implantable devices and long-term surgically invasive

devices
  Class III : implantable devices and long-term surgically invasive devices

near heart or of the central circulatory system

  Rule 9 : All active therapeutic devices intended to administer or
exchange energy are in Class IIa

Directive 93/42/EEC classes

Other system classes (PHRIENDS project
www.phriends.org) - NON MEDICAL
  Class I - Far (no pHRI possible): Human and robot do not share

the same workspace so direct physical contact is not possible. (Remote
control, pendant, network,etc.)

  Class IIa - Close (accidental pHRI possible): Human and robot
share the same workspace. (e.g. the programming of the robot system
while the programmer is within the robot’s work cell, or exchange of an
object through a table)

  Class IIb - Touching without simultaneous movement (direct
or indirect pHRI): The robot shares its workspace with the human.,
But physical contact with the moving robot is avoided. In this category,
interaction only takes place when the robot stops. (e.g. the system
approaches the human, the robot (safely) stops temporarily when the
human reaches for the object and only starts moving again after the
interaction is completed)

Other system classes (PHRIENDS project) –
(2)

  Class IIc - Touching with simultaneous movement (direct or
indirect pHRI): The robot shares its workspace with the human.
Both are moving simultaneously and physical interaction is
possible and intended. (robot that is programmed by being
manually guided through the workspace / robot assisting the
human with its greater force and/or precision)

  Class III - Supporting (direct pHRI): physical interaction occurs
continuously over extended periods of time, usually in the form of
exoskeletons which are worn by the user, or when the robot is
carrying a human (for example, in entertainment or healthcare
applications, or rescue operations).

Causes of harm: hazards
  Hazard: potential source of harm

  Hazardous inherent characteristics (e.g., a cutting edge, a toxic
substance, etc.)

  Hazardous controllable states of the system (e.g., hazardous
motion, suspended mass)

  Failure of hardware or software components
  Human errors
  Unspecified external events
  The term hazardous motion is defined in the standard [ISO

10218:2006] to be “any motion that is likely to cause personal
physical injury or damage to health”

Causes of harm: hazards (cont’d)
  Hazardous situation: circumstance in which people,

property or the environment are exposed to one or more
hazards

  Harmful event or accident: occurrence in which a
hazardous situation results in harm

  Incident: event that does not lead to harm, but which has the
potential to create harm in other circumstances

Subset of list of significant hazards (Extracted from ISO
10218 Annex A, Table A.1 – List of significant hazards
which is itself based on Annex A of ISO 14121:1999).

Example of use of terminology

Risk management process

  Risk management
overview

Means of increasing safety:
risk management

Risk management activities
  Risk management : coordinated activities to direct and control

an organization with regard to risk

  Risk analysis : systematic use of available information to identify
hazards and to estimate the risk

  Risk Evaluation : process of comparing the estimated risk against
given risk criteria to determine the significance of the risk

  Risk treatment : process of selection and implementation of
measures to modify risk
  Risk treatment measures can include reducing, avoiding, optimizing,

transferring or retaining risk.
  Risk reduction : actions taken to lessen the probability, negative

consequences, or both, associated with a risk
  (Risk communication, transfer, etc.)

Relationship between terms, based on their
definitions regarding “Risk” (ISO Guide 73)

!"#$!%&'()!*%'+,-.//.0%$12'

! !

3/! ' "!#$%!&''&!(!)**!+,-./0!+101+21345670!3+6,/0!+801+280!

!

9#$:!;<=>=>?!

! @9%A)A#B#5C!;<=>=<?!

! DEDF5!;<=>=G?!

! H%F$DIJDFHD!;<=>=&?!

456!

)! !

! A!

! H!

5.1!/1+K0!A!LM3!H!L+1!7013!,M!/.1!31N,M,/,6M!6N!/.1!/1+K!)!6+!/.1!M6/10!/6!31N,M,/,6M!)=!

1789:5'3';'<5=>?7@ABC7D'E5?F55A'?5:GBH'E>B5I'@A'?C57:'I5J7A7?7@AB':58>:I7A8'K<7BLM'

9#$:!O)F)PDODF5!;!<=>=Q?!

! 9#$:!)$$D$$ODF5!;<=<=>?!

! ! 9#$:!)F)BC$#$!;<=<=&?!

! ! ! $%J9HD!#RDF5#S#H)5#%F!;<=<=G?!!

! ! ! 9#$:!D$5#O)5#%F!;<=<=T?!

! ! 9#$:!DE)BJ)5#%F!;<=<=U?!

! 9#$:!59D)5ODF5!;<=G=>?!

! ! 9#$:!)E%#R)FHD!;<=G=U?!

! ! 9#$:!%@5#O#V)5#%F!;<=G=<?!!

! ! 9#$:!59)F$SD9!;<=G=Q?!

! ! 9#$:!9D5DF5#%F!;<=G=W?!

! 9#$:!)HHD@5)FHD!;<=G=>'?!

! 9#$:!H%OOJF#H)5#%F!;<=&=G?!

456!

)! !

! A!

! H!

5.1!/1+K0!A!LM3!H!L+1!7013!,M!/.1!31N,M,/,6M!6N!/.1!/1+K!)!6+!/.1!M6/10!/6!31N,M,/,6M!)=!

1789:5'.';'<5=>?7@ABC7D'E5?F55A'?5:GBH'E>B5I'@A'?C57:'I5J7A7?7@AB':58>:I7A8'K<7BL'N>A>85G5A?M'

$5):DX%BRD9!;<=&=>?!

! #F5D9D$5DR!@)95C!;<=&=&?!

456!

)! !

! A!

! H!

5.1!/1+K0!A!LM3!H!L+1!7013!,M!/.1!31N,M,/,6M!6N!/.1!/1+K!)!6+!/.1!M6/10!/6!31N,M,/,6M!)=!

1789:5',';'<5=>?7@ABC7D'E5?F55A'?5:GBH'E>B5I'@A'?C57:'I5J7A7?7@AB':58>:I7A8'K"?>L5C@=I5:M'

Boutique AFNOR pour : CNRS - LAAS le 8/6/2005 - 14:44

RISK REDUCTION

Summary of process to achieve tolerable
risk
  The following procedure should be used to reduce risks to a

tolerable level:
  a) identify the likely user group(s) for the product, process or service

(including those with special needs and the elderly), and any known
contact group (e.g. use/contact by young children);

  b) identify the intended use and assess the reasonably foreseeable
misuse of the product, process or service;

  c) identify each hazard (including any hazardous situation and harmful
event) arising in all stages and conditions for the use of the product,
process or service, including installation, maintenance, repair and
destruction/disposal;

  d) estimate and evaluate the risk to each identified user/contact
group arising from the hazard(s) identified;

  e) judge if the risk is tolerable (e.g. by comparison with similar
products, processes or services);

  f) if the risk is not tolerable, reduce the risk until it becomes
tolerable.

Summary of process to achieve tolerable
risk (cont’d)

  When reducing risks the order of priority should be as
follows:
  1) inherently safe design;
  2) protective devices;
  3) information for users.

ISO/IEC GUIDE 51:1999(E)

© ISO/IEC 1999 – All rights reserved 5

e) judge if the risk is tolerable (e.g. by comparison with similar products, processes or services);

f) if the risk is not tolerable, reduce the risk until it becomes tolerable.

When reducing risks the order of priority should be as follows:

1) inherently safe design;

2) protective devices;

3) information for users.

This procedure is based on the assumption that the user has a role to play in the risk reduction procedure by
complying with the information provided by the designer/supplier (see Figure 2).

Figure 2 — Risk reduction

The steps taken in the design procedure are shown in order of priority. The steps to be taken by the user are not in
order of priority because this would depend on the application. It is emphasized that the additional protective
devices, personal protective equipment and provision of information to users should not be used as substitutes for
design improvements.

7 Safety aspects in standards

7.1 Types of safety standard

Close coordination within and among committees (see clause 1, note 5) responsible for preparing standards on
different products, processes or services is necessary in order to achieve a coherent approach to the treatment of
safety. The use of a structured approach is recommended to ensure that each specialized standard is restricted to

Risk management activities

Risk analysis, Evaluation and Reduction

Risk analysis methods
  During risk analysis, various methods can be used to

handle functional and technological issues, for example:
  Preliminary Hazard Analysis (PHA)
  HAZard OPerability (HAZOP)
  Failure Modes Effects and Criticality Analysis (FMECA)
  Fault Tree Analysis (FTA)
  Event Tree Analysis (ETA)

  Widely used in many domains and particularly in
industrial robotics

  They are also recommended in many standards on
dependability

  See chapter 4 “Three risk analysis techniques”

Preliminary Hazard Analysis (PHA)

Selection of PHA worksheet

Introduction

PHA procedure

PHA Main Steps

Prerequisites

Hazard
identification

Frequency

Severity classes

Frequency classes

Risk ranking

Pros and cons

Review

Hazard checklist

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 12 / 36

The results of the PHA are usually reported by using a PHA
worksheet (or, a computer program). A typical PHA worksheet is
shown below. Some analyses may require other columns, but
these are the most common.

Ref.
Contingencies/

Preventive actions
Hazard

Accidental event
(what, where, when)

Probable
causes

Prob. Sev. Comments

System: Operating mode:
Analyst:
Date:

Failure Modes and Effects Criticality
Analysis (FMECA)

Hazard Operability (HAZOP)

Fault Tree Analysis (FTA)

Event Tree Analysis

Example

Introduction

Construction

Example:
Separator

Quantitative
analysis

Example

Frequencies of
outcomes

Conclusions

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 25 / 28

Consider the generic example:

Accidental
event

Additional
event I occurs

Barrier I does
not function

Barrier II does
not function

Additional
event II occurs

Outcome /
consequence

B1

True

False

B2 B3 B4

True

True

True

True

True

True

True

False

False

False

False

False

Outcome 1

Outcome 7

Outcome 6

Outcome 5

Outcome 4

Outcome 3

Outcome 2

Outcome 8

Outcome 9

False

Qualitative Vs Quantitative
  Qualitative risk estimation is based on qualitative

enumerations (e.g., minor, negligible, etc.)

  Quantitative estimation is based on numerical estimation
(e.g., F=10-2)

  The Grail : quantitative estimation -> NOT ALWAYS
POSSIBLE (e.g., software faults) -> « reasonable worst-
case estimate of probability, … it is convenient to set this
default value of the probability to one » (ISO14971)

Quantitative Risk estimation : Significant
disadvantages
  The risk estimation depends on users / cared person.

In case of in-home care, a caretaker or a cared person has to
operate a medical / rehabilitation robot by himself / herself.
Most of caretakers or cared persons are not familiar with their
operation. Then the probability of occurrence of harm
becomes large caused by their incorrect operation or misuse
and a generic calculation becomes impossible.

  There is little judgment material for determining the
probability of occurrence of harm and severity of
possible harm : Compared with machinery, there are few
statistics data about the accident report of medical treatment
and rehabilitation apparatus. In the present circumstances,
these values are estimated experimentally or subjectively by
the risk assessor.

Risk acceptability criteria
  Risk acceptance principles from industrial safety

ALARP (UK)
As Low As Reasonably Practicable
reduce unacceptable risks to acceptable level
effort ("price") must be reasonable and practicable

GAMAB (FR)
Globalement Au Moins Aussi Bon (globally at least as good)
allows for trade-offs
similar to ALARP

MEM (DE)
Minimum Endogenous Mortality
objective principle, but risk is subjective
controversial, difficult to apply

61508-5 ! IEC:1998 – 33 –

Below the tolerability region, the levels of risk are regarded as so insignificant that the regulator
need not ask for further improvements. This is the broadly acceptable region where the risks
are small in comparison with the everyday risks we all experience. While in the broadly
acceptable region, there is no need for a detailed working to demonstrate ALARP; it is,
however, necessary to remain vigilant to ensure that the risk remains at this level.

Intolerable region

Broadly acceptable region

(No need for detailed working
to demonstrate ALARP)

Negligible risk

Risk cannot be justified

except in extraordinary

circumstances.

Tolerable only if further risk
reduction is impracticable or if its
cost is grossly disproportionate to
the improvement gained.

It is necessary to maintain
assurance that risk remains at
this level.

The ALARP or
tolerability region

(Risk is undertaken
only if a benefit is
desired)

As the risk is reduced, the less,
proportionately, it isnecessary to spend to
reduce it further to satisfy ALARP. The
concept of diminishing proportion is shown
by the triangle.

IEC 1 664/98

Figure B.1 – Tolerable risk and ALARP

The concept of ALARP can be used when qualitative or quantitative risk targets are adopted.
Subclause B.2.2 outlines a method for quantitative risk targets. (Annex C outlines a
quantitative method and annexes D and E outline qualitative methods for the determination of
the necessary risk reduction for a specific hazard. The methods indicated could incorporate the
concept of ALARP in the decision making.)

NOTE – Further information on ALARP is given in reference [4] in annex F.

B.2.2 Tolerable risk target

One way in which a tolerable risk target can be obtained is for a number of consequences to be
determined and tolerable frequencies allocated to them. This matching of the consequences to
the tolerable frequencies would take place by discussion and agreement between the
interested parties (for example safety regulatory authorities, those producing the risks and
those exposed to the risks).

Risk acceptability criteria

Risk acceptability criteria
  Difficulties to define generic process

  There is no set of generally accepted risk acceptance principles
  Harmonisation is necessary for interoperability

  difficult, because risk acceptance is a political question

  Standards propose principles
  leave the details to the legislative bodies

MEM is not generally accepted
GAMAB appears to be most widespread

results are not uniform

ALARP has greatest potential to bring improvements

Tolerable Risk for Robots
  Machinary/Industrial robots

  Level of tolerable risk should be decided according to the
standard which risk assessor declares.

  Applicable to industrial robots -> workers whom they may
injure do not directly benefit from their use, their safety should
be certified objectively

  Rehabilitation robots
  Users may accept their use on account of these benefits even

when the designer cannot reduce their associated risks
sufficiently.

  For example, surgical robots are highly beneficial if the patients'
outcome is successful, however, the operative outcomes are
not always a success. the residual risks were clearly detailed to
the patients and that the patients consented to their us

10 A Safety Strategy for Rehabilitation Robots 181

10.3 Case Study on Safety of Rehabilitation Robots

In general, the risk assessment and the risk reduction of machinery are carried out
according to ISO/TR 12100-1 “Safety of machinery-Basic concepts, general prin-
ciple for design” and ISO 14121:1999 “Safety of machinery-principles of risk as-
sessment”. In Japan, the special committee for standardizing rehabilitation robots
has been established by the Japan Robot Association in 2001. The committee
members, who are researchers of medical and rehabilitation robots, carried out
Case Study of assessing several medical and rehabilitation robots according to
ISO/TR 12100-1:1992 and ISO 14121:1999. The aim of this case study is to clar-
ify the key points of risk assessment and risk reduction for these robots. The fol-
lowing medical and rehabilitation robots are carried out case study of the risk as-
sessment by use of block chart shown in Fig. 10.3 which is Fig. 10.2 modified by
ISO14971, that is "Medical devices: Application of risk management to medical
devices".

Fig. 10.3. The iterative process to achieve safety which is Fig. 10.2 modified by ISO 14971

• Medical robots
o Neurosurgical robot
o Laparoscopic surgery robot
o Continuous passive motion device (CMP)

A contribution : Quantitative Benefit
Estimation for rehabilitation robots

  Most of benefits must be quantified by use of QOL
(Quality Of Life), ROL (Respect Of Living) and ADL
(Activities of Daily Living), but it is too difficult to quantify
them objectively. For examples, benefit of "mobility" is
changed according to the extent of gait disorder, so it is
necessary to subjectively consider the daily life of
targeted cared person. 184 M. Nokata and N. Tejima

Table 10.1. Benefits of using rehabilitation robots and the quantification factors

Benefit Quantification factors
User (Mostly carer) Improvement of working

condition (ex. Reduction of
lumbago generating)

QOL, ROL, Tiredness,
Working time, Cut-down
medical expenses for lum-
bago

Cared person Acquisition of an independ-
ence life
Expansion of a life space
Mentally relieved

QOL, ROL, ADL

10.4 Proposal of Risk Assessment Guideline
for Rehabilitation Robots

This section proposes safety strategy for rehabilitation robots according to results
of case study mentioned above. Proposed guideline of risk assessment and risk re-
duction is shown in Fig. 10.4.

Fig. 10.4. Proposed guideline of safety strategy for rehabilitation robots

From : A Safety Strategy for Rehabilitation Robots, Makoto Nokata and Noriyuki Tejima

Risk reduction technologies

Prevention and protection

Probability of
Occurrence
(P)

Severity (S)

Unacceptable risk

Area of judgment

Acceptable
risk

R=(P,S)

Protection

Prevention

Prevention and protection as safety barriers

Risk reduction technologies
  Prevention:

  Fault avoidance
  Software development fault avoidance (e.g., use of software fault prevention and

fault elimination methods and tools)
  Hardware fault avoidance (e.g., preventive maintenance)
  Human error avoidance (e.g., human robot interface analysis, cognitive aspects to avoid

human error, Human legible motion planning and reactive planning for collision
avoidance)

  Performance limitations
  Mechanical architecture limits (e.g., limits of weight, restriction of degrees of freedom)
  Working area, force, acceleration, and speed limits

  Protection:
  Compliance of robot movements (Passively safe actuators, control of active compliance)
  Fault tolerance mechanisms :

  Independent safety systems (Safety bag)
  Detection and reaction to human presence or contact (Collision detection and

reaction)
  Detection of robot failure (through redundancy)
  Emergency stop and controlled stop controlled by hardware devices (sensors, dead-

man switches, etc.)

Example 1
Redundancy

  A fail-safe dual
channel robot
control for surgery
applications

  U. Laible et al. / Safety Science 42
(2004) 423–436

5.5. Error reaction

If an error of the robot system has been detected by any of the internal or external
monitoring functions, an error reaction is initiated. This error reaction can be per-
formed independently by the control channel and by the monitoring channel.

Depending on the nature of the detected error different reactions are initiated. If
the cause of the error does not affect the ability to control the drives properly by the
control system, the axis are stopped by the control keeping the desired path by
initiating a so-called ‘‘feed-hold’’. If the detected error is serious and could possibly
result in an uncontrolled movement, the reaction manager shuts down the power
supply of the drive via the emergency stop circuit. Through selflocking the axes stop
in a tolerable time.

Considering the medical requirements (Chapter 3.2) the axis have to be stopped
within a maximum deviation of 1 mm measured at the TCP. The RC runs with a

TC
P/

IP

cp
cv
RM
fh

: command position
: command velocity
: reaction manager
: feed hold

I/O

position
control

cvt+3 [1...7]

sh
are

d m
em

ory

RM

CP4

RM

CP5

cpt+3 [1...7]

RM

SY1

drive 1...7

M

I/O I/O

drive power
supply off supply off

TC
P/

IP

moni-
toring

channel

F

F

RM

SY2

fh

: Protocol Data Units (PDU)
: Channel blocks
: realtime comparator
: synchronisation

CPi
SYi

path
interpolation

F

path
preparation

decoder

RM

state
machine

communication

operator control computer

position
control

cvt [1...7]

cpt [1...7]

F

fh path
interpolation

F

path
preparation

decoder

RM

state
machine

communicationcontrol
channel

drive power

Fig. 7. Redundant RC compares command position values.

U. Laible et al. / Safety Science 42 (2004) 423–436 433
cess to defined data interfaces is possible. Using these interfaces, the internal process
data flow and control data flow can be recorded and used as test results for variance
comparison.

6.2. Verification of the fail-safe behavior

The verification of the fail-safe behavior of the surgery robot system is an essential
part of the analytical QA activities and is done by the execution of error simulations.
These simulations are also necessary in order to prove to the notified body, that the
FMEA is adequate and acceptable.

For this purpose safety-critical defects are intentionally introduced to hardware
and software components e.g. by manipulating wires or the RAM. The kind and
number of defects used for error simulations, are derived from the FMEA. For each
error, the corresponding defect or defects have to be initiated in order to verify the
detectability and the appropriate error reaction.

7. Summary

All safety functions described within this paper were realized in a commercial
control system as part of the robotic surgery system of the company Universal
Robot Systems GmbH (URS). The control system was realized on a cPCI-System
with two CPU boards and five I/O boards (Fig. 8).

Fig. 8. Robotic surgery system (Photo: URS).

U. Laible et al. / Safety Science 42 (2004) 423–436 435

  Safety PLC (Programmable
Logical Controller)

  Cut power of the robot
arm => no power : the
brakes are engaged in the
robot arm.

  Command the converters
of the motors to slow
down.

  After a delay, the power
going towards the motor
via the converters is cut
=> no power on that line :
the brakes on the wheel
motors are engaged.

KUKA omnirob© concept

Example 2
Protection System

!"##

Example 3 – A new generation of actuators

  MacKibben Muscles
  TONDU B., IPPOLITO S., GUIOCHET J., DAIDIE A., "A

Seven-degrees-of-freedom Robot-Arm Driven by
Pneumatic Artificial Muscles for Humanoid Robots",
International Journal of Robotics Research, vol. 24, num.
4, MIT Press, pp. 257-274, April 2005

  Variable stiffness actuation : VSA
  A. De Luca, F. Flacco, R. Schiavi, A. Bicchi, "Nonlinear

decoupled motion-stiffness control and collision
detection/reaction for the VSA-II variable stiffness
device", IEEE/RSJ International Conference on
Intelligent Robots and Systems, USA, 2009

offset by a stiffness actuator, which can change the stiffness very
quickly and independent from the link speed [Figure 12(b)].
The shape of the cam faces can be designed to provide the

desired restoring torque characteristic. Superposition of agonist
and antagonist forces with different offsets results in variable stiff-
ness. In the nominal range, it has (close to) linear behavior and
gets progressive toward the ends of the range for joint protection.

VS-Joint Mechanism
The concept of the VS joint as presented in [24] contains two
motors of different size. The high-power motor changes the
link position. The joint stiffness is adjusted by a much smaller
and lighter motor, which changes the characteristic of the
supporting mechanism (Figure 14). An unwound schematic
of the principle is shown in Figure 15. A compliant link
deflection results in a displacement of the cam disk and is
counterbalanced by the roller pressed on it in axial direction
by a spring. This generates a centering force resulting in the
output torque of the link. To change the stiffness preset, the
smaller motor moves the spring base axially to the cam disk
and thus varies the spring force. The joint prototype can be
equipped with different cam disks. The design of the cam
disks specifies the torque/deflection characteristic of the joint.
This permits an easy adaptation of the passive joint behavior
to the desired application.

Control of Variable Impedance Actuators
Regarding the control of the VIA, the literature mostly deals
with the problem of adjusting stiffness and position of the
actuator in a decoupled manner by controlling the position or
the torque of the two motors of the joint [13], [15], [16].
Moreover, in case of VSA structures with many DoF and
cable actuation, the decoupling of the tendon control is
treated [25], [26].
Our approach to the control of the VSA arms is to extend

the passivity-based control framework developed for the
torque-controlled LWRs to the VSA case. Some particular
aspects compared with the controllers from the ‘‘Compliance
Control for Lightweight Arms’’ and ‘‘Impedance Control for
Complex Kinematic Chains’’ sections are summarized.

u Because of the high compliance of the joint, a separate
torque sensor is not required any more, and the torque
can be well estimated based on the motor and link posi-
tion [24].

u An active compliance control will be used only for
stiffness components that cannot be realized by the
mechanical springs. Examples are zero stiffness or the
joint coupling stiffness needed by arbitrary Cartesian
stiffness matrices [17].

u The joints have very low intrinsic damping. While this
is useful for cyclic movements involving energy storage
(e.g., for running), the damping of the arm for fast,
precise positioning tasks has to be realized by control.
This is a challenging task regarding the strong variation
of the inertia and the stiffness. Figure 16 shows the
performance of the positioning for a very low as well as
for a very high stiffness preset of the VS joint.

Cam Bar

Rocker Arm

Spring

Stiffness Actuator

Connection to
Circular Spline

Figure 13. Cross section of the quasiantagonistic joint design.

Cam Disk

Roller

Connection to
Linear Bearing

Roller Slider

Spring Base Slider

Axis of Rotation

Figure 14. VS-joint mechanism. The link axis is in the vertical
direction. The cam disk rotates on a compliant link
deflection.

(a)

Cam Disk

Linear Bearing

Roller

(b)

Roller Position of
Undeflected Link

α

Deflection

F τF

Figure 15. Unwound schematic of the VS-joint principle in
(a) centered and (b) deflected position. A deflection of the link
results in a horizontal movement of the cam disk and a
vertical displacement of the roller. The spring force generates
a centering torque on the cam disk.

It is clear that these human-friendly

robots will look very different from

today’s industrial robots.

IEEE Robotics & Automation MagazineSEPTEMBER 2008 27

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on October 8, 2008 at 11:02 from IEEE Xplore. Restrictions apply.

Human factors in risk analysis

“To err is human, but to really foul things up requires a computer”

Or a weak system…

Human factors in risk management
  Human factor studies in robotics usually focus on the

design of operator or user interfaces to enhance
operator performance and decrease potential human
errors => use of guidelines / checklists / best practices

  No sufficient for innovative system (guidelines not
applicable)

  Important human factors activities for risk management :
  Task analysis (and function allocation)
  Human error analysis

Task analysis and function allocation
  Task analysis : identify the details of specified tasks,

including the knowledge, skills, attitudes, and personal
characteristics required for successful task performance.

  Linked to the process of function allocation, which
aims to determine the distribution of work between
human and technical actors.

  Human error as an hazard should be identified and
analyzed as other hazards

All those human factors activities are strongly
linked with the two first step of risk analysis

Risk analysis and human factors

Risk analysis
1. System and intended use

description

2. Hazard identification and risk
estimation

Judge if the risk is tolerable or not

Reduction of the risk until it becomes
tolerable

Risk evaluation

Risk reduction

Function allocation and
task analysis

Human error analysis

Methods for task analysis & human error
analysis

  Many methods from human factors:
  Models of tasks / activities
  Stanton, N., P. Salmon, G. Walker, C. Baber, and Daniel P. Jenkins. Human Factors

Methods: A Practical Guide for Engineering and Design. Ashgate Publishing, 2006

  Most of those methods for human error analysis are
closed to risk analysis methods such as FMECA or
HAZOP

  For task analysis/function allocation : based on models of
tasks => see section 5 for an example

Development process and risk
management

Iterative and incremental process for
rehabilitation systems

Initial planning

Planning

Requirements
Analysis and design

Implementation

Testing

Deployment

Evaluation

Each iteration
results in a
prototype

Evaluation is first in
the lab. and then

during clinical
evaluation

Activities in this process
  Initial planning- develop a the concept and a vision of the system and

produce a plan
  Requirements - Requirements analysis for an application, such as

writing scenarios of use and identifying non-functional requirements.
  Analysis - Refine the requirements to describe with models what

the system has to do according to requirements
  Design - Describe how the system performs analysis description

(overall architecture, objects, SW and HW choices)
  Implementation
  Testing - functional testing but also robustness, reliability,

performance, integrity, benchmark, installation, etc.
  Evaluation – Considering the tests and the requirements, (re)

evaluate if objectives are reached
  Deployment – Deploy the system for final users (install, training

course, support, etc.)

Clinical Evaluation process

Activity organization
  Activities in a project should be organised to produce

tangible outputs for management to judge progress.
  Milestones are the end-point of a process activity.
  Deliverables are project results delivered to customers.
  The waterfall process allows for the straightforward

definition of progress milestones.
  Risk management is one activity of the overall process

  Necessity to define milestones
  And deliverables

When manage risk ?
  Risk management is an iterative and incremental process

  Iterative :
  At the very beginning of the development process (initial planning) =>

risk management plan and preliminary hazard identification
  Number of iterations depends on the project, the team, the objectives

=> adapt it to the project
  Incremental

  Studies are refined and level of details increase
  Hazard : combinatory explosion of the risk analysis results => decide

which level of granularity
  Outputs of risk management:

  Modification of use, specification, and design
  => results must be inputs of the development process, nevertheless in

many project safety analysis are performed after the design !

So when manage risk ? (2)

Initial planning

Planning

Requirements
Analysis and design

Implementation

Testing

Deployment

Evaluation

Each iteration
results in a
prototype

Evaluation is first in
the lab. and then

during clinical
evaluation

HERE

Chapter 4 – Three risk analysis
techniques HAZOP, FMECA, and FTA

Hazard Operability (HAZOP)

Credits : Marvin Rausand

What is HAZOP?
  A Hazard and Operability (HAZOP) study is a structured and

systematic examination of a planned or existing process or
operation in order to identify and evaluate problems that may
represent risks to personnel or equipment, or prevent
efficient operation.

  The HAZOP technique was initially developed to analyze
chemical process systems, but has later been extended to
other types of systems and also to complex operations and to
software systems.

  A HAZOP is a qualitative technique based on guide-words and
is carried out by a multi-disciplinary team (HAZOP team)
during a set of meetings.

When to perform a HAZOP?
  The HAZOP study should preferably be carried out as early in

the development phase as possible - to have influence on the
design. On the other hand; to carry out a HAZOP we need a
rather complete description of the system. As a compromise,
the HAZOP is also sometimes carried out as a final check
when the detailed design has been completed.

  A HAZOP study may also be conducted on an existing facility
to identify modifications that should be implemented to
reduce risk and operability problems.

When to perform a HAZOP? - (2)
  HAZOP studies may also be used more extensively,

including:
  At the initial concept stage when design drawings are available
  When the analysis models are available
  During implementation and deployment to ensure that

recommendations are implemented
  During test and evaluation
  During operation to ensure that emergency and operating

procedures are regularly reviewed and updated as required

HAZOP background
  The basis for HAZOP was laid by ICI in 1963 and was

based on so-called “critical examination” techniques
  First guide: “A Guide to Hazard and Operability Studies”,

ICI and Chemical Industries Associations Ltd. 1977.
  First main textbook: Kletz, T. A.: “Hazop and Hazan -

Identifying and Assessing Process Industry Hazards” ,
Institution of Chemical Engineers.

  See also: Kletz, T. A.: “Hazop – past and future”. Reliability
Engineering and System Safety, 55:263-266, 1997.

Standards and guidelines
  IEC 61882. “Hazard and operability studies (HAZOP

studies) – Application guide” . International
Electrotechnical Commission, Geneva.

  Crawley, F., M. Preston, and B. Tyler: “HAZOP: Guide to
best practice. Guidelines to best practice for the process
and chemical industries” . European Process Safety Centre
and Institution of Chemical Engineers, 2000

  Kyriakdis, I.: “HAZOP - Comprehensive Guide to HAZOP
in CSIRO” , CSIRO Minerals, National Safety Council of
Australia, 2003

Types of HAZOP
  Process HAZOP

  The HAZOP technique was originally developed to assess
plants and process systems

  Human HAZOP
  A “family” of specialized HAZOPs. More focused on human

errors than technical failures

  Procedure HAZOP
  Review of procedures or operational sequences Sometimes

denoted SAFOP - SAFe Operation Study

  Software HAZOP
  Identification of possible errors in the development of software

HAZOP team and meetings
  HAZOP team leader Responsibilities:

  Define the scope for the analysis
  Select HAZOP team members
  Plan and prepare the study
  Chair the HAZOP meetings

  → Trigger the discussion using guide-words and parameters
  → Follow up progress according to schedule/agenda
  → Ensure completeness of the analysis

  The team leader should be independent (i.e., no
responsibility for the process and/or the performance of
operations)

Team members and responsibilities (2)
  HAZOP secretary Responsibilities:

  Prepare HAZOP worksheets
  Record the discussion in the HAZOP meetings
  Prepare draft report(s)

Team members
  HAZOP team members
The basic team for a process plant will be:

  Project engineer
  Commissioning manager
  Process engineer
  Instrument/electrical engineer
  Safety engineer

Depending on the actual process the team may be enhanced by:
  Operating team leader
  Maintenance engineer
  Suppliers representative
  Other specialists as appropriate

How to be a good HAZOP participant?
  Be active! Everybody’s contribution is important
  Be to the point. Avoid endless discussion of details
  Be critical in a positive way - not negative, but

constructive
  Be responsible. He who knows should let the others

know

HAZOP meeting
  Proposed agenda:

  1. Introduction and presentation of participants
  2. Overall presentation of the system/operation to be analyzed
  3. Description of the HAZOP approach
  4. Presentation of the first node or logical part of the operation
  5. Analyze the first node/part using the guide-words and parameters
  6. Continue presentation and analysis (steps 4 and 5)
  7. Coarse summary of findings

  Focus should be on potential hazards as well as potential
operational problems

  Each session of the HAZOP meeting should not exceed two
hours.

HAZOP recording
  The findings are recorded during the meeting(s) using a

HAZOP work-sheet, either by filling in paper copies, or by
using a computer connected to a projector (recommended).

  The HAZOP work-sheets may be different depending on the
scope of the study - generally the following entries (columns)
are included:
  1. Ref. no.
  2. Guide-word
  3. Deviation
  4. Possible causes
  5. Consequences
  6. Safeguards
  7. Actions required (or, recommendations)
  8. Actions allocated to (follow-up responsibility)

HAZOP procedure
1.  Divide the system into entities (i.e., reactor, storage)
2.  Choose an entity and an attribute (i.e., line, vessel,

pump, operating instruction)
3.  Apply a guide-word
4.  Determine cause(s)
5.  Evaluate consequences/problems
6.  Recommend action: What? When? Who?
7.  Record information
8.  Repeat procedure (from step 2)

HAZOP procedure (2)

Start
Select system

entity

Select entity

attribute

Apply a

deviation

attribute +

guideword

Identify possible causes

and consequences of

deviation

Evaluate the risk of the

deviation effect

Formulate

recommendations for

prevention of deviation

and protection against

consequences

More

deviations

 to apply?

More

attributes

?

More

entities ?
Stop

yes yes yes

no no no

Example of HAZOP worksheet Process HAZOP worksheet

Introduction

Team

Process HAZOP

Prerequisites

HAZOP procedure

Modes of
operation
Process HAZOP
worksheet

Worksheet entries
Process
parameters

Guidewords

Procedure HAZOP

Reporting

Conclusions

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 21 / 44

No.
Guide-
word

Element Deviation
Possible
causes

Conse-
quences

Safeguards Comments
Actions
required

Action
allocated to

Design intent: Material:

Source:

Activity:

Destination:

Part considered:

HAZOP team: Meeting date:

Drawing no.: Rev no.: Date:

Study title: Page: of

– Source: IEC 61882

Worksheet entries (1)
  Modes of operation
The following modes of system operation should be

considered for each entity:
  ❑ Normal operation
  ❑ Reduced throughput operation
  ❑ Routine start-up
  ❑ Routine shutdown
  ❑ Emergency shutdown
  ❑ Special operating modes (e.g. fall back modes)

Worksheet entries (2)
  Scenario of use

  operation/activity of the system and humans are described

  Deviation
  A deviation is a way in which the operation conditions may

depart from their design intent.

  Parameter
  The relevant parameter for the condition(s) of the operation

(e.g. pressure, speed, acceleration, movements).

Worksheet entries - (3)
  Guidewords

  A short word to create the imagination of a deviation of the
design/process intent. The most commonly used set of guide-
words is: no, more, less, as well as, part of, other than, and
reverse. In addition, guidewords like too early, too late, instead
of, are used; the latter mainly for batch-like processes. The
guidewords are applied, in turn, to all the parameters, in order
to identify unexpected and yet credible deviations from the
design/process intent.

 Guide-word + Parameter → Deviation

Basic HAZOP guide-words

Worksheet entries - (4)
  Cause

  The reason(s) why the deviation could occur. Several causes
may be identified for one deviation. It is often recommended to
start with the causes that may result in the worst possible
consequence.

  Consequence
  The results of the deviation, in case it occurs. Consequences

may both comprise process hazards and operability problems,
like plant shut-down or reduced quality of the product. Several
consequences may follow from one cause and, in turn, one
consequence can have several causes

Worksheet entries - (5)
  Safeguard

  Facilities that help to reduce the occurrence frequency of the
deviation or to mitigate its consequences. Some types of
safeguards are:
  1. Detect the deviation (e.g., with sensors, use of alarms)
  2. Compensate for the deviation (e.g., an automatic control)
  3. Prevent the deviation from occurring
  4. Prevent further escalation of the deviation (e.g., by (total) trip of

the activity. These facilities are often interlocked with several units in
the process, often controlled by computers)

Review meetings
  Review meetings should be arranged to monitor

completion of agreed actions that have been recorded.
The review meeting should involve the whole HAZOP
team. A summary of actions should be noted and
classified as:
  ❑ Action is complete
  ❑ Action is in progress
  ❑ Action is incomplete, awaiting further information

HAZOP Results
  Improvement of system or operations

  Reduced risk and better contingency
  More efficient operations

  Improvement of procedures
  Logical order
  Completeness General awareness among involved parties Team

building

Advantages
  ❑ Systematic examination
  ❑ Multidisciplinary study
  ❑ Utilizes operational experience
  ❑ Covers safety as well as operational aspects
  ❑ Solutions to the problems identified may be indicated
❑ Considers operational procedures

  ❑ Covers human errors
  ❑ Study led by independent person
  ❑ Results are recorded

Success factors
  ❑ Accuracy of drawings and data used as a basis for the

study
  ❑ Experience and skills of the HAZOP team leader
  ❑ Technical skills and insights of the team
  ❑ Ability of the team to use the HAZOP approach as an

aid to identify deviations, causes, and consequences
  ❑ Ability of the team to maintain a sense of proportion,

especially when assessing the severity of the potential
consequences.

Pitfalls and objections
  ❑ Time consuming
  ❑ Focusing too much on solutions
  ❑ Team members allowed to divert into endless

discussions of details
  ❑ A few of the team members dominate the discussion
❑ “This is my design/procedure”
  – Defending a design/procedure
  – HAZOP is not an audit

  ❑ “No problem”
  ❑ “Wasted time”

Failure Modes Effects and Criticality
Analysis (FMECA)

Credits : Marvin Rausand
FMECA Slides

Fault Tree Analysis (FTA)

Credits : Marvin Rausand
FTA slides

What is fault tree analysis?

Introduction

What is...?

History

Main steps

Preparation

Construction

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 3 / 32

! Fault tree analysis (FTA) is a top-down approach to failure
analysis, starting with a potential undesirable event
(accident) called a TOP event, and then determining all the
ways it can happen.

! The analysis proceeds by determining how the TOP event can
be caused by individual or combined lower level failures or
events.

! The causes of the TOP event are “connected” through logic
gates

! In this book we only consider AND-gates and OR-gates
! FTA is the most commonly used technique for causal analysis

in risk and reliability studies.

History

Introduction

What is...?

History

Main steps

Preparation

Construction

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 4 / 32

! FTA was first used by Bell Telephone Laboratories in
connection with the safety analysis of the Minuteman missile
launch control system in 1962

! Technique improved by Boeing Company
! Extensively used and extended during the Reactor safety

study (WASH 1400)

FTA main steps

Introduction

What is...?

History

Main steps

Preparation

Construction

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 5 / 32

! Definition of the system, the TOP event (the potential
accident), and the boundary conditions

! Construction of the fault tree
! Identification of the minimal cut sets
! Qualitative analysis of the fault tree
! Quantitative analysis of the fault tree
! Reporting of results

Preparation for FTA

Introduction

What is...?

History

Main steps

Preparation

Construction

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 6 / 32

! The starting point of an FTA is often an existing FMECA and
a system block diagram

! The FMECA is an essential first step in understanding the
system

! The design, operation, and environment of the system must
be evaluated

! The cause and effect relationships leading to the TOP event
must be identified and understood

Preparation for FTA

Introduction

What is...?

History

Main steps

Preparation

Construction

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 7 / 32

FMECA

System block diagram

Fault tree

Boundary conditions

Introduction

What is...?

History

Main steps

Preparation

Construction

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 8 / 32

! The physical boundaries of the system (Which parts of the
system are included in the analysis, and which parts are not?)

! The initial conditions (What is the operational stat of the
system when the TOP event is occurring?)

! Boundary conditions with respect to external stresses (What
type of external stresses should be included in the analysis –
war, sabotage, earthquake, lightning, etc?)

! The level of resolution (How detailed should the analysis be?)

Fault tree construction

Introduction

Construction

Construction

Symbols

Example

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 10 / 32

! Define the TOP event in a clear and unambiguous way.
Should always answer:

What e.g., “Fire”
Where e.g., “in the process oxidation reactor”
When e.g., “during normal operation”

! What are the immediate, necessary, and sufficient events and
conditions causing the TOP event?

! Connect via AND- or OR-gate
! Proceed in this way to an appropriate level (= basic events)
! Appropriate level:

" Independent basic events
" Events for which we have failure data

Fault tree symbols

Introduction

Construction

Construction

Symbols

Example

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 11 / 32

OR-gate

AND-gate

Transfer
in

Transfer
out

The OR-gate indicates that the output event
occurs if any of the input events occur

The AND-gate indicates that the output event
occurs only if all the input events occur
at the same time

The basic event represents a basic equipment
failure that requires no further development of
failure causes

The undeveloped event represents an event that
is not examined further because information is
unavailable or because its consequences are
insignificant

The comment rectangle is for supplementary
information

The transfer-out symbol indicates that the fault
tree is developed further at the occurrence of the
corresponding transfer-in symbol

Logic
gates

Input
events
(states)

Description
of state

Transfer
symbols

Example: Redundant fire pumps

Introduction

Construction

Construction

Symbols

Example

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 12 / 32

Fire pump 1
FP1

Fire pump 2
FP2

Engine

Valve

TOP event = No water from fire wa-
ter system
Causes for TOP event:
VF = Valve failure
G1 = No output from any of the fire
pumps
G2 = No water from FP1 G3 = No
water from FP2
FP1 = failure of FP1
EF = Failure of engine
FP2 = Failure of FP2

Example: Redundant fire pumps (2)

Introduction

Construction

Construction

Symbols

Example

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 13 / 32

Fire pump 1
FP1

Fire pump 2
FP2

Engine

Valve

No water from
fire pump system

Valve blocked, or
fail to open

No water from
the two pumps

No water from
pump 2

Failure of
pump 2

Failure of
engine

No water from
pump 1

Failure of
pump 1

Failure of
engine

TOP

VF

G1

G2 G3

FP1 FP2 EFEF

Example: Redundant fire pumps (3)

Introduction

Construction

Construction

Symbols

Example

Assessment

Quantification

Input Data

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 14 / 32

No water from
fire pump system

Valve blocked, or
fail to open

No water from
the two pumps

No water from
pump 2

Failure of
pump 2

Failure of
engine

No water from
pump 1

Failure of
pump 1

Failure of
engine

TOP

VF

G1

G2 G3

FP1 FP2 EFEF

No water from
fire pump system

Valve blocked, or
fail to open

No water from
the two pumps

Failure of
pump 2

Failure of
pump 1

TOP

VF

G1

FP1 FP2

Failure of
engine

EF

The two fault trees above are logically identical. They give the
same information.

Conclusions

Introduction

Construction

Assessment

Quantification

Input Data

Types of events

Non-repairable

Repairable

Periodic testing

Frequency

On demand

Cut Set Eval.

Conclusions

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 32 / 32

! FTA identifies all the possible causes of a specified undesired
event (TOP event)

! FTA is a structured top-down deductive analysis.
! FTA leads to improved understanding of system

characteristics. Design flaws and insufficient operational and
maintenance procedures may be revealed and corrected
during the fault tree construction.

! FTA is not (fully) suitable for modelling dynamic scenarios
! FTA is binary (fail–success) and may therefore fail to address

some problems

Quantitative estimation with independent
stochastic events

210

€

E = E1∩E2 ∩…∩En

€

P E{ } = P E1{ } ⋅P E2{ } ⋅… ⋅P En{ }

€

E = E1∪E2 ∪…∪En

€

P E{ } = 1−P E { } = 1− 1−P E1{ }() 1−P E1{ }()… 1−P En{ }()

€

E = E 1∩E 2 ∩…∩E n

€

E = E1∪E2

€

P E{ } = P E1{ }+ P E2{ }−P E1{ } ⋅P E2{ }

AND gate

OR gate

Event E occurs when E1 and E1 and … and En occurrs

Event E occurs when E1 or E1 or … or En occurrs

Example for 2 events :

211

Failure S

Failure {X,Y}

€

1−R = 1−RZ + 1−RX() 1−RY() − 1−RZ() 1−RX() 1−RY()

€

R = RZ RX + RY −RX RY()

€

1−RZ

€

1−RX

€

1−RY

Fail
ure
Z

Fail
ure
X

Fail
ure
Y

Minimal cut sets

212

  A cut set in a fault tree is a set of basic events whose
(simultaneous) occurrence ensures that the TOP event
occurs

  A cut set is said to be minimal if the set cannot be
reduced without loosing its status as a cut set

€

P R{ } = P C1∪C2∪K ∪Cm{ }

€

B ji : basic events

€

C i = B1i∩B2i∩K ∩B ji∩K ∩Bmi

€

Ci Minimal cut of order

€

mi

R : top event

213

€

E3 = B∪C

€

E1 = A∪ B∪C()

€

E4 = A∩B

€

E2 = C∪ A∩B()

€

T = E1∩E2 = A∪B∪C()∩ C∪ A∩B()()

€

T = A∪B∪C()∩C()∪ A∪B∪C()∩ A∩B()()

€

T = A∩C()∪ B∩C()∪C∪ A∩B()∪ A∩B()∪ A∩B∩C()

€

T = C∪ A∩B()
Minimal cut sets :

€

C{ }, A,B{ }

T

E1 E2

E3 E4 A

B C

C

B A

214

E4

T

€

P T{ } = P C ∪ A∩B(){ } = P C{ }+ P A{ }P B{ }−P A{ }P B{ }P C{ }

C

A C

From qualitative to quantitative

215

  Fault forecasting : use of mathematical tools for
calculation of reliability and availability

  Statistics and probabilities

Chapter 5. A scenario based risk
analysis approach

Using UML and HAZOP

From system modelling to UML

System complexity
  Domain problematic (medical, rahabilitation,

transportation, etc.)

  Development process

  Software adapdability and modifiability

Complexity outcomes
  Catastrophic failure probability is high
  Tuning/adjustment is slow and chaotic
  Maintainability is out of proportion
  Cost is high
  Software crisis (1970)

Complexity management

  For lack of reducing complexity, one must control it :
  Give an illusion of simplicity

 modelling
  Apply decomposition criteria

 break into component parts

What is a model ?

  System development → need for concepts manipulation (software,
hardware, environment, users, etc.)

  Model and modelling
  Could represent something that already exits but also something that does not

exist (physical parts of the robot or software entities)

  Is an abstraction of the original object of study (a formula or a box is an
abstraction)

  Only some aspects are considered (e.g. kinematics, thermodynamics, etc.)

  Has an objective. It is only considering the objective that the efficiency of the
model can be evaluate.

Why use a model?

  A model is used when:
  Reality is too complex (simplification)
  A concept is required (abstraction)
  Direct modification of the design is too hazardous

(representation)
  Communicate between developpers
  Prevent and eliminate errors of specification/design
  Guarantee tracability from requirements to implementation

Concept

Real object

Descriptive
model

Prescriptive
model

Modeling

Modification
"virtuelle"

Implementation

Hazardous
modification

Models for system development

quences via the spoken command “Change Mode.” This
makes the system very flexible.

Programming Complex Motions
by Demonstration
To program new motions, the robotic system is equipped
with two programming environments. In keyboard mode, the
robot is programmed in the traditional way, available in almost
all robots. In this mode, with the keyboard point-to-point po-
sitions on a trajectory are generated that are traced and stored
in a database. In programming by demonstration mode

(RPD), the programmer demonstrates the task to be executed
with his own hand. The motions are measured, recorded, and
processed so that the robot can reproduce them. Many ap-
proaches described in the literature [3-5] share a common fea-
ture: they are designed mainly for simple pick-and-place
applications like those found in industry, such as loading pal-
ettes and sorting and feeding parts. Neither the demonstrated
motion trajectory nor the dynamics of the motion, such as the
speed or general time response, are considered. But in the field
of rehabilitation robots like FRIEND, where the tasks are
much more complicated, this information is of great impor-

MARCH 2001 IEEE Robotics & Automation Magazine 59

Speech Control Feedback Programmer
With Data Glove Feedback

Man-Machine Interface

Command Interpreter

Programming

Teach-In Program by
Demonstration

Controller

Robot
Controller

KCC Wheelchair
Controller

Sequences

Preprogrammed
Movements

Parameterizable
Scripts

RS232

CAN

CAN

Actions

Gripper
Action

Docking
Action

Knowledge Base

Environment
Model

Object
Database

Sensors

Image
Processing Odometry

Component

Component

Component

Component

Implemented

Future Integration

Current
Integration

Work of 2nd
Research

Group

Command

Data Command + Status

Status

Fig. 2. Architecture of the system FRIEND.

A FRIEND for Assisting Handicapped People, CHRISTIAN MARTENS, NILS RUCHEL, OLIVER LANG, OLEG IVLEV, and AXEL GRÄSER, IEEE Robotics & Automation Magazine, 2001

Models
  List all modeling language that you know:

  Modeling of the dynamics

  Structual modelling

Division role
  « Divide and rule »
  Recursive refinement until reach comprehensive elements
  Divide system state space

Functional decomposition

  Traditional approach
  Each module is a step of the global process
  Functional division from specification to subprograms

Functional decomposition

Main function

Subfunction 1 Subfunction 2

Subfunction 1.1 Subfunction 1.2 Subfunction 2.1 Subfunction 2.2

Object decomposition
  More recent approach (computer systems)
  Each module is an object of the application
  Objects are autonopous entities that collaborate to reach

a goal

  Function is carried with collaborative objects

Object division

Door

Light Button

Lift

3:open

2 : blink

1. go to ground floor

Decomposition/ Composition
  Object decomposition is restrictive
  Object approach is not only top-down
  Top-down, bottom-up, recursice, iterative, incremental

Comparison functions / objects
  Both are interesting but really different
  One must be choosen, to start to decompose

Functional approach
  More intuitive
  Focus on “DO”
  Suits when all is known in advance
  BUT

  Stiff Architecture
  Evolvability is limited
  Not suitable to discovery

Object approach
  Focus on “BE”
  Simple (small number of concepts)
  Reasonning on abstraction (object of the domain)
  Suitable for discovery and evolvability
  BUT

  Hard to understand for people used to functional approach.

Object Oriented advantages
  Lead to more stable model

  Based on real world

  Independancy from fucntions
  Evolvability

  Encapsulate complexity
  Suitable for reuse

System complexity : conclusion
  Computer systems are complex by nature
  Necessity to manage this complexity
  Systems can be decomposed according to what they DO

or what they ARE?
  The object approach manage with more efficiency the

complexity
  Reuse, evolvability, stability

What do we need ?
  A modelling language

  Clear notation
  Usability

  Not too complex
  Exchange data between developers, and stakholders

  Completeness and consistency semantics

  A developement process

Method = Language + Process

The unified notation UML
  Comes from BOOCH, OMT and OOSE
  And take good ideas from other methods
  Convergence of notations
  A unique example of standard notation which is a de

facto standard (in computer science)

UML development

UML 1.0

UML 1.5

UML 2.0 (free on www.omg.org)

September 2001

August 2005

1995

1996

Standardization by OMG
Sptember 1997

Summary
  UML is a notation not a method
  UML is an object modelling language
  UML is suitable for all object development
  UML is free

UML is a de facto standard for the
notation of object oriented

development

UML diagrams

  Structural representation fo an element
  Internal structure (composition) et external (relationships

and dependencies wtih other elements)

  Dynamic representation
  Behavior considering time : interaction with other elements,

modification of its internal state…

Element C

Two types : structural and dynamic

SubElement A

SubElement B

Element A Element B Inti ()

UML 2 diagrams

Object diagram
  Represents objects and their relationships

September 2001 OMG-UML , v1.4 Composite Object 3-67

3

3.40 Composite Object

3.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is

an instance of a composite class, which implies the composition aggregation between

the class and its parts. A composite object is similar to (but simpler and more restricted

than) a collaboration; however, it is defined completely by composition in a static

model. See Section 3.48, “Composition,” on page 3-81.

3.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite

object is placed in a compartment near the top of the rectangle (as with any object).

The lower compartment holds the parts of the composite object instead of a list of

attribute values. (However, even a list of attribute values may be regarded as the parts

of a composite object, so there is not a great difference.) It is possible for some of the

parts to be composite objects with further nesting.

3.40.3 Example

Figure 3-39 Composite Objects

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves

Class diagram

  Represents static structure with classes and their
relationships

September 2001 OMG-UML , v1.4 Composition 3-83

3

3.48.4 Example

Figure 3-45 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2
1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11

Component diagram

  Represents physical components of a system

Deployement diagram

  Represents the deployement of the components on hardware
devices

Use case diagram
  Represents objectives of the use of the system according

to actors view point

!"#$%%&'()*(+, !" -,.%/(,.,

!"#$%"#"&'()#*"+,-./&0 1%-2%*3.45./006.7869.:(;<9

!"#$%&'(

=>#.2"#.?%"#.@+%A*%(.+-.B+A2*#.70C94.,-.:%A#.;<9.">,D".%."#E.,'.2"#.?%"#".2"#@.F3.',2*.%?E,*".,'.%.:>3"+?%G."3"C

E#(.E>%E.+".E>#."2FH#?E.,'.E>,"#.2"#.?%"#"&.=>#."2FH#?E.?%-.F#.,:E+,-%GG3.*#:*#"#-E#@.F3.%.*#?E%-AG#.%".">,D-.+-.E>+".

#I%(:G#&

!"#$%&'()*+,-'./&'01/&'2"1#%13'4"56'1'%&7518#9&'%&:%&/&85"8#'56&';<$821%='<>'56&'/$;?&75-

!"#$%&'(

)"*'(+,#%(

)-.'#*'(#%/

0#$-1.,#23!('4,$

5'.'*2%/'3!-$-.%6

)2,**,/63!.'(7

!2'873)$-$"#

9.-8'3:(4'(

;,..3:(4'(#

$/&'71/&

175<%

/$;?&75

Sequence diagram
  Represents interations between objects according to

time.

! "#$%&'($)*#+ ,,"#$%&'($)*#-*#+$&')#$,./&*0,1&'20%#$+3

!"#$%&'#()"*+,- .$%*()"/0+1 2&"3&%4/56/0117/897:/;- 7<5

!"#$%&'(

!"#$%&"'(

=)#/&;;>('&?>$+

)*"&+(,-./%0-123-456

!"#$%&'#()"*/&%$/")@/')"#&("$A/@(#B("/C>&**(,($%*/&"A/")#/)">4/@(#B("/C)>>&?)%&#()"*+/DB$(%/;&%#('(;&"#*/&%$/-)A$>$A/

?4/E(,$>("$*/("*#$&A/),/C>&**(,($%F)>$*+

)*+',#-+./*0/*(+,#.*+123,/$14,#5$'*+(6

G"/!"#$%&'#()"C)"*#%&("#/(*/&/?))>$&"/$H;%$**()"/#B&#/I3&%A*/&"/);$%&"A/("/&/C)-?("$AJ%&I-$"#+

7(,8/$9#$%&

!"#$%&'#()"C)"*#%&("#/(*/&/*;$'(&>(K&#()"/),/C)"*#%&("#+

J3%#B$%-)%$/#B$/!"#$%&'#()"C)"*#%&("#/')"#&("*/#@)/$H;%$**()"*/A$*(I"&#("I/#B$/-("(-3-/&"A/-&H(-3-/"3-?$%/

),/#(-$*/&/>));/C)-?("$AJ%&I-$"#/*B)3>A/$H$'3#$+

:,,%8$"#$%&,

L -("("#9/.&>3$M;$'(,('&#()"N1++8ODB$/-("(-3-/"3-?$%/),/(#$%&#()"*/),/&/>));

L -&H("#9/.&>3$M;$'(,('&#()"N1++8ODB$/-&H(-3-/"3-?$%/),/(#$%&#()"*/),/&/>));

)%&,#/"$&#,

N8O//DB$/A4"&-('/P&%(&?>$*/#B&#/#&Q$/;&%#/("/#B$/')"*#%&("#/-3*#/?$/)@"$A/?4/#B$/C)""$'#&?>$R>$-$"#/')%%$*;)"A("I/

#)/#B$/')P$%$A/E(,$>("$+

456

J(I3%$/ST87U+/G"/$H&-;>$/),/&"/!"#$%&'#()"/("/#B$/,)%-/),/&/M$V3$"'$/W(&I%&-

(717+%&8((%9$%:

;7+%& ;8-<=+$%0

-*:%

-'&:>?$

>@
7#A*(B

!"#$%&'%()*$+",*-&)

.-'$/-)$

0$11"2$

Communication diagram

  Equivalent to sequence diagram but with a spacial
representation

Timing Diagram

! "#$%&'($)*#+ !,-../)'0&'1+

!"#$%&'#()"*+,- .$%*()"/0+1 2&"3&%4/56/0117/897:/;- <1=

>("&??4/@$/-&4/A&B$/&"/$?&C)%&#$/,)%-/),/D(-("EF(&E%&-*/@A$%$/-)%$/#A&"/)"$/G(,$?("$/(*/*A)@"/&"H/@A$%$/

#A$/-$**&E$*/&%$/&?*)/H$;('#$H+/I$/*A)@/*3'A/&/D(-("E/F(&E%&-/("/>(E3%$/JK8:</')%%$*;)"H("E/#)/#A$/L$M3$"'$/F(&K

E%&-/("/>(E3%$/JK8<N+

!"#$%&'()*+,-'O)-;&'#/G(,$?("$/@(#A/L#&#$*

!"#$%&'()*+.-'D(-("E/F(&E%&-/@(#A/-)%$/#A&"/)"$/G(,$?("$/&"H/@(#A/P$**&E$*

!"#2+%&3((42+%&

"56% 7')$8'&5 7')$3((%++ "56%

95,,:;5<

$%!&'

!"#"$%&'%(&)*+"+&),+-$.+)$ /0'#"+&)1&)2"'#+)"

!"#2+%&3((%=$%5

"56%

7')$8'&5

7')$3((%++

9$,,$>:<

95,,:;5<

$%
!
&
'

? @ A $

B'+8'&5

C*8'&5

$(
)
*
+
!
,&
-

8*5%

8'&5DE$

9?,,@:<

DF

2#6*(G

5
$H#*I

!"#"$%&'%(&)*+"+&),+-$.+)$2

/0'#"+&)%342$'5#"+&)

/0'#"+&)%1&)2"'#+)"2

6+7$%342$'5#"+&)

6+7$%1&)2"'#+)"

8$22#9$

State-Transition diagram

  Represents life cycle of an object

3-142 OMG-Unified Modeling Language, v1.4 September 2001

3

A final state is shown as a circle surrounding a small solid filled circle (a bull’s eye). It

represents the completion of activity in the enclosing state and it triggers a transition

on the enclosing state labeled by the implicit activity completion event (usually

displayed as an unlabeled transition), if such a transition is defined.

In some cases, it is convenient to hide the decomposition of a composite state. For

example, the state machine inside a composite state may be very large and may simply

not fit in the graphical space available for the diagram. In that case, the composite state

may be represented by a simple state graphic with a special “composite” icon, usually

in the lower right-hand corner. This icon, consisting of two horizontally placed and

connected states, is an optional visual cue that the state has a decomposition that is not

shown in this particular statechart diagram (Figure 3-74 on page 3-142). Instead, the

contents of the composite state are shown in a separate diagram. Note that the “hiding”

here is purely a matter of graphical convenience and has no semantic significance in

terms of access restrictions.

3.76.3 Examples

Figure 3-73 Sequential Substates

Figure 3-74 Composite State with hidden decomposition indicator icon

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

HiddenComposite

entry/ start dial tone
exit/ stop dial tone

Activity diagram

  Represents an activity flow
in an operation, a use case
or a business process

Coffee
Pot

Wake Up

Get Cups

Turn on Coffee Pot

Coffee Done

Drink Coffee

Classes and objects

The objects
  Real world objects born, live and dead
  Computer system objects are a simple representation of

real world elements
  Objects represent concrete entities (a sensor, an

actuatur) or abstract (PID regulator, Neural…)

Graphical notation of object

One object Another object

And another one

Objects are abstractions
  An abstraction is a summary
  Of essential caracteristics
  Hide the details
  An abstraction depends on a viewpoint (e.g.

mathematicals, automatics, architectural)

Abstraction examples
  A television
  A complex number
  A financial operation
  A logical gate
  A battery
  An actuator
  A sensor

Object chaos
  Many many objects
  To understand : categorization, classification
  Humans are always classing : animals, plants,

mushrooms, atoms…

Object chaos cont’d

Classes

  A class is an abstraction of several objects
  Can be interpreted as a factorization

Classes and objects

September 2001 OMG-UML , v1.4 Composition 3-83

3

3.48.4 Example

Figure 3-45 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2
1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11

September 2001 OMG-UML , v1.4 Composite Object 3-67

3

3.40 Composite Object

3.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is

an instance of a composite class, which implies the composition aggregation between

the class and its parts. A composite object is similar to (but simpler and more restricted

than) a collaboration; however, it is defined completely by composition in a static

model. See Section 3.48, “Composition,” on page 3-81.

3.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite

object is placed in a compartment near the top of the rectangle (as with any object).

The lower compartment holds the parts of the composite object instead of a list of

attribute values. (However, even a list of attribute values may be regarded as the parts

of a composite object, so there is not a great difference.) It is possible for some of the

parts to be composite objects with further nesting.

3.40.3 Example

Figure 3-39 Composite Objects

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves

Classes Relationship

3-88 OMG-Unified Modeling Language, v1.4 September 2001

3

3.50.4 Example

Figure 3-47 Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .

3-74 OMG-Unified Modeling Language, v1.4 September 2001

3

3.43.4 Style Guidelines

If there are multiple adornments on a single association end, they are presented in the

following order, reading from the end of the path attached to the classifier toward the

bulk of the path:

• qualifier

• aggregation symbol

• navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are

not confused with a different association. They may be placed on either side of the

line. It is tempting to specify that they will always be placed on a given side of the line

(clockwise or counterclockwise), but this is sometimes overridden by the need for

clarity in a crowded layout. A rolename and a multiplicity may be placed on opposite

sides of the same association end, or they may be placed together (for example, “*

employee”).

3.43.5 Example

Figure 3-41 Various Adornments on Association Roles

3.43.6 Mapping

The adornments on the end of an association path map into properties of the

corresponding role of the Association. In general, implications cannot be drawn from

the absence of an adornment (it may simply be suppressed) but see the preceding

descriptions for details. The interface specifier maps into the “specification” rolename

in the AssociationEnd-Classifier association.

Polygon Point
Contains

{ordered}

3..!1

GraphicsBundle

color
texture
density

1

1

-bundle

+vertex

Generalization

Composition

Aggregation

Object dynamics

Communication between objects
  System = society of collaborative objects
  Object work together to perform the service
  The behavior of a system depends on how the objects

collaborate

A message
  Is the communication unit between objects
  Very general concepts with various application
  Can represents both control and data flow
  And also events, or activities

Communication diagram
  A send a message X to object B, the object B sent Y to C, then

etc…

Sequence diagram

  Lifelines are objects
  The tag is

objectName:ClassName

 is for a message
 is a return

Time

Collaboration and sequence diagram

Exercise : Simple Watch

From class diagram :
1.  Perform a sequence diagram of the following scenario : a user wants to

set the minutes
 Pushing twice the button 1, he can set the minutes (hours blinks and then
minutes). Then with the button 2 (with releasing it), minutes are
incremented. Once minutes are set, the user push the button 1 and the
minutes stop blinking.

Button 1

Button 2

Simple watch: Sequence diagram

loop [B2.state = Pushed]

UML2 notation

Simple Watch: Communication diagram

State machine diagram
  A state machine diagram is used to represents

  Lifecyle of an object (instance of a class),
  Events that produce transitions from a state to another
  Actions due to change state

State

  Initial state

  Intermediate state

  Final state
StateName

Transitions

  Unidirectional connections for a directed graph
  Triggered by an event if the condition is true and

produce an action.

State1
Event[condition]/action

State 2

Event, condition and actions

  Event
  4 main types :

  Signals : asynchronous occurrence of external event (e.g. button pusched)
  Call: another object request a service
  Change of an attribute (ex: battery level = 10%)
  Time : delay (after 15s) or absolute time event (time=12.42 pm)

  Condition : boolean expressions

  Actions :

  Services/operation of the class

  Instantaneous, cannot be interrupted

Exercice : Telephone
  Model the state machine of the telephone

State diagram exemple

! "#$#%&'$()*+%, &&"#$#%'$()*+%&-./01&2%)$3*0/"#$#%1$()*+%,4

!"#"$%#&'()$*+,- .$/*(0)12+3 4#)5#/6178123391:;9<1=- >>7

!"#$%&'(

?(@5/$1AB>31(*1#)1$C#-=D$1*"#"$-#&'()$1E(#@/#-1,0/1"'$1*"#"$1-#&'()$1,0/1*(-=D$1"$D$='0)$10FG$&"+1H)1#EE("(0)1"01

"'$1()("(#D1*"#"$81"'$1*"#"$1-#&'()$1'#*1#)1$)"/61=0()"1&#DD$E1#&"(I$J)"/681#)E1()1#EE("(0)1"01"'$1,()#D1*"#"$81("1'#*1#)1

$C("1=0()"1&#DD$E1#F0/"$E+

K*1#)1$C#-=D$10,1*"#"$1-#&'()$1*=$&(#D(L#"(0)81"'$1*"#"$*1.$/(,6M#/E81N5"N,!$/I(&$1#)E1.$/(,6O/#)*#&"(0)1()1"'$1

KO%1*"#"$1-#&'()$1()1?(@5/$1AB>:1'#I$1F$$)1*=$&(,($E1#*1P,()#DQ81R'(&'1-$#)*1"'#"1"'$61&#)1)0"1/E,()$E1S(+$+1

$C"$)E$ET1()1*=$&(#D(L#"(0)*10,1KO%+1O'$10"'$/1*"#"$*1&#)1F$1/E,()$E+1O'$1SI$/(,6O/#)*#&"(0)8/$D$#*$M#/ET1"/#)*(B

"(0)1'#*1#D*01F$$)1*=$&(,($E1#*1P,()#DQ81-$#)()@1"'#"1"'$1$,,$&"1#&"(I("61#)E1"'$1"#/@$"1*"#"$1&#))0"1F$1/E,()$E+

!"#$%&'()*+,'!"#"$1-#&'()$1E(#@/#-1/$=/$*$)"()@1#1*"#"$1-#&'()$

5*$670+%
5*$6*+8

7$69*+8
:*+8*+8

2;,<

=*$6&=*8*#-+4

(0++%(#%=

($66%%&$+,>%/,

?=6%

@;,<

6*.#
/%(%*3%/

($66%/
)$+8,&;A

($66%%
)$+8,&;A

B(#*3%

=*$6&=*8*#-+4

C8%#&=*$6�+%

=0C&A6$<&@;,<
#0+%

=0C&A6$<&/*+8*+8
#0+%C%+$@6%&,A%%()

C=*,(0++%(#

=0C&A6$<&=*$6�+%

D*++%=

($66%%
$+,>%/,

E0++%(#*+8

=*$6&=*8*#-+4F3$6*=G

7*1%H0;#

=0C&A6$<&1%,,$8%

=*$6&=*8*#-+4F*+3$6*=G

C(0++%(#?+3$6*=

=0C&A6$<&1%,,$8%

F*+(01A6%#%G$.#%/&-IJ&,%(K4

$.#%/&-IJ&,%(K4

$(#*3%L+#/<

$@0/#%=

$@0/# #%/1*+$#%

Use cases

Use cases

  Represent functional requirement

System

Actor 1

Use case X

Use case Y

Actor 2

Why use case diagrams ?
  A graphical modelling of requirements
  Used by final users to express/discuss about their

requirements
  Are usefull to communicate at the first steps of the

developement
  Are a basis for functional testing

Project main thread

User

Use cases

Analyst
express

Testing

Architect

Developper

understand

check
realize

implement

Actors

  Represent roles that humans, hardware devices, or
external systems play while interacting with a given
system

  They are not part of the system and are situated outside
of the system boundary

  Actors may be both at input and output ends of a use
case

Identify actors
  Define system boundary to identify actors correctly
  Identify users and systems that depend on the system’s

primary and secondary functionalities
  Identify hardware and software platforms with which the

system interacts
  Select entities that play distinctly different roles in the

system
  Identify as actors external entities with common goals

and direct interaction with the system
  Denote actors as nouns

Identifying Use Cases
  Business / Domain Use Cases:

  Interactions between users and the business (or domain)

  System Use Cases:
  Interactions between users and the system
  One business use cases contains a set of system use cases

  To name the use cases, give it a verb name to show the
action that must be performed
  Describe a transaction completely
  No description of user interface whatsoever

Capture Use Cases
  Capture use cases during requirements elaboration
  Use cases are not mapped one-to-one to requirements

  Each requirement must be covered by at least one use case
  However, use cases may contain many requirements

  Use scenarios to model assumptions and define system
scope

  List exceptions separately

Scenarios
  Specify behaviour of use case by description, not modeling

  Examples include informal structured text, formal structured
text with conditions, and pseudocode

  Typically specify:
  How and when the use case starts and ends
  Interaction with the actors and the exchange of objects
  Flow of events: main / typical (success), alternative (success),

and exceptional (failure) flows

Identifying Scenarios
  Extract the functionality that is available to each actor
  Establish specific instances and not general descriptions
  Denote situations in the current and future systems

Identify:
  Tasks to be performed by the user and the system
  Flow of information to the user and to the system
  Events that are conveyed to the user and to the system
  For the events flow, name steps in active voice

Example of textual description
<project>

Use-Case: <use-case name>

Brief Description <brief description of use-case>

Actor Brief Descriptions <Actor 1 Name>

Preconditions <pre-condition 1>

Basic Flow of Events The use case begins when <actor>, <does something>…
<basic flow step 1>
…
<basic flow step n>
The use case ends.

Alternative Flows <alternate flow 1>
If in step <x> of the basic flow the <actor or system does something>, then
<describe flow>
The use case resumes at step <y>

Subflows <subflow 1, step 1>
…
<subflow 1, step n>

Post-conditions <post-condition 1>

Special Requirements <special requirement 1>

A process for scenario based risk
analysis

Issues
  A method usable at the very first steps of the

development process
  Studying the dynamics of the system
  Not requiring important skills in modelling
  Easily understandable by non experts
  Integrating human factors

Integration of several Methods
  Based on the risk management approach
  Integrating UML
  Integrating task analysis and function allocation results
  Integrating human error analysis
  HAZOP for deviation analysis
  FTA for risk estimation

Risk management

Risk analysis
1. System and intended use
description

2. Hazard identification and risk
estimation

Judge if the risk is tolerable or not

 Reduction of the risk until it
becomes tolerable

Risk evaluation

Risk reduction

Function allocation and
task analysis

Human error analysis

UML Modeling

Process overview
1.  System intended use and description

a)  General scenario description UML Use Case
b)  Robot integration UML Use Cases
c)  System definition UML System use cases
d)  Task description : UML Sequence diagrams

2.  Preliminary Hazard identification
3.  Hazard identification with HAZOP

a)  HAZOP on use cases conditions
b)  HAZOP on sequence diagrams
c)  Communication of results and determination of top events

4.  Risk estimation
a)  Fault tree analysis without any risk reduction strategy
b)  First risk estimation and determination of integrity levels (recommendations)

 Risk evaluation / Risk Reduction (not presented here)
5.  Residual risk estimation

a)  Fault Tree Analysis with risk reduction strategies (minimal cut sets analysis and use of
PARETO for order 2 min. cut sets.)

b)  Final recommendations for safeguards and integrity levels.

  Master site
  Expert move by hand virtual probe and

diagnose

  Slave Site
  parallel robot, artificial muscles

Example of application : Tele ultrasound system overview

Risk analysis
1. System and intended use
description

2. Hazard identification and risk
estimation

Function allocation and
task analysis

System and intended use description

  Function allocation and task analysis
  Determine distribution of work
  Identify details of specified tasks (required knowledge,

skills, attitudes)

Four steps with UML based development
A. General scenario
B. Robot integration
C. System definition
D. Task description

A. General scenario with business modeling

Diagnose Perform Ultrasound Scan

Probe Management

Patient Management

Patient

Specialist

Use Case diagram Robot
Equipment
servicer

Robot Management

Perform task

B. Robot integration

Probe
Management

Specialist

Assistant

Patient Management
Patient

Master Site
Perform

Ultrasound Scan
Robot

Equipment
Servicer

Robot Management

C. System definition

Patient

Operator

Patient Management

Robot Management
<<include>>

Robot
Master Site Perform Ultrasound Scan

Use Case diagram

 : Operator
 : TER Control

System
 : Patient : Robot

Prepare Patient
Calibrate for Patient corpulence

Identify Patient position

Identify Robot configuration

Validate models

Install Robot
Calibrate Robot

Calculate Patient model

Calculate Robot model

Install
Put Power on

Connection with Master Site

Put air pressure on
Start Teleoperation

Sequence diagram

{The order of
the messages
cannot be
changed}

Risk analysis
1. System and intended use
description

2. Hazard identification and risk
estimation Human error analysis

Preliminary Hazard Analysis
  At the very first step of the project
  Brainstorming / short meeting (max 2h)
  Same organisation as HAZOP (see chapter 4) but with a

more simple worksheet
1)  Identify system hazards and sources
2)  Translate system hazards into high-level system safety design

constraints.
3)  Assess hazards if required to do so.
4)  Establish the hazard log.

Example: System Hazards for Automated
Train Doors

1. A pair of controlled aircraft

1b. ATC shall provide conflict alerts.

maintain safe separation between
aircraft.

1a. ATC shall provide advisories that

direct aircraft into areas with unsafe
atmospheric conditions.

2a. ATC must not issue advisories that

2b. ATC shall provide weather advisories
and alerts to flight crews.

2c. ATC shall warn aircraft that enter an
unsafe atmospheric region.

Hazards must be translated into design constraints.

Door areas must be clear before door

Door opens while train is in motion.

violate minimum separation

c

Example PHA for ATC Approach Control

areas, thunderstorm cells)

(icing conditions, windshear

REQUIREMENTS/CONSTRAINTSHAZARDS

unsafe atmospheric region.
2. A controlled aircraft enters an

standards.

doorway.

Door must be capable of opening only after

motion.

Doors must remain closed while train is in

any door open.

Train must not be capable of moving withTrain starts with door open.

DESIGN CRITERIONHAZARD

train is stopped and properly aligned with

Doors cannot be opened for

emergency evacuation.

Door that closes on an obstruction

does not reopen or reopened door

does not reclose.

Door closes while someone is in

with station platform.

Door opens while improperly aligned

emergency evacuation.

anywhere when the train is stopped for

Means must be provided to open doors

reclose.

removal of obstruction and then automatically

An obstructed door must reopen to permit

closing begins.

platform unless emergency exists (see below).

PHA worksheet example

Num. Hazard Source Remarks Recommendation Who is in
charge of
application

Hardware
Software
Human
Environment
Mechanical
Electrical
Etc.

UML-HAZOP analysis
1)  UML Use cases + sequence diagrams
2)  Uses cases conditions
3)  The HAZOP method is applied to:

1)  Each use case
2)  Each sequence diagram

HAZOP overview

WHAT is UML system entity ? And associated attributes ?

  UML Entity :
  Use cases
  Sequence diagrams

Use case attributes

Use case guidewords

Sequence diagram attributes

Sequence diagram guidewords

HAZOP worksheet

Example : PHRIENDS case study
  Take an object from a specified location
  Place an object at a specified location
  Go to a location (holding or not holding an object)
  Take an object from the user’s hand
  Give an object to the user
A second group of use cases applies to when the user can

interrupt the previous actions to:
  Abort a task
  Guide the robot arm to a location
  Pause and resume a task
  Physical interaction

Use cases

Some results of the application of the
method

  PHRIEND project safety analysis artefacts
  Hazard list
  Recommendation list
  Integrity level requirements list
  Top events list => used for fault tree analysis

MIRAS example
Multimodal Interactive Robot for Assistance in Strolling

  The MIRAS project’s aim is to develop an assistive robot for
mobility capable of health state monitoring. It is designed to be
used in elderly care centers by elderly people suffering from
gait and orientation problems.

  The purpose is to offer more freedom and time to staff
personnel, by releasing them from basic assistance tasks in
mobility (such as rising from a chair and/or going to the
bathroom etc.), so that they can focus on other more
demanding tasks.

  It integrates the following functionalities, enabled by
multimodal interaction:
  Transparent control of the robot by the user when walking.

  Dynamic stabilization of the user if a fall or inappropriate motion is
detected, using force sensors combined with visual estimation of
posture.

  Adaptation of the robot’s behavior to a detection of user overstrain
(physiological state monitoring + changes in gait patterns).

  “hello” function to call the robot (in dock position). The robot is
able to autonomously move to the patient position. (a “bye bye”
function should also exist…)

