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Outline 
  Chapter 1 - Introduction 
  Chapter 2 - Dependability of systems 
  Chapter 3 - Risk management concepts 
  Chapter 4 –Three risk analysis techniques into details  
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  Chapter 5 - A scenario based risk analysis approach  
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Critical systems 
  Threats : 

  Hardware (failures of electronic components e.g. sensors) 
  Mechanical (failure of a mechanical part e.g. jamming) 
  Software (presence of bugs and failures e.g. reboot) 
  Humans (human errors e.g. unexpected comportment) 
  Environment (hazardous conditions e.g. no light) 

  Understand threats causes and consequences and treat them: 
  Prevent : use methods and tool to prevent the presence of threats  
  Eliminate : find threats in the system and eliminate them 
  Forecast : estimate causes/consequences of threats 
  Tolerate : develop the system to tolerate some threats 



Critical systems 
  Robotic systems now belongs to critical systems 

daVinci 



Three Laws of Robotics – Isaac Asimov (1950) 

  1. A robot must not harm a human being, nor through 
inaction allow one to come to harm. 

  2. A robot must always obey human beings, unless that is 
in conflict with the first law. 

  3. A robot must protect itself from harm, unless that is in 
conflict with the first or second laws. 



Rehabilitation robotics = critical systems? 

  Potential to harm ? 
  Types of systems 

  Mobility aid 
  Manipulation aid 
  Therapeutic aid 



Mobility Aids: Potential/Future 

  > 5 million wheelchair users in the U.S.  
  Safe and reliable mobile robotic assistive devices.  
  Intelligent homes, buildings communicate with smart 

wheelchairs  
  Extend to other assistive devices (e.g. scooters) 



Mobility Aids: State of the Art 

  All-terrain chairs  
  Tracked Systems (Ishimatsu, Hirose)  

  Wheeled/legged systems (Krovi, Kumar, Wellman)  
  Walkers (SmartWalker, Robuwalker, NurseBot) 
  Prosthetics legs systems ( ) 
  Other systems (e.g. guides for blind people) 

Mobility Aids: State of the Art

• All-Terrain Chairs
• Tracked Systems
(Ishimatsu, Hirose)

• Wheeled/Legged Systems
(Krovi, Kumar, Wellman)

• Independence iBot (Johnson and Johnson)



Example : RobuWalker 



Mobility Aids: Significant Accomplishments 

  Intelligent chairs  
  Automated navigation tasks/behaviors  
  Input modalities to mobile systems provide access to  

users who may lack fine motor control  
  Gesture recognition, voice command, vision-based 

interaction, sip and puff devices  
  Ability to drive on all terrains (stairs/curbs) 
  User monitoring (geolocalization, physiological 

parameters, etc.) 



Manipulation Aids 

Raptor (Applied Resources)

Manipulation Aids
Current

– Prosthetic arms
– Feeders
– Robots

Manus (Exact Dynamics)

Winsford Feeder

PROVAR Assistive 
Robot System (VA Palo Alto)

o  Prosthetics arms 
o  Feeders 
o  Multifunction manipulators 



Therapeutic Aids Therapeutic Aids: Examples

UCLA/UCI

MIT ManusLokomat (Hocoma)

Schematic (Stanford)



Challenges (Research) 
  Identify movement training algorithms that maximize 

motor learning and neural recovery, by combining 
robotics, brain imaging, and neurocomputational modelling 

  Automated tools to aid the diagnosis and assessment 
process (parametric to enable customization) 

  Safe and effective human-robot interaction for hands-off 
assistive robotics 
  find, track, follow, and understand the activity of the patient  
  provide appropriate feedback 
  motivate, engage patient 



Challenges (Technology) 
  Develop combined therapeutic/assistive rehabilitation 

robotic systems that are lightweight enough to be worn 
while performing activities of daily living. 

  Inexpensive, safe, back-driveable robots 



Roadmap of the domain  “Intelligent 
prosthetics “  !!
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Source : Rehabilitation Robotics in Robotics for Healthcare;  A Roadmap Study for the European Commission G. Gelderblom, M. De Wilt, G. 
Cremers,  A.  Rensma, IEEE 11th International Conference on Rehabilitation Robotics, Japan, June 2326, 2009 



Roadmap of the domain  “Robotised motor 
coordination analysis and therapy »  

!!

!

!"
"#

$"
!"

"#
$"

!%
%

&'
(

)*
&%

!%
%

&'
(

)*
&%

!"#" !"#$ !"!"

!"#$%&'(")*"+,-%$*./*0&1(%"1' *2+%*1.*#3$."(#*(44"%''%'

5%"'.$6*/%%2-&#7

+
$,

-%
&

.&
/

0
+

$,
-%

&
.&

/
0 8"' ("1%$/&#(")

9%$(03%$&4*"%$:.+'*'61%,' ("1%$/&# (")

!"#$%&'(")*"&1+$&4*/%%4*&"2*/+"#1(."(")*./*0$.'13%1(#'

!,0$.:%2*;<=*#."1$.4

5+00.$1*./*("2(:(2+&4*0$(.$(1(>%2*?@A*1&'7*0%$/.$,&"#%*

B%C*,&1%$(&4'D*&$1(/(#&4 '7("

!"!$

9%$(03%$&4*"%$:.+'*'6'1%,*#."1$.4

8%"1$&4*"%$:.+'*'6'1%,*#."1$.4

!,0$.:%2*'6'1%,'

!"#$%&'())*+

E$(&4,%13.2.4.)6

!"
"

#$
"

!"
"

#$
"

!%
%&

'(
)*

&
%

!%
%&

'(
)*

&
%

!"#" !"#$ !"!"

,-"."/0-&1(' 2030-420".&"3&'+'2$/'

5)$.&'"32#4%$&)*423"%/' 6"7(*4%&")$.&84%7#4%$&)*423"%/'

9.2$* *0:$.2&$.; 0%"./$.2'

<$.(0.$&0.2$%4-20;$&'+'2$/'

+$
,

-%
&

.&
/0

+$
,

-%
&

.&
/0

=''$''/$.2&/"7$*'>)%"-$7(%$'

?$*3&*$4%.0.:&'+'2$/'

@.7$%'24.70.:&28$%4)0$'

?"-04*&0'"*420".

=-20; 02+&/".02"%0.:&'+'2$/'

=''$''/$.2&"3&28$%4)$(20-&A$.$302'

9.' 0:82&0.&8(/4.&A$84;0"%>)$%-$)20".&2"&%"A"2'

!"!$

@.7$%' 24.70.:&A%40.&7$:%47420".

!$")*$&*"-420".&'+'2$/'

<4/$&A4'$7&28$%4)$(20-&'+'2$/'&3"%&-".'(/$%'

?84)$&'80320.:&'+'2$/'

B$/$.204&4''0'20;$&'+'2$/'

=(2"."/"('&0.2$%4-20;$&7$;0-$'

=--$)24.-$&"3&%"A"20- &'+'2$/'

6(*20&70'-0)* 0.4%+&-"")$%420".

!(A*0- &)%$'$.2420".&"3&'+'2$/'

C40*"%0.:&2"&0.70; 07(4*&.$$7'

?)$$-8&0.2$%34-$'

=%2030-04*&'D0.

!"
"#

$"
!"

"#
$"

!%
%

&'
(

)*&
%

!%
%

&'
(

)*&
%

!"#" !"#$ !"!"

,;07$.-$&A4'$7&%$'$4%-8

!%"2"-"*'&3"%&0.2$%")$%4A0* 02+

+$
,-

%
&

.&
/0

+$
,-

%
&

.&
/0 9.7""%&)"' 020".0.:

=/A0$.2&0.2$* *0:$.-$

6".02"%0.:&0.'07$&28$&A"7+&>&0.2%4&7$2$-20".

9.-%$4'0.:&7$/":%4)80-&)%$''(%$

E"')024*&/".02"%0.:

F84.:$'&0.&28$&8$4*28&-4%$&'+'2$/

G$2#"%D&2$-8."*":+

!"!$

H"A"2'&3"%&70'$4'$&/4.4:$/$.2

=-20;420".&"3&)420$.2&>&'$*3I-4%$

9.&8"/$&0.2$%4-20;$&%"A"2'

G$#&)4%4/$2$%' &/".02"% 0.:

!"
"#

$"
!"

"#
$"

!%
%&

'(
)*

&%
!%

%&
'(

)*
&%

!"#" !"#$ !"!"

0&1(%"1'*C(13*"%+$.4.)(#&4*,.1.$*2('.$2%$'

,%13.2.4.)6*/.$*("2(:(2+&4*&''%'',%"1

+$
,-

%
&.

&
/0

+$
,-

%
&.

&
/0

$%#.:%$6*0$.#%''%'

1%#3".4.)6*&2&01(")*1.*13%*0&1(%"1

,%13.2.4.)6*/.$*1$(&4'

-+2)%1*/.$*13%$&06

13%$&06*&1*3.,%*F-&'(#*/+"#1(."&4(16G

4&-.+$ '3.$1&)%*F13%$&0('1'G

,.1.$*#."1$.4*0$.#%''%'

!"!$

13%$&06*&1*3.,%*F("#$%&'%23(.-20".4*02+J

$%3&-(4(1&1 (."*&'*&*#."1("+.+'*0$.#%''

&''%'',%"1*./*0&1(%"1'

G$#&)4%4/$2$%'&/".02"%0.:

(,0$.:%2*3&$2C&$%

"
#$
!%
&!!'
(
)
*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2
31
.0
44#$
01
.!,
5(
6./
0
.#7
6!2

"
#$
!8
&!!'
(
)
*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2
'
(
9
(
.#60
*
!:
01
.)4;!<

(
$
1
#.#=
0
!)1
*
!>
(
7
#)4!

!!!!!!!!!!!?
/
0
5),
@
!!2

"
#$
!A
&!!'
(
)*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2'

(
9
(
.#60*

!+
(
.(
5!

!!!!!!!!!!7(
(
5*
#1
)
.#(
1
!)
1
)
4@
6#6!)

1
*
!./
0
5)
,
@
!!2

"
#$
!B
&!!'
(
)*
+
)
,
!(
-!./
0
!*
(
+
)
#1
!!2C
).#0
1
.!+
(
1
#.(
5#1
$
!5(
9
(
.6!!!

!
"
#

A
u
th

o
riz

e
d
 lic

e
n
s
e
d
 u

s
e
 lim

ite
d
 to

: L
A

A
S

. D
o
w

n
lo

a
d
e
d
 o

n
 S

e
p
te

m
b
e
r 2

9
, 2

0
0
9
 a

t 1
1
:3

2
 fro

m
 IE

E
E

 X
p
lo

re
.  R

e
s
tric

tio
n
s
 a

p
p
ly

. 
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The number of clinical trials found in ClinicalTrial.gov which used robots as the 
experimental intervention. Year indicates the study’s start date. Data as of June 9, 2009. 
Source : Towards Establishing Clinical Credibility for Rehabilitation and Assistive Robots; 
Katherine M. Tsui and Holly A. Yanco, 2009 
Through Experimental Design  

Towards Establishing Clinical Credibility for

Rehabilitation and Assistive Robots

Through Experimental Design

Katherine M. Tsui and Holly A. Yanco

University of Massachusetts Lowell

1 University Avenue

Lowell, MA 01854

Email: {ktsui, holly}@cs.uml.edu

Abstract—The number of clinical trials using robots has

increased over the last ten years. It is not practical for all
experiments to be clinical trials through the development cycle
of a rehabilitation or assistive robot. How can system developers
incorporate aspects of the clinical trials to gain credibility among
clinicians during development period evaluations?

In this paper, we begin a discussion about how to bridge
the gap between pre-clinical experiments and Phase 1 clinical
trials using rehabilitation and assistive robots. We examine the
importance of clearly defined inclusion and exclusion criterion.
We also discuss establishing a baseline either with a control
group or pre-experiment evaluation and the necessity for first
conducting experiments with able-bodied participants. Also, we
discuss the need for a common language between the system
developers and the clinicians.

I. INTRODUCTION

Traditionally in robotics, the system developers conduct

experiments on the physical robots and their control algo-

rithms. Roboticists are primarily interested in performance

measures such as time to task completion, accuracy, and power

consumption. Thus, the experiments performed are focused

around those measures. As robots become more commonplace

in the real-world, experiments which have relevance to people

who are not the system developers must also be conducted.

Over the last twenty years, robotics research in the domains

of medicine and health care have dramatically increased. Many

projects are in the development phase; however a number

of the rehabilitation robots have made the transition from

the laboratory setting to the clinic. Examples include the

MIT-Manus [24] and the University of California Irvine’s T-

WREX [21], which are both upper limb rehabilitation devices.

There have been several commercialized systems as well. For

example, Intuitive Surgical has shipped over 1,171 units of

the da Vinci Surgical System worldwide as of March 2009

[22]. DEKA’s iBOT Mobility System power wheelchair sold

400 units in 2007 [9]. Hocoma’s Lokomat, used for gait

rehabilitation, had over 160 units installed in clinics worldwide

as of June 2008 [20].

The number of clinical trials using robots has increased over

the last ten years according to the US National Institute of

Health’s clinical trial listing ClinicalTrial.gov [35]. A total

Fig. 1. The number of clinical trials found in ClinicalTrial.gov which used
robots as the experimental intervention. Year indicates the study’s start date.
Data as of June 9, 2009.

of 76 clinical trials involving robots as interventions were

listed as open or completed as shown in Figure 1.1 The

majority of the clinical trials were surgical in nature (40 of

76). Robots have also been used as therapy in clinical trials

(34 of 76), especially in the last five years. The remaining

two applications of robots in clinical trials were used for tele-

presecence and as a non-theraputic assistive device. In this

paper, we focus on non-surgical health care robots, specifically

rehabilitation and assistive robots.

Used in the US, European Union, and Japan, the Good

Clinical Practice Protocol requires clearly stated objectives,

checkpoints, and types and frequency of measurement [34]. It

requires a detailed description of the proposed study and pre-

ventative biasing measures. The expected duration of the trial,

treatment regiment and record keeping strategies must also be

detailed. Further, discontinuation criteria for participants or the

partial/whole trial must be clearly defined.

As rehabilitation and assistive robots are considered medical

devices and can be prescribed to the end-user, it is logical to

1Search term used was “robot” and “robotics.” Three trials, listed as
terminated, are not included in this data.



Preliminary Hazard Identification 
  Considering the three following case studies, what are the 

main hazards ? 
  Therapeutic aid : Training (Lokomat) 
  Mobility aid :  Autonomous wheelchair (Sabre) 
  Manipulation aid : Feeder (Meal Buddy) 



Therapeutic aid : Training (Lokomat) 



Mobility aid :Autonomous wheelchair (Sabre) 



Manipulation aid: Feeder (Meal Buddy) 



First conclusions 
  Ensure safety: 

  A process to analyse safety 
  Who ? What ? When ? 

  Methods for safety analysis 
  Models for quantitative or qualitative analysis 

  Tools for safety analysis 
  Computer assisted safety analysis for the application of methods 

  Technologies to improve safety 
  From industrial robots 
  From other domains 
  New technologies 



Standards from machinery to advanced 
robots 

  Safety of machinery 
  Safety of industrial robots 
  Safety of advanced robots 

  Generic safety standards 
  Safety of medical robots 
  Safety of rehabilitation robots 



Safety of machinery 

178 M. Nokata and N. Tejima

tion robots cannot be reduced in the same manner as for industrial robots, and re-
sidual risk may be difficult to tolerate. Therefore, it is necessary to develop ra-
tional protective measures for rehabilitation robots based both on the basic con-
cepts of safety standards and from the point of view of enhancing users' QOL
(Quality of Life).

10.2.2   Safety Standard for Machinery

The safety standard system for machinery has been established in a pyramidal
structure shown in Fig. 10.1. In this system, standards on the top prescribe basic
concepts of safety, standards below them prescribe common technologies, and
standards at the bottom prescribe precise technologies for each type of machinery,
such as manipulating industrial robots.

The basic concepts of safety are protective measures according to risk assess-
ment and disclosure of residual risk. According to ISO/IEC Guide 51:1999, safety
is defined as “freedom from unacceptable risk” and risk is defined as “combina-
tion of the probability of occurrence of harm and the severity of that harm”. Toler-
able risk is defined as “risk which is accepted in a given context based on the cur-
rent values of society”. A level of tolerable risk is not clearly stated in the standard
and should be decided according to the current values of society, state-of-the-art
technology, legal problems and so on.

Safety is relatively described by risk in terms of probabilities. There can be no
absolute safety: some risk will remain, defined as residual risk. Nobody can say
that accidents or disasters can be avoidable absolutely. For a guarantee of safety,
there must be ground for tolerating accidents after an adequate risk reduction pro-
cess is implemented.

Fig. 10.1. A pyramidal structure of the safety standard system for machinery

Machinery Directive 
98/37/EC 



Industrial Robots - Relevant Robot Safety 
Standards 

  Europe : 
  ISO 10218 Robots for industrial environments – Safety 

requirements  

  Other countries  
  ANSI/RIA R15.06-1999 Industrial robots and robot systems 

– Safety requirements 
  AS 2939-1987 Industrial robot systems – Safe design and 

usage 



Guard Types 





Safety of advanced robotics 
  Generic safety standards 

  ISO/IEC Guide 51 : Safety aspects — Guidelines for their 
inclusion in standards 

  IEC 61508 Functional safety of electrical / electronic / 
programmable electronic safety-related systems 

  Advanced Robotics 
  Nothing… except in ISO 10218 (Robots for industrial 

environments – Safety requirements) 
  “If a person enters the collaborating workspace the robot performs a 

safety-rated monitored stop.” p5

  => incompatible with advanced robotics (simultaneous movements) 



ISO/FDIS 10218-2 
  Definition of collaborative robot: Robot designed for direct contact with a human 

within a defined collaborative workspace. 
  The design of the robot system and cell layout is a key process in the elimination of 

hazards and reduction of risks. 
  The safety function shall fulfil a least safety category d- or Safety Integrity Level 

(SIL) 2 
  Persons/Operators shall be safeguarded by a combination of protective devices and 

compliance with robot performance features. 
  section 5.11.5: Collaborating robot operation 

  Collaboration is only 
  used for pre-determined tasks, 
  possible when all required protective measures are active, and 
  for robots with features specifically designed for collaborating operation complying with ISO 

10218-1:2006 Clause 5.10. 

  Operation in the collaborating workspace – one or more of the following condition need 
to be fulfilled  
  If a person enters the collaborating workspace the robot performs a safety-rated monitored stop. 
  Hand guided mode under the conditions of a defined hand over position, a hand guided device that 

meets the requirements  of ISO 10218-1:2006 and a clear visibility over the entire collaborative 
workspace. 

  Speed and position monitoring, for example under the observance of a safe distance. 
  Power and force limiting by design or control.



Safety of medical robots 
  Medical robots as “medical devices” 

  Directive 2007/47/EEC amending Council Directive 93/42/EEC 
concerning medical devices 

  ISO 14971 - Risk management for medical devices 

  Nothing specific for medical robots 



Safety of rehabilitation robots 
  Generic 

  Machinery standards ? 
  Robotics standards ? 

  Domain specific standards (not robotic specific) 
  Mobility aid 
  Manipulation aid 
  Therapeutics 



Industrial robots Vs advanced Robots 
Industrial 
robotics 

Advanced robotics New hazards Examples 

No movement if 
human presence 

Simultaneous movements  Bad synchronization / Non 
human legible movements 

Human is “far” Human is close / Physical 
contact 

Impacts / forces too high 

Teach pendant Advanced interaction (cognitive) Mode confusion / 
communication errors / 
understanding errors 

Automatic Autonomous Hazardous decisions / Bad 
decisions 

Heavy/Stiff/Powerful Light/Compliant/Limited power 
(“intrinsically safe”) 

Precision hazards 

Mono function Multi function Tasks too complex 

Structured 
environment 

Unstructured environment Hazardous situations 
(Robustness issues) 



Conclusion 
  Rehabilitation robotics = advanced robotics 
  New functionalities + new hazards => no specific safety 

standards (application of some machinery or industrial 
robotics concepts but impossibility to reach a complete 
conformity) 

  Apply methods and tools from other critical systems 

How dependability techniques could be 
used in a risk management process for 
advanced robotics ? 



Chapter 2. Dependabilty concepts 

Credits : Most of the slides have been generously given by Jean-Claude Laprie 
(Resist courseware http://resist.isti.cnr.it/) 



Dependability: ability to deliver service that can justifiably be trusted 

Service delivered by a system: its behavior as it is perceived by its user(s) 
User: another system that interacts with the former 
Function of a system: what the system is intended to do 
(Functional) Specification: description of the system function 
Correct service: when the delivered service implements the system function 
(Service) Failure: event that occurs when the delivered service deviates from 
correct service, either because the system does not comply with the specification, 
or because the specification did not adequately describe its function 
Failure modes: the ways in which a system can fail, ranked according to failure 
severities 
Part of system state that may cause a subsequent service failure: error 
Adjudged or hypothesized cause of an error: fault 

Dependability: ability to avoid failures that are unacceptably frequent or severe 

Failures unacceptably frequent or severe: dependability failure  



Absence
of  catastrophic

consequences on
the user(s) and 
the environment 

Continuity
of service 

Readiness
for usage 

Absence of 
unauthorized 
disclosure of 
information 

Absence
of improper

system
alterations 

Ability to
undergo

repairs and
evolutions 

Safety Reliability Confidentiality Availability Integrity Maintainability 

Security
Absence of unauthorized access to, or handling of, system state 

Dependability 

Authorized actions 



Safety Reliability Confidentiality Availability Integrity Maintainability 

Fault 
Prevention 

Fault 
Tolerance 

Fault 
Removal 

Fault 
Forecasting 

Faults Errors Failures 
Activation Propagation Causation 

Faults Failures … … Causation 



Dependability attributes 

 Availability, Reliability, Safety, Confidentiality, Integrity, Maintainability: Primary 
attributes 

 Secondary attributes 
  Specialization 

  Robustness: dependability with respect to external faults 
  Survivability: dependabilty in the presence of active fault(s) 
  Resilience: dependability when facing functional, environmental, or 

technological changes 
 Distinguishing among various types of (meta-)information 

 Accountability: availability and integrity of the person who performed an 
operation 

 Authenticity: integrity of a message content and origin, and possibly 
some other information, such as the time of emission 

 Non-repudiability: availability and integrity of the identity of the sender 
of a message (non-repudiation of the origin),  
or of the receiver (non-repudiation of reception) 



Fault Error Failure 

Deviation of the 
delivered service 

from correct 
service, i.e., 

implementing the 
system function 

Part of system 
state that may 

cause a 
subsequent 

failure 

Adjudged or 
hypothesized cause of 

an error 

Failure … … Fault 

System does not 
comply with 
specification 

Specification does not 
adequately describe 

function 

Dependability Threats 

Propagation Activation Causation 



Error Error Error 

activation 

propagation prop. 

Service 
Interface 

Incorrect 
Service:  
Outage 

Correct 
Service 

Failure 

Correct Service 
Incorrect 
Service:  
Outage 

Failure 

Internal fault, 
dormant 

vulnerability 

activation 

(computation 
process) 



Means for Dependability 

Preventing 
occurrence or 
introduction of 

faults 

Fault 
Prevention 

Delivering correct 
service in spite of 

faults 

Fault  
Tolerance 

Reducing the 
presence of 

faults 

Fault 
Removal 

Estimating the present 
number, the future 

incidence and the likely 
consequences of faults 

Fault 
Forecasing 

Fault Avoidance 

Fault Acceptance 



Concept Dependability High Confidence Survivability Trustworthiness 

Goal 

1) ability to deliver 
service that can 
justifiably be trusted 
2) ability of a system to 
avoid service failures 
that are unacceptably 
frequent or severe 

consequences of the 
system behavior are 
well understood and 
predictable 

capability of a system 
to fulfill its mission in a 
timely manner 

assurance that a 
system will perform as 
expected 

Threats 
present 

1) development faults 
(e.g., software flaws, 
hardware errata, malicious 
logic) 

2) physical faults (e.g., 
production defects, physical 
deterioration) 

3) interaction faults (e.g., 
physical interference, input 
mistakes, attacks, including 
viruses, worms, intrusions) 

• internal and external 
threats 
• naturally occurring 
hazards and malicious 
attacks from a 
sophisticated and well-
funded adversary 

1) attacks (e.g., 
intrusions, probes, denials 
of service) 

2) failures (internally 
generated events due to, 
e.g., software design 
errors, hardware 
degradation, human 
errors, corrupted data) 

3) accidents (externally 
generated events such as 
natural disasters) 

1) hostile attacks (from 
hackers or insiders) 

2) environmental 
disruptions (accidental 
disruptions, either man-
made or natural) 

3) human and operator 
errors (e.g., software 
flaws, mistakes by human 
operators) 

References 

‘Information 
technology frontiers for 
a new millenium’, Blue 
Book 2000, NTSC 

A. Ellison et al., 
‘Survivable network 
systems’, SEI Report, 
1999 

F. Schneider, ed., 
‘Trust in cyberspace’, 
National Academy 
Press, 1999 

Dependability and similar notions  



Attributes 

Availability 
Reliability 
Safety 
Confidentiality 
Integrity 
Maintainability 

Dependability Means 

Fault Prevention 
Fault Tolerance 
Fault Removal 
Fault Forecasting 

Threats 
Faults 
Errors 
Failures 

Security 



Fault 
forecating 

Ordinal or qualitative evaluation  

Probabilistic or 
quantitative evaluation  

Modeling 
Operational testing 

Fault 
tolerance 

Error detection 

System recovery 
Error handling 
Fault handling 

Development 

Static verification 
Dynamic verification 

Verification 
Diagnosis 
Correction 
Non-regression verification Fault 

removal 
Operational life Corrective or preventive maintenance 

Means 

Fault 
prevention 

Attributes 

Availability/Reliability 
Safety 
Confidentiality 
Integrity 
Maintainability 

Threats 
Faults 
Errors 
Failures 

Development 
Physical 
Interaction 

Dependability 



Dependability threats:  
faults, errors, failures 



Error of a programmer 

Fault 
Impaired instructions or data 

Activation 
Faulty component and inputs 

Error 

Propagation 
When delivered service deviates (value, timing) from 

implementing function 

Failure 



Short-circuit in integrated circuit 
Failure 

Fault 
Stuck-at connection, modification of circuit function 

Activation 
Faulty component and inputs 

Error 

Propagation 
When delivered service deviates (value, timing) from 

implementing function 

Failure 

Causation 



Operator Error 
Inappropriate human-system interaction 

Fault 

Error 

Propagation 
When delivered service deviates (value, timing) from 

implementing function 

Failure 



Electromagnetic perturbation 

Fault 

Error 

Activation 
Faulty component and inputs 

Fault 
Impaired memory data 

Propagation 
When delivered service deviates (value, timing) from 

implementing function 

Failure 



Faults Errors Failures 

Phase of creation 
or occurrence 

Development faults 

Operational faults 

System boundaries 
Internal faults 

External faults 

Phenomenological 
cause 

Natural faults 

Human-made faults 

Persistence 
Permanent faults 

Transient faults 

Faults Failures … … 

Intent 
Malicious faults 

Non-malicious faults 

Capability 

Accidental faults 

Incompetence faults 

Deliberate faults 

Signaled failures 

Unsignaled failures 
Detectability 

Consistency 
Consistent failures 

Inconsistent 
(Byzantine) failures 

Consequences 

Minor failures 

Catastrophic failures 

%

%

%

Content failures 
Domain 

Timing failures 

Propagation Activation Causation Causation 



Failures 

Détectability 

Signalled failures  
[delivered service is detected as incorrect, and signalled as such] 
Unsignalled failures 
[incorrect service deivery is not detected] 

Consistency 

Consistent failures 
[incorrect service identically perceived by all users] 
Inconsistent, or Byzantine, failures 
[some, or all, users perceive differently incorrect service] 

Consequences 

Minor failures  
[harmful consequences are of similar cost to the benefits 
provided by correct service delivery ] 

Catastrophic failures 
[cost of harmful consequences is orders of magnitude, or 
even incommensurably higher than the benefits provided 
by correct service delivery] 

• • • 

Domain 

Value failures 
[value of delivered service deviates from implementing system function] 

Timing failures  
[timing of service delivery (instant or duration) deviates 
from implementing system function] 



Failure 
domain 

Value 
(correct timing) 

Timing 
(correct value) 

Value and 
timing 

Value failures 

Service delivered 
too early 

Early timing failures 

Service delivered 
too late 

Late timing failures 

Suspended 
service 

Halt failures 

Erratic 
service 

Erratic failures 

Non signalling of incorrect service: unsignalled failure 

Signalling incorrect service in absence of failure: false alarm 

•  halt failures: fail-halt system 

•  minor failures: fail-safe system 

Failure of detecting mechanisms 

System whose all failures are, to an acceptable extent 



Faults 

Phase of creation 
or occurrence 

Development faults 
[occur during (a) system development, (b) maintenance 
during the use phase, and (c) generation of procedures 
to operate or to maintain the system] Operational faults 
[occur during service delivery of 
the use phase]  

System 
boundaries 

Internal faults 
[originate inside the system 
boundary] 
External faults 
[originate outside the system boundary and 
propagate errors into 
 the system by interaction or interference] 

Phenomenological 
cause 

Natural faults 
[caused by physico-chemical natural phenomena without human participation] 
Human-made faults 
[result from human actions] 

Intent 

Malicious faults 
[introduced by a human with the malicious 
objective of causing harm to the system]  
Non-malicious faults 
[introduced without a malicious objective] 

Deliberate faults 
[result of a decision]  Capability 

Accidental faults 
[introduced inadvertently] 

Incompetence faults 
[result from lack of professional competence by the 
authorized human(s),  
or from inadequacy of the development organization] 

Persistence 

Permanent faults 
[presence is assumed to be continuous in time] 

Transient faults 
[presence is bounded in time] 



Development faults Physical faults Interaction faults 

Faults 

Perm. Perm. Perm. Perm. Perm. Perm. Trans. Perm. Trans. Trans. Trans. Perm. Trans. Trans. Perm. 

Non 
malicious 

Malicious Non 
malicious 

Non 
malicious 

Non 
malicious 

Non 
malicious 

Malicious 

Internal Internal External 

Development Operational 

Accid. Inc. Accid. Accidental Accidental Accid. Delib. Incompetence Deliberate Delib. Delib. 

Persistence 

Intent 

System boundaries 

Phase of creation or 
occurrence 

Capability 

Phenomenological 
cause 

Human 
-made 

Natural Natural Natural Human 
-made 

Malicious 
logic 

Physical 
Deterior. 

Physical 
Interference 

Intrusion 
Attempts 

Viruses 
Worms 

Input Mistakes 

Overload 

Configuration Mistakes 

Design Flaws 

Production Defects 



Human-made Faults 

Non-malicious Malicious Intent 

Accidental 
(Mistakes) 

Deliberate 
(Bad decisions) 

Deliberate Incompetence 
Capability 

Interaction 
(operators, 
maintainers) 

& 
Development 
(designers) 

Malicious logic 
faults: 

logic bombs, 
Trojan horses, 

trapdoors, 
viruses, worms, 

zombies 

Intrusion 
attempts 

Individuals 
& 

organizations 

Development faults Physical faults Interaction faults 

Hardware Software System 



State of the art from statistics 



June 1980: False alerts at the North American Air Defense (NORAD)  

June 1985 - January 1987: Excessive radiotherapy doses (Therac-25)  

November 1988: Internet worm 

15 January 1990: 9 hours outage of the long-distance phone in the USA   

February 1991: Scud missed by a Patriot (Dhahran, Gulf War)  

November 1992: Crash of the communication system of the London ambulance 
service  

26 and 27 June 1993: Authorization denial of credit card operations in France  

4 June 1996: Failure of Ariane 5 maiden flight 

13 April 1998: Crash of the AT&T data network 

February 2000: Distributed denials of service on large Web sites 

May 2000: Virus I love you 

July 2001: Worm Code Red 

August 2003: Propagation of the electricity blackout in the USA and Canada  

August 1986 - 1987: the "wily hacker" penetrates several tens of sensitive 
computing facilities  

October 2006: 83,000 e-mail addresses, credit card info, banking transaction files 
stolen in UK 

Faults 
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Failures 

✔ ✔ ✔ 
✔ ✔ ✔ 

✔ ✔ ✔ ✔ 
✔ ✔ ✔ 
✔ ✔ ✔ ✔ ✔ 

✔ ✔ ✔ ✔ ✔ 

✔ ✔ ✔ ✔ 
✔ ✔ ✔ 
✔ ✔ ✔ ✔ 
✔ ✔ ✔ ✔ 
✔ ✔ ✔ ✔ 
✔ ✔ ✔ ✔ 
✔ ✔ ✔ ✔ 

✔ ✔ ✔ ✔ 

✔ ✔ ✔ ✔ 

Fault examples 



Number of failures 

[consequences and outage 
durations depend upon 
application] 

Dedicated computing 
systems 

(e.g., transaction 
processing, electronic 

switching, Internet backend 
servers) 

Controlled systems 
(e.g., civil airplanes, phone 
network, Internet frontend 

servers) 

Faults Rank Proportion Rank Proportion 

Physical internal 3 ~ 10% 2 15-20% 

Physical external 3 ~ 10% 2 15-20% 

Human interactions 2 ~ 20% 1 40-50% 

Development 1 ~ 60% 2 15-20% 

Accidental faults 
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7000 

SEI/CERT Statistics: vulnerabilities reported 

Malicious faults 



The geographic spread of Sapphire in the 30 minutes after release. 

Slammer/Sapphire worm 

The fastest computer worm in history. As it began spreading throughout the Internet, it doubled in size every 8.5 
seconds. It infected more than 90 percent of vulnerable hosts within 10 minutes.The worm began to infect hosts 
slightly before 05:30 UTC on Saturday, January 25, 2003. Sapphire exploited a buffer overflow vulnerability in 
computers on the Internet running Microsoft's SQL Server or MSDE 2000 (Microsoft SQL Server Desktop 
Engine). This weakness in an underlying indexing service was discovered in July 2002; Microsoft released a patch for 
the vulnerability before it was announced. The worm infected at least 75,000 hosts, perhaps considerably more, and 
caused network outages and such unforeseen consequences as canceled airline flights, interference with elections, 
and ATM failures. 

[From: http://www.caida.org/publications/papers/2003/sapphire/sapphire.html] 



Global Information Security Survey 2004 — Ernst & Young 
Loss of availability: Top ten incidents 

Percentage of respondents that indicated the following incidents resulted in an unexpected or 
unscheduled outage of their critical business 

0% 20% 40% 60% 80%

Hardware failures

Major virus, Trojan horse, or Internet worms

Telecommunications failure

Software failure

Third party failure, e.g., service provider

System capacity issues

Operational erors, e.g., wrong software loaded

Infrastructure failure, e.g., fire, blackout

Former or current employee misconduct

Distributed Denial of Servive (DDoS) attacks

Non malicious 
76% 

Malicious 
24% 



Fault Removal 



Reducing the presence of faults 

Diagnosis 

Correction 

Non-regression verification 

Verification Checking whether the system satisfies 
verification conditions  

general specific 



Verification 

Dynamic Static 

Static analysis 

System 

Effective execution 

Reviews and 
inspections 

Static 
analysis 

Theorem 
proving 

System 
behavior 
model 

Model 
checking 

Symbolic 
inputs 

System 
model 

Symbolic 
execution 

Valued 
 inputs 

System 

Test 

Specification 

Design 

Implementation 

 

 

  

 

 

 

 

 

  



Reviews and manual inspection 

68

•  Specification review
•  User requirements, consistence, feasibility
•  Use of checklists

•  Design review
•  Algorithms, interface modules 
•  Cheklists
•  modelling, simulation

•  Coding review : critical code reading
•  Inspection (e.g. : several developers read the code with “classical faults” 

lists
•  Audit : verification of programming best practices (control structure, 

comments, variables names, etc.) 
•  Many other approaches



Software reviews and automatic inspections 

69

  Program Characteristics 
  Instruction lines amount / quantity of types and variables 
  Crossing references 
  Complexity metrics 
  etc. 

  Detected faults 
  variables : unused, missing initialisation 
  loops : infinite, imbricated 
  Dead instructions 
  Global variables 
  … see next slide 

Static analyzer Code under 
verification

Characteristics and 
syntax and 

structural faults 



Test  

70

  Oracle issue : observe outputs and decide if they are 
consistent with verification conditions 
  Manual estimation of excepted outputs 

  To identify a fault, it is required that 
  The fault is activated with a test input 
  Error is propagating to affect an observable output 
  A verification condition is violated 

System Under 
Test 

Test inputs Test  
outputs 

Oracle 
Verdict 

(correct/incorrect 
outputs) 



Exhaustive test is impossible 

71

  Input domain is huge, even infinate 
  Conditions of execution for a robot is infinate 

  Users actions 
  Environment 

 Partial Verification => test plan / test case should be 
justified 
  Main functionalities 
  Critical scenarios 



Formal method (proof and model checking) 

72

  Formal specification : use of notations to describe 
  Hypothesis on the environments 
  Requirements 
  A design to satisfy requirements 

  Formal verification : use of formal methods for 
  Analyse specifications considering consistence and 

completeness criteria 
  Test specifications 
  Prove that design satisfy requirements 



Example : Model checking 
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q 

p 

G(p → Fq) 

Model 
Checker 

Logical formula 

State machine 

Counter example 

p 

q 

YES!  

NO!  



Automata 
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4 

3 

5 

2 1 

locked 

bedpos 

loaded 

loaded 
locked 

Multiplet 

€ 

M = S,S0 ,T,P,L

€ 

S

€ 

S0 Set of initial state 

Finite set of states 

€ 

P Finite set of propositions 

€ 

T ⊆ S × S Transition set 
  

€ 

L(p) :P 2S Assign to each proposition 
the set of states where p is 
verified 

2 

2 

5 

4 

3 

1 

3 

4 

2 

t 0 1 2 

Execution paths : tree 
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Temporal Logic: CTL (Computation Tree Logic) 

Properties on execution paths 

p 
p 
p 

p 

p 

p 
p 
p 

p 

p 

p 

p 

p 
p 

p 

p 

p 

p 

p 

p 

p 

It finally exists a path where p is 
verified:  EF p 

Property p is finally verified for all 
paths : AF p 

Property p is verified for all tracks 
(invariant) : AG p 
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2 

2 

5 

4 

3 

1 

3 

4 

2 

1 

3 

4 

3 

4 

3 

loaded 

locked 

bedpos 

loaded 

loaded 

loaded 

loaded 

loaded 

locked 

bedpos 

bedpos 

bedpos 

Example : AG EF 

It is always possible to reach a state where loaded is verified : AG EF loaded 



Fault Forecasting 



Identification, analysis of
consequences, and classification 

of failures

Probabilistic evaluation of the extent 
to which some dependability 

attributes are satisfied 

Ordinal or 
qualitative 
evaluation 

Probabilistic or 
quantitative evaluation 

Estimation of presence, creation and consequences of faults 

Operational testing 

Evaluation test 
according to 

operational input 
profile 

Behavior model of system / 
failure, maintenance actions, 

solicitations

Modelling 



Failure mode and effect (and criticality) 
analysis [FME(C)A] 

Reliability diagrams 

Fault trees 

State diagrams 

Markov chains 

Petri nets 

Ordinal evaluation  Probabilistic evaluation  



Failure mode and effect (and criticality) 
analysis  

80

  Identification for each component: 
  Failure modes 
  Consequences of failures 

  Example : interplanetary sonde (JPL-NASA) 

Item / Function FEA/EAA 

Potential Failure Mode CPU Reset 

Potential Effect(s) of Failure Loss of all state information 

Severity 0.5 

Potential Cause(s) Mechanisms of 
Failure 

Power surge or drop; internal 
software error 

Probability 0.3 

Current design controls Store state information 

Effectiveness 0.9 

SEE 
CHAPTER 

4 



Fault tree analysis 

81

  Top-down approach to failure 
analysis starting with an 
undesirable event called a top 
event, and then determining how 
this top event can be caused by 
individual or combined lower level 
failures or events  

SEE 
CHAPTER 

4 



From qualitative to quantitative 

82

  Fault forecasting : use of mathematical tools for 
calculation of reliability and availability 

  Statistics and probabilities 



a

c

Time

Failure intensity (average number of 
failures per unit of time)

Reliability growth 

Improved ability to deliver 
correct service

[stochastic increase  
of times to failure]

Decreasing failure intensity 

Non-stationary stochastic 
processes

Stable reliability 

Preserved ability to deliver 
correct service

[stochastic equality  
of times to failure]

Constant failure intensity 

Stationary stochastic 
processes

Reliability decrease 

Degraded ability to deliver 
correct service

[stochastic decrease  
of times to failure]

Increasing failure intensity 
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Correct service 
X = 1 

Incorrect service 
X = 0 

Failure 

Repair 

Initial reliability: k=1     

€ 

Rk u( ) = P X ν( ) = 1,∀ ν ∈ tk−1,tk−1+u[ ]{ } = P θk > u{ }
Reliability 

    

€ 

A t( ) = P X t( ) = 1{ } = E X t( ){ } = P tk−1< t< tk−1+θk{ }
k=1

∞
∑

Availability 
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θ : time of realization until occurrence of event X 

Fonction Symbole Definition 
Statistical 
estimation 

Distribution 

Complementary 
distribution 

Probability of 
density 

Chance rate 

  

€ 

F t( )

  

€ 

F t( )

  

€ 

f t( )

  

€ 

z t( )

  

€ 

P θ ≤t{ }

  

€ 

P θ > t{ }

  

€ 

P θ ≤t +Δt{ } − P θ ≤t{ }
Δt

  

€ 

P θ ≤t +Δt θ ≥t{ }
Δt

    

€ 

N 0( ) − N t( )
N 0( )

    

€ 

N t( )
N 0( )

    

€ 

N t +Δt( ) − N t( )
N 0( ) Δt

  

€ 

N t +Δt( ) − N t( )
N t( ) Δt

N(0) : cardinality of the sample 

N(t) : number of systems of the 
sample where  event X does not 
occur 

Mean time to occurrence of event X :  

    

€ 

E θ( ) = t f t( ) dt
0

∞

∫ = F t( ) dt
0

∞

∫
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t

∞
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dF(t )

dt   
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−
dF (t )

dt

    

€ 

1

1−F t( )
dF(t )

dt
    

€ 

−
1

F t( )
dF (t )

dt

  

€ 

f v( )dv
t

∞

∫     

€ 

e
− z v( ) dv

0

t

∫

    

€ 

1−e
− z v( ) dv

0

t

∫

    

€ 

z t( ) e
− z v( ) dv

0

t

∫

Hypothesis : exponential distribution of θ: 

    

€ 

F t( ) = 1−e−λt F t( ) = e−λt f t( ) = λ e−λt z t( ) = λ E θ( ) =
1

λ
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0

MTTF(t)

t

    

€ 

MTTFK = E θk{ } = RK u( ) du
0
∞
∫

Mean time until next failure 

Mean time to first failure : 

    

€ 

MTFF = MTTF1= MTTF 0( ) = R1u( ) du
0
∞
∫

MTTF : Mean Time To Failure, MTFF : 
Mean Time to First Failure, 

Stable reliability Growth reliability 

Realiability 

1

0

Rk(u)

u

k=1 k=2 …

t

1

0

Rk(u)

u

k=1

k > k0

MTTF(k)

k1 2 3 …



Reliability diagrams 
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Component 
1 

Component 
2 

Component 
n 

Serial : non redundant systems 

Paralell: redundant system 

Component
1 

Component
2 

Component
n 
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€ 

R = Rk
k=1

n

∏

    

€ 

Rk t( ) = exp − λk v( ) dv
0

t
∫

 

 
 
 

 

 
 
 

    

€ 

R t( ) = exp − λk v( ) dv
0

t
∫

k=1

n

∑
 

 

 
 
 

 

 

 
 
     

€ 

λ t( ) = λk t( )
k=1

n

∑

    

€ 

1−R = 1−Rk( )
k=1

n

∏
    

€ 

R = 1− 1−Rk( )
k =1

n

∏

Model calculation 

Rk : reliability of the component k, 
k=1,…,n 

R : reliability of the system 

Parallel systems 

R = P {System without any failure} 

R = P {component 1 with no failure and …. and component n without failure} 

Serial systems 

System failure only if failure of all the components 

€ 

R = P component k without failure{ }
k=1

n

∏If failure are stochastically 
independent 



Serial-Parallel systems 
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C1 

C11 

    

€ 

R11 = R111 ⋅R112

    

€ 

R1 = 1− 1−R11( ) 1−R12( )
    

€ 

R2 = 1− 1−R21( ) 1−R22( ) 1−R23( )

    

€ 

R = R1 ⋅R2

C111 C112 

C12 

C2 

C21 

C22 

C23 



Availability estimation 
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Ak : availability component k, k=1,…,n A : availability of the system 

    

€ 

A = 1− 1− Ak( )
k=1

n

∏Parallel systems 

    

€ 

A = Ak
k=1

n

∏Serial Systems 



Fault Tolerance 



Delivering service implementing system function in spite of faults 

Error detection: identification of error presence 

Error handling: error removal from system state, if possible 
before failure occurrence 

Fault handling: avoiding fault(s) to be activated again 

System recovery: transformation of erroneous state in a state free from 
detected error and from fault that can be activated again 



Concurrent detection, during service delivery 

Preemptive detection: service delivery suspended, search for latent 
errors and dormant faults 

Rollback: brings the system back into a state saved prior to error 
occurrence 

Saved state: recovery point 

Rollforward: new state (free from detected error) found 

Compensation: erroneous state contains enough redundancy for 
enabling error masking 

Addition of error detection mechanisms in component 

Self-checking component 

Error detection 

Error handling 



Diagnostics: identifies and records the error cause(s), in terms of 
localisation and category 

Isolation: performs physical or logical exclusion of the faulty component(s) 
from further contribution to service delivery, i.e., makes the fault(s) 
dormant 

Reconfiguration: either switches in spare components or reassigns tasks 
among non-failed components 

Reinitialization: checks, updates and records the new configuration, and 
updates system tables and records 

Fault handling 

☞ Intermittent faults 

  Isolation and reconfiguration not necessary 

Error handling Non recurrence 
of error 

Fault diagnosis Absence 
of fault 

Intermittent 
fault 

  Identification 



Error detection and system recovery 
or 

Detection - recovery 

Fault masking and system 
recovery 

or 
Masking 

Error detection 

Error handling 

Systematic application  
even in error absence 

2 

Rollback 2 

1 

Rollforward 2 

1 

Compensation 1 2 

1 

Fault handling 3 3 3 3 



Prevention of error 
propagation 

Fail-fast 

Error detection 
(defensive 

programming) 
and exception 

handling 

Service continuity 

Error detection 
and 

recovery points 

Design diversity 

Recovery 
blocks 

Two-fold 
diversity 

+ 
acceptance 

test 

N-Version 
programming 

Three-fold 
diversity 

+ 
vote 

N-self-checking 
programming 

Four-fold 
diversity 

+ 
switching 

Two-fold 
diversity 

+ 
comparison 

Double 
programming 

Soft faults Solid faults 

Development of fault tolerance 



 Aim: failure independency 

☞ Obstacles: common specification, common difficulties, inter-
variant synchronizations and decisions   

 Operational use  

☞ Civil avionics: generalized, at differing levels  

☞ Railway signalling: partial 

☞ Nuclear control: partial 

 Dependability improvement  

☞ Gain (max for physical fault tolerance compared to SW) 

☞ Contribution to verification of specification 

Design diversity 



Example 1 
Redundancy 

  A fail-safe dual 
channel robot 
control for surgery 
applications 

  U. Laible et al. / Safety Science 42 
(2004) 423–436 

5.5. Error reaction

If an error of the robot system has been detected by any of the internal or external
monitoring functions, an error reaction is initiated. This error reaction can be per-
formed independently by the control channel and by the monitoring channel.

Depending on the nature of the detected error different reactions are initiated. If
the cause of the error does not affect the ability to control the drives properly by the
control system, the axis are stopped by the control keeping the desired path by
initiating a so-called ‘‘feed-hold’’. If the detected error is serious and could possibly
result in an uncontrolled movement, the reaction manager shuts down the power
supply of the drive via the emergency stop circuit. Through selflocking the axes stop
in a tolerable time.

Considering the medical requirements (Chapter 3.2) the axis have to be stopped
within a maximum deviation of 1 mm measured at the TCP. The RC runs with a
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Fig. 7. Redundant RC compares command position values.

U. Laible et al. / Safety Science 42 (2004) 423–436 433
cess to defined data interfaces is possible. Using these interfaces, the internal process
data flow and control data flow can be recorded and used as test results for variance
comparison.

6.2. Verification of the fail-safe behavior

The verification of the fail-safe behavior of the surgery robot system is an essential
part of the analytical QA activities and is done by the execution of error simulations.
These simulations are also necessary in order to prove to the notified body, that the
FMEA is adequate and acceptable.

For this purpose safety-critical defects are intentionally introduced to hardware
and software components e.g. by manipulating wires or the RAM. The kind and
number of defects used for error simulations, are derived from the FMEA. For each
error, the corresponding defect or defects have to be initiated in order to verify the
detectability and the appropriate error reaction.

7. Summary

All safety functions described within this paper were realized in a commercial
control system as part of the robotic surgery system of the company Universal
Robot Systems GmbH (URS). The control system was realized on a cPCI-System
with two CPU boards and five I/O boards (Fig. 8).

Fig. 8. Robotic surgery system (Photo: URS).

U. Laible et al. / Safety Science 42 (2004) 423–436 435



  Safety PLC (Programmable 
Logical Controller) 

  Cut power of the robot 
arm => no power : the 
brakes are engaged in the 
robot arm. 

  Command the converters 
of the motors to slow 
down. 

  After a delay, the power 
going towards the motor 
via the converters is cut 
=> no power on that line :  
the brakes on the wheel 
motors are engaged. 

KUKA omnirob© concept 

Example 2 
Protection System 



Verification and evaluation of fault tolerance 

Faults (deficiencies) in algorithms and mechanisms of fault tolerance 

Fault tolerance 
Coverage 

Modelling Test 

Evaluation / Influence 

Fault forecasting 

Improvement 

Fault removal 

Test 

Dynamic 
verification 

Static 
verification 

Model checking 

Fault injection 



Activity 
Target 
system 

Inputs 

Faults 

Outputs 
Correct/Incorrect 

Error detection, 
error and fault 
handling 

Fault injection 

Target system 
Simulation 

model 
Prototype or 
actual system 

Injection 

Informational 

In simulation By software 
• Memory 

• Executive 

• Processor 

Physical 

By hardware 
• Radiations 

• Interferences 

• Pins 

  Representativity 
of faults 



Fault prevention 



Prevention techniques 
  Requirement/specification/analysis/design methods 

  Semi-formal (UML) 
  Formal (Petri nets, automata, ESTEREL, LUSTRE) 
  Certified technologies and tools (High integrity components, 

code generation, safety kernels) 
  Application of development process methods 

  Unified Process (Rational Unified Process) 
  Agile methods 

  Preventive maintenance 

Too many technologies and methods to be exhaustive  
 fault prevention is all actions aiming at increase quality 
of the system development and life 
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Chapter 3. Risk Management 



Definitions and concepts of risk 
management 



Unwanted effects: harm  
  Harm: physical injury or damage to the health of people, or 

damage to property or the environment. 
  Three attributes of a harm are usually defined the nature 

of the harm, its severity and its probability of 
occurrence.  



Nature of harm  



Severity – Table Example 



Probability of occurrence or likelihood  



Risk 
Risk: combination of the probability of occurrence of harm and the 
severity of that harm. 

Tolerable risk: risk which is accepted in a given context based on the 
current values of society. 



Other Risk Estimation 
R = N x C x F x Q  
  R: risk related to the considered hazard  
  Q: probability of occurrence of harm  
  F: frequency and duration of exposure  
  C: severity of possible harm that can result  
  N: number of exposed people  



Safety 
  Safety: freedom from unacceptable risk. 



Council Directive 93/42/EEC of 14 June 
1993 concerning medical devices  

  Medical device means any instrument,[..] material or 
other article, whether used alone or in combination, 
including the software necessary for its proper application 
intended […] to be used for human beings for the 
purpose of: 
  diagnosis, prevention, monitoring, treatment or alleviation of 

disease, 
  diagnosis, monitoring, treatment, alleviation of or compensation 

for an injury or handicap, 
  investigation, replacement or modification of the anatomy or of 

a physiological process, 
  […]; 



Council Directive 93/42/EEC of 14 June 
1993 concerning medical devices  

  Active medical device : Any medical device operation 
of which depends on a source of electrical energy or any 
source of power other than that directly generated by the 
human body or gravity and which acts by converting this 
energy.  

Many rehabilitation robots can be 
considered as active medical device 



Directive 93/42/EEC classes 

1. Determine system class : 
  The classification rules are based on the vulnerability of the 

human body taking account of the potential risks associated 
with the technical design and manufacture of the devices 
  Class I : non invasive devices, unless specific rules applied… 
  Class IIa : invasive devices intended for short-term, unless… 
  Class IIb : implantable devices and long-term surgically invasive 

devices 
  Class III : implantable devices and long-term surgically invasive devices 

near heart or of the central circulatory system 

  Rule 9 : All active therapeutic devices intended to administer or 
exchange energy are in Class IIa  



Directive 93/42/EEC classes 



Other system classes (PHRIENDS project 
www.phriends.org) - NON MEDICAL 
  Class I - Far (no pHRI possible): Human and robot do not share 

the same workspace so direct physical contact is not possible. (Remote 
control, pendant, network,etc.) 

  Class IIa - Close (accidental pHRI possible): Human and robot 
share the same workspace. (e.g. the programming of the robot system 
while the programmer is within the robot’s work cell, or exchange of an 
object through a table) 

  Class IIb - Touching without simultaneous movement (direct 
or indirect pHRI): The robot shares its workspace with the human., 
But physical contact with the moving robot is avoided. In this category, 
interaction only takes place when the robot stops.  (e.g. the system 
approaches the human, the robot (safely) stops temporarily when the 
human reaches for the object and only starts moving again after the 
interaction is completed) 



Other system classes (PHRIENDS project) – 
(2) 

  Class IIc - Touching with simultaneous movement (direct or 
indirect pHRI): The robot shares its workspace with the human. 
Both are moving simultaneously and physical interaction is 
possible and intended. (robot that is programmed by being 
manually guided through the workspace /  robot assisting the 
human with its greater force and/or precision) 

  Class III - Supporting (direct pHRI): physical interaction occurs 
continuously over extended periods of time, usually in the form of 
exoskeletons which are worn by the user, or when the robot is 
carrying a human (for example, in entertainment or healthcare 
applications, or rescue operations). 



Causes of harm: hazards  
  Hazard: potential source of harm  

  Hazardous inherent characteristics (e.g., a cutting edge, a toxic 
substance, etc.) 

  Hazardous controllable states of the system (e.g., hazardous 
motion, suspended mass) 

  Failure of hardware or software components 
  Human errors 
  Unspecified external events 
  The term hazardous motion is defined in the standard [ISO 

10218:2006] to be “any motion that is likely to cause personal 
physical injury or damage to health”  



Causes of harm: hazards (cont’d) 
  Hazardous situation: circumstance in which people, 

property or the environment are exposed to one or more 
hazards 

  Harmful event or accident: occurrence in which a 
hazardous situation results in harm 

  Incident: event that does not lead to harm, but which has the 
potential to create harm in other circumstances 



Subset of list of significant hazards (Extracted from ISO 
10218 Annex A, Table A.1 – List of significant hazards 
which is itself based on Annex A of ISO 14121:1999). 





Example of use of terminology 



Risk management process 



  Risk management 
overview  

Means of increasing safety: 
risk management  



Risk management activities 
  Risk management : coordinated activities to direct and control 

an organization with regard to risk 

  Risk analysis : systematic use of available information to identify 
hazards and to estimate the risk  

  Risk Evaluation : process of comparing the estimated risk against 
given risk criteria to determine the significance of the risk  

  Risk treatment : process of selection and implementation of 
measures to modify risk 
  Risk treatment measures can include reducing, avoiding, optimizing, 

transferring or retaining risk.  
  Risk reduction : actions taken to lessen the probability, negative 

consequences, or both, associated with a risk 
  (Risk communication, transfer, etc.) 



Relationship between terms, based on their 
definitions regarding “Risk” (ISO Guide 73) 
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RISK REDUCTION 



Summary of process to achieve tolerable 
risk 
  The following procedure should be used to reduce risks to a 

tolerable level:  
  a) identify the likely user group(s) for the product, process or service 

(including those with special needs and the elderly), and any known 
contact group (e.g. use/contact by young children);  

  b) identify the intended use and assess the reasonably foreseeable 
misuse of the product, process or service;  

  c) identify each hazard (including any hazardous situation and harmful 
event) arising in all stages and conditions for the use of the product, 
process or service, including installation, maintenance, repair and 
destruction/disposal;  

  d) estimate and evaluate the risk to each identified user/contact 
group arising from the hazard(s) identified; 

  e) judge if the risk is tolerable (e.g. by comparison with similar 
products, processes or services);  

  f) if the risk is not tolerable, reduce the risk until it becomes 
tolerable.  



Summary of process to achieve tolerable 
risk (cont’d) 

  When reducing risks the order of priority should be as 
follows:  
  1) inherently safe design;  
  2) protective devices;  
  3) information for users.  

ISO/IEC GUIDE 51:1999(E)

© ISO/IEC 1999 – All rights reserved 5

e) judge if the risk is tolerable (e.g. by comparison with similar products, processes or services);

f) if the risk is not tolerable, reduce the risk until it becomes tolerable.

When reducing risks the order of priority should be as follows:

1) inherently safe design;

2) protective devices;

3) information for users.

This procedure is based on the assumption that the user has a role to play in the risk reduction procedure by
complying with the information provided by the designer/supplier (see Figure 2).

Figure 2 — Risk reduction

The steps taken in the design procedure are shown in order of priority. The steps to be taken by the user are not in
order of priority because this would depend on the application. It is emphasized that the additional protective
devices, personal protective equipment and provision of information to users should not be used as substitutes for
design improvements.

7 Safety aspects in standards

7.1 Types of safety standard

Close coordination within and among committees (see clause 1, note 5) responsible for preparing standards on
different products, processes or services is necessary in order to achieve a coherent approach to the treatment of
safety. The use of a structured approach is recommended to ensure that each specialized standard is restricted to



Risk management activities 

Risk analysis, Evaluation and Reduction 



Risk analysis methods 
  During risk analysis, various methods can be used to 

handle functional and technological issues, for example: 
  Preliminary Hazard Analysis (PHA) 
  HAZard OPerability (HAZOP) 
  Failure Modes Effects and Criticality Analysis (FMECA) 
  Fault Tree Analysis (FTA) 
  Event Tree Analysis (ETA) 

  Widely used in many domains and particularly in 
industrial robotics 

  They are also recommended in many standards on 
dependability 

  See chapter 4 “Three risk analysis techniques” 



Preliminary Hazard Analysis (PHA) 

Selection of PHA worksheet

Introduction

PHA procedure

PHA Main Steps

Prerequisites

Hazard
identification

Frequency

Severity classes

Frequency classes

Risk ranking

Pros and cons

Review

Hazard checklist

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 12 / 36

The results of the PHA are usually reported by using a PHA
worksheet (or, a computer program). A typical PHA worksheet is
shown below. Some analyses may require other columns, but
these are the most common.

Ref.
Contingencies/

Preventive actions
Hazard

Accidental event 
(what, where, when)

Probable 
causes

Prob. Sev. Comments

System: Operating mode:
Analyst:
Date:



Failure Modes and Effects Criticality 
Analysis (FMECA) 



Hazard Operability (HAZOP) 



Fault Tree Analysis (FTA) 



Event Tree Analysis 

Example

Introduction

Construction

Example:
Separator

Quantitative
analysis

Example

Frequencies of
outcomes

Conclusions

Marvin Rausand, October 7, 2005 System Reliability Theory (2nd ed), Wiley, 2004 – 25 / 28

Consider the generic example:

Accidental
event

Additional 
event I occurs

Barrier I does
not function

Barrier II does
not function

Additional 
event II occurs

Outcome /
consequence

B1

True

False

B2 B3 B4

True

True

True

True

True

True

True

False

False

False

False

False

Outcome 1

Outcome 7

Outcome 6

Outcome 5

Outcome 4

Outcome 3

Outcome 2

Outcome 8

Outcome 9

False



Qualitative Vs Quantitative 
  Qualitative risk estimation is based on qualitative 

enumerations (e.g., minor, negligible, etc.) 

  Quantitative estimation is based on numerical estimation 
(e.g., F=10-2) 

  The Grail : quantitative estimation -> NOT ALWAYS 
POSSIBLE (e.g., software faults) -> « reasonable worst-
case estimate of probability, …  it is convenient to set this 
default value of the probability to one » (ISO14971)  



Quantitative Risk estimation : Significant 
disadvantages 
   The risk estimation depends on users / cared person. 

In case of in-home care, a caretaker or a cared person has to 
operate a medical / rehabilitation robot by himself / herself. 
Most of caretakers or cared persons are not familiar with their 
operation. Then the probability of occurrence of harm 
becomes large caused by their incorrect operation or misuse 
and a generic calculation becomes impossible. 

  There is little judgment material for determining the 
probability of occurrence of harm and severity of 
possible harm :  Compared with machinery, there are few 
statistics data about the accident report of medical treatment 
and rehabilitation apparatus. In the present circumstances, 
these values are estimated experimentally or subjectively by 
the risk assessor.  



Risk acceptability criteria 
  Risk acceptance principles from industrial safety 

ALARP (UK) 
As Low As Reasonably Practicable 
reduce unacceptable risks to acceptable level 
effort ("price") must be reasonable and practicable 

GAMAB (FR) 
Globalement Au Moins Aussi Bon (globally at least as good) 
allows for trade-offs 
similar to ALARP 

MEM (DE) 
Minimum Endogenous Mortality 
objective principle, but risk is subjective 
controversial, difficult to apply 



61508-5 ! IEC:1998 – 33 –

Below the tolerability region, the levels of risk are regarded as so insignificant that the regulator
need not ask for further improvements. This is the broadly acceptable region where the risks
are small in comparison with the everyday risks we all experience. While in the broadly
acceptable region, there is no need for a detailed working to demonstrate ALARP; it is,
however, necessary to remain vigilant to ensure that the risk remains at this level.

Intolerable region

Broadly acceptable region

(No need for detailed working
to demonstrate ALARP)

Negligible risk

Risk cannot be justified

except in extraordinary

circumstances.

Tolerable only if further risk
reduction is impracticable or if its
cost is grossly disproportionate to
the improvement gained.

It is necessary to maintain
assurance that risk remains at
this level.

The ALARP or
tolerability region

(Risk is undertaken
only if a benefit is
desired)

As the risk is reduced, the less,
proportionately, it isnecessary to spend to
reduce it further to satisfy ALARP.  The
concept of diminishing proportion is shown
by the triangle.

IEC   1 664/98

Figure B.1 – Tolerable risk and ALARP

The concept of ALARP can be used when qualitative or quantitative risk targets are adopted.
Subclause B.2.2 outlines a method for quantitative risk targets. (Annex C outlines a
quantitative method and annexes D and E outline qualitative methods for the determination of
the necessary risk reduction for a specific hazard. The methods indicated could incorporate the
concept of ALARP in the decision making.)

NOTE – Further information on ALARP is given in reference [4] in annex F.

B.2.2  Tolerable risk target

One way in which a tolerable risk target can be obtained is for a number of consequences to be
determined and tolerable frequencies allocated to them. This matching of the consequences to
the tolerable frequencies would take place by discussion and agreement between the
interested parties (for example safety regulatory authorities, those producing the risks and
those exposed to the risks).

Risk acceptability criteria 



Risk acceptability criteria 
  Difficulties to define generic process 

  There is no set of generally accepted risk acceptance principles 
  Harmonisation is necessary for interoperability 

  difficult, because risk acceptance is a political question 

  Standards propose principles 
  leave the details to the legislative bodies 

MEM is not generally accepted 
GAMAB appears to be most widespread 

results are not uniform 

ALARP has greatest potential to bring improvements 



Tolerable Risk for Robots  
  Machinary/Industrial robots 

  Level of tolerable risk should be decided according to the 
standard which risk assessor declares.  

  Applicable to industrial robots -> workers whom they may 
injure do not directly benefit from their use, their safety should 
be certified objectively 

  Rehabilitation robots 
  Users may accept their use on account of these benefits even 

when the designer cannot reduce their associated risks 
sufficiently.  

  For example, surgical robots are highly beneficial if the patients' 
outcome is successful, however, the operative outcomes are 
not always a success. the residual risks were clearly detailed to 
the patients and that the patients consented to their us 
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10.3   Case Study on Safety of Rehabilitation Robots

In general, the risk assessment and the risk reduction of machinery are carried out
according to ISO/TR 12100-1 “Safety of machinery-Basic concepts, general prin-
ciple for design” and ISO 14121:1999 “Safety of machinery-principles of risk as-
sessment”. In Japan, the special committee for standardizing rehabilitation robots
has been established by the Japan Robot Association in 2001. The committee
members, who are researchers of medical and rehabilitation robots, carried out
Case Study of assessing several medical and rehabilitation robots according to
ISO/TR 12100-1:1992 and ISO 14121:1999. The aim of this case study is to clar-
ify the key points of risk assessment and risk reduction for these robots. The fol-
lowing medical and rehabilitation robots are carried out case study of the risk as-
sessment by use of block chart shown in Fig. 10.3 which is Fig. 10.2 modified by
ISO14971, that is "Medical devices: Application of risk management to medical
devices".

Fig. 10.3. The iterative process to achieve safety which is Fig. 10.2 modified by ISO 14971

• Medical robots
o Neurosurgical robot
o Laparoscopic surgery robot
o Continuous passive motion device (CMP)



A contribution : Quantitative Benefit 
Estimation for rehabilitation robots 

  Most of benefits must be quantified by use of QOL 
(Quality Of Life), ROL (Respect Of Living) and ADL 
(Activities of Daily Living), but it is too difficult to quantify 
them objectively. For examples, benefit of "mobility" is 
changed according to the extent of gait disorder, so it is 
necessary to subjectively consider the daily life of 
targeted cared person. 184 M. Nokata and N. Tejima

Table 10.1. Benefits of using rehabilitation robots and the quantification factors

Benefit Quantification factors
User (Mostly carer) Improvement of working

condition (ex. Reduction of
lumbago generating)

QOL, ROL, Tiredness,
Working time, Cut-down
medical expenses for lum-
bago

Cared person Acquisition of an independ-
ence life
Expansion of a life space
Mentally relieved

QOL, ROL, ADL

10.4   Proposal of Risk Assessment Guideline
for Rehabilitation Robots

This section proposes safety strategy for rehabilitation robots according to results
of case study mentioned above. Proposed guideline of risk assessment and risk re-
duction is shown in Fig. 10.4.

Fig. 10.4. Proposed guideline of safety strategy for rehabilitation robots

From  : A Safety Strategy for Rehabilitation Robots, Makoto Nokata and Noriyuki Tejima 



Risk reduction technologies 



Prevention and protection 

Probability of  
Occurrence 
(P) 

Severity (S) 

Unacceptable risk 

Area of judgment 

Acceptable 
risk 

R=(P,S) 

Protection 

Prevention 



Prevention and protection as safety barriers 



Risk reduction technologies 
  Prevention: 

  Fault avoidance 
  Software development fault avoidance (e.g., use of software fault prevention and 

fault elimination methods and tools) 
  Hardware fault avoidance (e.g., preventive maintenance) 
  Human error avoidance (e.g., human robot interface analysis, cognitive aspects to avoid 

human error, Human legible motion planning and reactive planning for collision 
avoidance) 

  Performance limitations 
  Mechanical architecture limits (e.g., limits of weight, restriction of degrees of freedom) 
  Working area, force, acceleration, and speed limits 

  Protection: 
  Compliance of robot movements (Passively safe actuators, control of active compliance) 
  Fault tolerance mechanisms :  

  Independent safety systems (Safety bag)  
  Detection and reaction to human presence or contact (Collision detection and 

reaction) 
  Detection of robot failure (through redundancy) 
  Emergency stop and controlled stop controlled by hardware devices (sensors, dead-

man switches, etc.)  



Example 1 
Redundancy 

  A fail-safe dual 
channel robot 
control for surgery 
applications 

  U. Laible et al. / Safety Science 42 
(2004) 423–436 

5.5. Error reaction

If an error of the robot system has been detected by any of the internal or external
monitoring functions, an error reaction is initiated. This error reaction can be per-
formed independently by the control channel and by the monitoring channel.

Depending on the nature of the detected error different reactions are initiated. If
the cause of the error does not affect the ability to control the drives properly by the
control system, the axis are stopped by the control keeping the desired path by
initiating a so-called ‘‘feed-hold’’. If the detected error is serious and could possibly
result in an uncontrolled movement, the reaction manager shuts down the power
supply of the drive via the emergency stop circuit. Through selflocking the axes stop
in a tolerable time.

Considering the medical requirements (Chapter 3.2) the axis have to be stopped
within a maximum deviation of 1 mm measured at the TCP. The RC runs with a
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Fig. 7. Redundant RC compares command position values.
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cess to defined data interfaces is possible. Using these interfaces, the internal process
data flow and control data flow can be recorded and used as test results for variance
comparison.

6.2. Verification of the fail-safe behavior

The verification of the fail-safe behavior of the surgery robot system is an essential
part of the analytical QA activities and is done by the execution of error simulations.
These simulations are also necessary in order to prove to the notified body, that the
FMEA is adequate and acceptable.

For this purpose safety-critical defects are intentionally introduced to hardware
and software components e.g. by manipulating wires or the RAM. The kind and
number of defects used for error simulations, are derived from the FMEA. For each
error, the corresponding defect or defects have to be initiated in order to verify the
detectability and the appropriate error reaction.

7. Summary

All safety functions described within this paper were realized in a commercial
control system as part of the robotic surgery system of the company Universal
Robot Systems GmbH (URS). The control system was realized on a cPCI-System
with two CPU boards and five I/O boards (Fig. 8).

Fig. 8. Robotic surgery system (Photo: URS).

U. Laible et al. / Safety Science 42 (2004) 423–436 435



  Safety PLC (Programmable 
Logical Controller) 

  Cut power of the robot 
arm => no power : the 
brakes are engaged in the 
robot arm. 

  Command the converters 
of the motors to slow 
down. 

  After a delay, the power 
going towards the motor 
via the converters is cut 
=> no power on that line :  
the brakes on the wheel 
motors are engaged. 

KUKA omnirob© concept 

Example 2 
Protection System 



!"##

Example 3 – A new generation of actuators 

  MacKibben Muscles  
  TONDU B., IPPOLITO S., GUIOCHET J., DAIDIE A., "A 

Seven-degrees-of-freedom Robot-Arm Driven by 
Pneumatic Artificial Muscles for Humanoid Robots", 
International Journal of Robotics Research, vol. 24, num. 
4, MIT Press, pp. 257-274, April 2005  

  Variable stiffness actuation : VSA  
  A. De Luca, F. Flacco, R. Schiavi, A. Bicchi, "Nonlinear 

decoupled motion-stiffness control and collision 
detection/reaction for the VSA-II variable stiffness 
device", IEEE/RSJ International Conference on 
Intelligent Robots and Systems, USA, 2009 

offset by a stiffness actuator, which can change the stiffness very
quickly and independent from the link speed [Figure 12(b)].
The shape of the cam faces can be designed to provide the

desired restoring torque characteristic. Superposition of agonist
and antagonist forces with different offsets results in variable stiff-
ness. In the nominal range, it has (close to) linear behavior and
gets progressive toward the ends of the range for joint protection.

VS-Joint Mechanism
The concept of the VS joint as presented in [24] contains two
motors of different size. The high-power motor changes the
link position. The joint stiffness is adjusted by a much smaller
and lighter motor, which changes the characteristic of the
supporting mechanism (Figure 14). An unwound schematic
of the principle is shown in Figure 15. A compliant link
deflection results in a displacement of the cam disk and is
counterbalanced by the roller pressed on it in axial direction
by a spring. This generates a centering force resulting in the
output torque of the link. To change the stiffness preset, the
smaller motor moves the spring base axially to the cam disk
and thus varies the spring force. The joint prototype can be
equipped with different cam disks. The design of the cam
disks specifies the torque/deflection characteristic of the joint.
This permits an easy adaptation of the passive joint behavior
to the desired application.

Control of Variable Impedance Actuators
Regarding the control of the VIA, the literature mostly deals
with the problem of adjusting stiffness and position of the
actuator in a decoupled manner by controlling the position or
the torque of the two motors of the joint [13], [15], [16].
Moreover, in case of VSA structures with many DoF and
cable actuation, the decoupling of the tendon control is
treated [25], [26].
Our approach to the control of the VSA arms is to extend

the passivity-based control framework developed for the
torque-controlled LWRs to the VSA case. Some particular
aspects compared with the controllers from the ‘‘Compliance
Control for Lightweight Arms’’ and ‘‘Impedance Control for
Complex Kinematic Chains’’ sections are summarized.

u Because of the high compliance of the joint, a separate
torque sensor is not required any more, and the torque
can be well estimated based on the motor and link posi-
tion [24].

u An active compliance control will be used only for
stiffness components that cannot be realized by the
mechanical springs. Examples are zero stiffness or the
joint coupling stiffness needed by arbitrary Cartesian
stiffness matrices [17].

u The joints have very low intrinsic damping. While this
is useful for cyclic movements involving energy storage
(e.g., for running), the damping of the arm for fast,
precise positioning tasks has to be realized by control.
This is a challenging task regarding the strong variation
of the inertia and the stiffness. Figure 16 shows the
performance of the positioning for a very low as well as
for a very high stiffness preset of the VS joint.

Cam Bar

Rocker Arm

Spring

Stiffness Actuator

Connection to
Circular Spline

Figure 13. Cross section of the quasiantagonistic joint design.

Cam Disk

Roller

Connection to
Linear Bearing

Roller Slider

Spring Base Slider

Axis of Rotation

Figure 14. VS-joint mechanism. The link axis is in the vertical
direction. The cam disk rotates on a compliant link
deflection.

(a)

Cam Disk

Linear Bearing

Roller

(b)

Roller Position of
Undeflected Link

α

Deflection

F τF

Figure 15. Unwound schematic of the VS-joint principle in
(a) centered and (b) deflected position. A deflection of the link
results in a horizontal movement of the cam disk and a
vertical displacement of the roller. The spring force generates
a centering torque on the cam disk.

It is clear that these human-friendly

robots will look very different from

today’s industrial robots.
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Human factors in risk analysis 

“To err is human, but to really foul things up requires a computer” 



Or a weak system… 



Human factors in risk management 
  Human factor studies in robotics usually focus on the 

design of operator or user interfaces to enhance 
operator performance and decrease potential human 
errors => use of guidelines / checklists / best practices 

  No sufficient for innovative system (guidelines not 
applicable) 

  Important human factors activities for risk management : 
  Task analysis (and function allocation) 
  Human error analysis 



Task analysis and function allocation 
  Task analysis : identify the details of specified tasks, 

including the knowledge, skills, attitudes, and personal 
characteristics required for successful task performance. 

  Linked to the process of function allocation, which 
aims to determine the distribution of work between 
human and technical actors.  

  Human error as an hazard should be identified and 
analyzed as other hazards 

All those human factors activities are strongly 
linked with the two first step of risk analysis 



Risk analysis and human factors 

Risk analysis 
1. System and intended use 

description 

2. Hazard identification and risk 
estimation  

Judge if the risk is tolerable or not 

Reduction of the risk until it becomes 
tolerable  

Risk evaluation 

Risk reduction 

Function allocation and  
task analysis 

Human error analysis 



Methods for task analysis & human error 
analysis 

  Many methods from human factors: 
  Models of tasks / activities 
  Stanton, N., P. Salmon, G. Walker, C. Baber, and Daniel P. Jenkins. Human Factors 

Methods: A Practical Guide for Engineering and Design. Ashgate Publishing, 2006  

  Most of those methods for human error analysis are 
closed to risk analysis methods such as FMECA or 
HAZOP 

  For task analysis/function allocation : based on models of 
tasks => see section 5 for an example 



Development process and risk 
management 



Iterative and incremental process for 
rehabilitation systems 

Initial planning 

Planning 

Requirements 
Analysis and design 

Implementation 

Testing 

Deployment 

Evaluation 

Each iteration 
results in a 
prototype 

Evaluation is first in 
the lab.  and then 

during clinical 
evaluation  



Activities in this process 
  Initial planning- develop a the concept and a vision of the system and 

produce a plan 
  Requirements - Requirements analysis for an application, such as 

writing scenarios of use and identifying non-functional requirements.  
  Analysis -  Refine the requirements to describe with models what 

the system has to do according to requirements 
  Design - Describe how the system performs analysis description 

(overall architecture, objects, SW and HW choices) 
  Implementation 
  Testing - functional testing but also robustness, reliability, 

performance, integrity, benchmark, installation, etc. 
  Evaluation – Considering the tests and the requirements, (re) 

evaluate if objectives are reached 
  Deployment – Deploy the system for final users (install, training 

course, support, etc.) 

Clinical Evaluation process 



Activity organization 
  Activities in a project should be organised to produce 

tangible outputs for management to judge progress. 
  Milestones are the end-point of a process activity. 
  Deliverables are project results delivered to customers. 
  The waterfall process allows for the straightforward 

definition of progress milestones. 
  Risk management is one activity of the overall process 

  Necessity to define milestones 
  And deliverables 



When manage risk ? 
  Risk management is an iterative and incremental process 

  Iterative : 
  At the very beginning of the development process (initial planning) => 

risk management plan and preliminary hazard identification 
  Number of iterations depends on the project, the team, the objectives 

=> adapt it to the project 
  Incremental 

  Studies are refined and level of details increase 
  Hazard : combinatory explosion of the risk analysis results => decide 

which level of granularity 
  Outputs of risk management: 

  Modification of use, specification, and design 
  => results must be inputs of the development process, nevertheless in 

many project safety analysis are performed after the design ! 



So when manage risk ? (2) 

Initial planning 

Planning 

Requirements 
Analysis and design 

Implementation 

Testing 

Deployment 

Evaluation 

Each iteration 
results in a 
prototype 

Evaluation is first in 
the lab.  and then 

during clinical 
evaluation  

HERE 



Chapter 4 – Three  risk analysis 
techniques HAZOP, FMECA, and FTA 



Hazard Operability (HAZOP)  

Credits : Marvin Rausand 



What is HAZOP? 
  A Hazard and Operability (HAZOP) study is a structured and 

systematic examination of a planned or existing process or 
operation in order to identify and evaluate problems that may 
represent risks to personnel or equipment, or prevent 
efficient operation.  

  The HAZOP technique was initially developed to analyze 
chemical process systems, but has later been extended to 
other types of systems and also to complex operations and to 
software systems.  

  A HAZOP is a qualitative technique based on guide-words and 
is carried out by a multi-disciplinary team (HAZOP team) 
during a set of meetings. 



When to perform a HAZOP? 
  The HAZOP study should preferably be carried out as early in 

the development phase as possible - to have influence on the 
design. On the other hand; to carry out a HAZOP we need a 
rather complete description of the system.  As a compromise, 
the HAZOP is also sometimes carried out as a final check 
when the detailed design has been completed. 

   A HAZOP study may also be conducted on an existing facility 
to identify modifications that should be implemented to 
reduce risk and operability problems. 



When to perform a HAZOP? - (2) 
  HAZOP studies may also be used more extensively, 

including:  
  At the initial concept stage when design drawings are available  
  When the analysis models are available  
  During implementation and deployment to ensure that 

recommendations are implemented  
  During test and evaluation 
  During operation to ensure that emergency and operating 

procedures are regularly reviewed and updated as required  



HAZOP background 
  The basis for HAZOP was laid by ICI in 1963 and was 

based on so-called “critical examination” techniques  
  First guide: “A Guide to Hazard and Operability Studies”, 

ICI and Chemical Industries Associations Ltd. 1977. 
  First main textbook: Kletz, T. A.: “Hazop and Hazan - 

Identifying and Assessing Process Industry Hazards” , 
Institution of Chemical Engineers.  

  See also: Kletz, T. A.: “Hazop – past and future”. Reliability 
Engineering and System Safety, 55:263-266, 1997. 



Standards and guidelines 
  IEC 61882. “Hazard and operability studies (HAZOP 

studies) – Application guide” . International 
Electrotechnical Commission, Geneva.  

  Crawley, F., M. Preston, and B. Tyler: “HAZOP: Guide to 
best practice. Guidelines to best practice for the process 
and chemical industries” . European Process Safety Centre 
and Institution of Chemical Engineers, 2000  

  Kyriakdis, I.: “HAZOP - Comprehensive Guide to HAZOP 
in CSIRO” , CSIRO Minerals, National Safety Council of 
Australia, 2003 



Types of HAZOP 
   Process HAZOP  

  The HAZOP technique was originally developed to assess 
plants and process systems   

  Human HAZOP  
  A “family” of specialized HAZOPs. More focused on human 

errors than technical failures   

  Procedure HAZOP 
  Review of procedures or operational sequences Sometimes 

denoted SAFOP - SAFe Operation Study   

  Software HAZOP 
  Identification of possible errors in the development of software  



HAZOP team and meetings 
  HAZOP team leader Responsibilities:  

  Define the scope for the analysis  
  Select HAZOP team members  
  Plan and prepare the study 
  Chair the HAZOP meetings  

  → Trigger the discussion using guide-words and parameters  
  → Follow up progress according to schedule/agenda  
  → Ensure completeness of the analysis  

  The team leader should be independent (i.e., no 
responsibility for the process and/or the performance of 
operations) 



Team members and responsibilities (2) 
  HAZOP secretary Responsibilities:  

  Prepare HAZOP worksheets 
  Record the discussion in the HAZOP meetings 
  Prepare draft report(s) 



Team members  
  HAZOP team members  
The basic team for a process plant will be:  

  Project engineer  
  Commissioning manager  
  Process engineer 
  Instrument/electrical engineer 
  Safety engineer  

Depending on the actual process the team may be enhanced by:  
  Operating team leader  
  Maintenance engineer  
  Suppliers representative  
  Other specialists as appropriate 



How to be a good HAZOP participant? 
  Be active! Everybody’s contribution is important  
  Be to the point. Avoid endless discussion of details  
  Be critical in a positive way - not negative, but 

constructive  
  Be responsible. He who knows should let the others 

know 



HAZOP meeting 
  Proposed agenda:  

  1. Introduction and presentation of participants  
  2. Overall presentation of the system/operation to be analyzed  
  3. Description of the HAZOP approach  
  4. Presentation of the first node or logical part of the operation  
  5. Analyze the first node/part using the guide-words and parameters  
  6. Continue presentation and analysis (steps 4 and 5)  
  7. Coarse summary of findings  

  Focus should be on potential hazards as well as potential 
operational problems  

  Each session of the HAZOP meeting should not exceed two 
hours. 



HAZOP recording  
  The findings are recorded during the meeting(s) using a 

HAZOP work-sheet, either by filling in paper copies, or by 
using a computer connected to a projector (recommended).  

  The HAZOP work-sheets may be different depending on the 
scope of the study - generally the following entries (columns) 
are included:  
  1. Ref. no.  
  2. Guide-word  
  3. Deviation  
  4. Possible causes  
  5. Consequences  
  6. Safeguards  
  7. Actions required (or, recommendations)  
  8. Actions allocated to (follow-up responsibility) 



HAZOP procedure 
1.  Divide the system into entities (i.e., reactor, storage)  
2.  Choose an entity and an attribute (i.e., line, vessel, 

pump, operating instruction)  
3.  Apply a guide-word  
4.  Determine cause(s)  
5.  Evaluate consequences/problems  
6.  Recommend action: What? When? Who?  
7.  Record information  
8.  Repeat procedure (from step 2) 



HAZOP procedure (2) 

Start
Select system 

entity

Select entity

attribute

Apply a 

deviation 

attribute + 

guideword

Identify possible causes 

and consequences of 

deviation

Evaluate the risk of the 

deviation effect

Formulate 

recommendations for 

prevention of deviation 

and protection against 

consequences

More 

deviations

 to apply?

More 

attributes 

?

More 

entities ?
Stop

yes yes yes

no no no



Example of HAZOP worksheet Process HAZOP worksheet

Introduction

Team

Process HAZOP

Prerequisites

HAZOP procedure

Modes of
operation
Process HAZOP
worksheet

Worksheet entries
Process
parameters

Guidewords

Procedure HAZOP

Reporting

Conclusions
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No.
Guide-
word

Element Deviation
Possible
causes

Conse-
quences

Safeguards Comments
Actions
required

Action
allocated to

Design intent: Material:

Source:

Activity:

Destination:

Part considered:

HAZOP team: Meeting date:

Drawing no.: Rev no.: Date:

Study title: Page:              of

– Source: IEC 61882



Worksheet entries (1) 
  Modes of operation 
The following modes of system operation should be 

considered for each entity:  
  ❑ Normal operation  
  ❑ Reduced throughput operation  
  ❑ Routine start-up  
  ❑ Routine shutdown  
  ❑ Emergency shutdown  
  ❑ Special operating modes (e.g. fall back modes) 



Worksheet entries (2) 
  Scenario of use 

  operation/activity of the system and humans are described 

  Deviation  
  A deviation is a way in which the operation conditions may 

depart from their design intent. 

  Parameter 
  The relevant parameter for the condition(s) of the operation 

(e.g. pressure, speed, acceleration, movements).  



Worksheet entries - (3) 
  Guidewords  

  A short word to create the imagination of a deviation of the 
design/process intent. The most commonly used set of guide-
words is: no, more, less, as well as, part of, other than, and 
reverse. In addition, guidewords like too early, too late, instead 
of, are used; the latter mainly for batch-like processes. The 
guidewords are applied, in turn, to all the parameters, in order 
to identify unexpected and yet credible deviations from the 
design/process intent. 

   Guide-word + Parameter → Deviation 



Basic HAZOP guide-words 



Worksheet entries - (4) 
  Cause  

  The reason(s) why the deviation could occur. Several causes 
may be identified for one deviation. It is often recommended to 
start with the causes that may result in the worst possible 
consequence.  

  Consequence  
  The results of the deviation, in case it occurs. Consequences 

may both comprise process hazards and operability problems, 
like plant shut-down or reduced quality of the product. Several 
consequences may follow from one cause and, in turn, one 
consequence can have several causes 



Worksheet entries - (5) 
  Safeguard  

  Facilities that help to reduce the occurrence frequency of the 
deviation or to mitigate its consequences. Some types of 
safeguards are:  
  1. Detect the deviation (e.g., with sensors, use of alarms)  
  2. Compensate for the deviation (e.g., an automatic control) 
  3. Prevent the deviation from occurring 
  4. Prevent further escalation of the deviation (e.g., by (total) trip of 

the activity. These facilities are often interlocked with several units in 
the process, often controlled by computers)  



Review meetings 
  Review meetings should be arranged to monitor 

completion of agreed actions that have been recorded. 
The review meeting should involve the whole HAZOP 
team. A summary of actions should be noted and 
classified as:  
  ❑ Action is complete  
  ❑ Action is in progress  
  ❑ Action is incomplete, awaiting further information  



HAZOP Results 
  Improvement of system or operations  

  Reduced risk and better contingency 
  More efficient operations  

  Improvement of procedures  
  Logical order 
  Completeness General awareness among involved parties Team 

building 



Advantages 
  ❑ Systematic examination  
  ❑ Multidisciplinary study  
  ❑ Utilizes operational experience  
  ❑ Covers safety as well as operational aspects  
  ❑ Solutions to the problems identified may be indicated 
❑ Considers operational procedures  

  ❑ Covers human errors  
  ❑ Study led by independent person  
  ❑ Results are recorded 



Success factors 
  ❑ Accuracy of drawings and data used as a basis for the 

study  
  ❑ Experience and skills of the HAZOP team leader  
  ❑ Technical skills and insights of the team  
  ❑ Ability of the team to use the HAZOP approach as an 

aid to identify deviations, causes, and consequences  
  ❑ Ability of the team to maintain a sense of proportion, 

especially when assessing the severity of the potential 
consequences. 



Pitfalls and objections 
  ❑ Time consuming  
  ❑ Focusing too much on solutions  
  ❑ Team members allowed to divert into endless 

discussions of details  
  ❑ A few of the team members dominate the discussion 
❑ “This is my design/procedure”  
  – Defending a design/procedure  
  – HAZOP is not an audit  

  ❑ “No problem”  
  ❑ “Wasted time” 



Failure Modes Effects and Criticality 
Analysis (FMECA) 

Credits : Marvin Rausand 
FMECA Slides 



Fault Tree Analysis (FTA) 

Credits : Marvin Rausand 
FTA slides 



What is fault tree analysis?
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! Fault tree analysis (FTA) is a top-down approach to failure
analysis, starting with a potential undesirable event
(accident) called a TOP event, and then determining all the
ways it can happen.

! The analysis proceeds by determining how the TOP event can
be caused by individual or combined lower level failures or
events.

! The causes of the TOP event are “connected” through logic
gates

! In this book we only consider AND-gates and OR-gates
! FTA is the most commonly used technique for causal analysis

in risk and reliability studies.
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! FTA was first used by Bell Telephone Laboratories in
connection with the safety analysis of the Minuteman missile
launch control system in 1962

! Technique improved by Boeing Company
! Extensively used and extended during the Reactor safety

study (WASH 1400)
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! Definition of the system, the TOP event (the potential
accident), and the boundary conditions

! Construction of the fault tree
! Identification of the minimal cut sets
! Qualitative analysis of the fault tree
! Quantitative analysis of the fault tree
! Reporting of results
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! The starting point of an FTA is often an existing FMECA and
a system block diagram

! The FMECA is an essential first step in understanding the
system

! The design, operation, and environment of the system must
be evaluated

! The cause and effect relationships leading to the TOP event
must be identified and understood
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FMECA

System block diagram

Fault tree
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! The physical boundaries of the system (Which parts of the
system are included in the analysis, and which parts are not?)

! The initial conditions (What is the operational stat of the
system when the TOP event is occurring?)

! Boundary conditions with respect to external stresses (What
type of external stresses should be included in the analysis –
war, sabotage, earthquake, lightning, etc?)

! The level of resolution (How detailed should the analysis be?)
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! Define the TOP event in a clear and unambiguous way.
Should always answer:

What e.g., “Fire”
Where e.g., “in the process oxidation reactor”
When e.g., “during normal operation”

! What are the immediate, necessary, and sufficient events and
conditions causing the TOP event?

! Connect via AND- or OR-gate
! Proceed in this way to an appropriate level (= basic events)
! Appropriate level:

" Independent basic events
" Events for which we have failure data
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OR-gate

AND-gate

Transfer
in

Transfer
out

The OR-gate indicates that the output event 
occurs if any of the input events occur

The AND-gate indicates that the output event 
occurs only if all the input events occur
at the same time

The basic event represents a basic equipment
failure that requires no further development of
failure causes

The undeveloped event represents an event that 
is not examined further because information is
unavailable or because its consequences are
insignificant

The comment rectangle is for supplementary
information 

The transfer-out symbol indicates that the fault
tree is developed further at the occurrence of the 
corresponding transfer-in symbol

Logic 
gates

Input 
events
(states)

Description
of state

Transfer
symbols
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Fire pump 1
FP1

Fire pump 2
FP2

Engine

Valve

TOP event = No water from fire wa-
ter system
Causes for TOP event:
VF = Valve failure
G1 = No output from any of the fire
pumps
G2 = No water from FP1 G3 = No
water from FP2
FP1 = failure of FP1
EF = Failure of engine
FP2 = Failure of FP2
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Fire pump 1
FP1

Fire pump 2
FP2

Engine

Valve

No water from 
fire pump system

Valve blocked, or
fail to open

No water from 
the two pumps

No water from 
pump 2

Failure of 
pump 2

Failure of 
engine

No water from 
pump 1

Failure of 
pump 1

Failure of 
engine

TOP

VF

G1

G2 G3

FP1 FP2 EFEF
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No water from 
fire pump system

Valve blocked, or
fail to open

No water from 
the two pumps

No water from 
pump 2

Failure of 
pump 2

Failure of 
engine

No water from 
pump 1

Failure of 
pump 1

Failure of 
engine

TOP

VF

G1

G2 G3

FP1 FP2 EFEF

No water from 
fire pump system

Valve blocked, or
fail to open

No water from 
the two pumps

Failure of 
pump 2

Failure of 
pump 1

TOP

VF

G1

FP1 FP2

Failure of 
engine

EF

The two fault trees above are logically identical. They give the
same information.
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! FTA identifies all the possible causes of a specified undesired
event (TOP event)

! FTA is a structured top-down deductive analysis.
! FTA leads to improved understanding of system

characteristics. Design flaws and insufficient operational and
maintenance procedures may be revealed and corrected
during the fault tree construction.

! FTA is not (fully) suitable for modelling dynamic scenarios
! FTA is binary (fail–success) and may therefore fail to address

some problems



Quantitative estimation with independent 
stochastic events 
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€ 

E = E1∩E2 ∩…∩En

      

€ 

P E{ } = P E1{ } ⋅P E2{ } ⋅… ⋅P En{ }

      

€ 

E = E1∪E2 ∪…∪En

      

€ 

P E{ } = 1−P E { } = 1− 1−P E1{ }( ) 1−P E1{ }( )… 1−P En{ }( )
      

€ 

E = E 1∩E 2 ∩…∩E n

    

€ 

E = E1∪E2

    

€ 

P E{ } = P E1{ }+ P E2{ }−P E1{ } ⋅P E2{ }

AND gate 

OR gate 

Event E occurs when E1 and E1 and … and En occurrs 

Event E occurs when E1 or E1 or … or En occurrs 

Example for 2 events :  
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Failure S 

Failure {X,Y} 

    

€ 

1−R = 1−RZ + 1−RX( ) 1−RY( ) − 1−RZ( ) 1−RX( ) 1−RY( )

  

€ 

R = RZ RX + RY −RX RY( )

    

€ 

1−RZ

    

€ 

1−RX     

€ 

1−RY

Fail
ure 
Z 

Fail
ure 
X 

Fail
ure 
Y 



Minimal cut sets 
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  A cut set in a fault tree is a set of basic events whose 
(simultaneous) occurrence ensures that the TOP event 
occurs 

  A cut set is said to be minimal if the set cannot be 
reduced without loosing its status as a cut set  

      

€ 

P R{ } = P C1∪C2∪K ∪Cm{ }

  

€ 

B ji : basic events 

      

€ 

C i = B1i∩B2i∩K ∩B ji∩K ∩Bmi  

€ 

Ci Minimal cut of order    

€ 

mi

R : top event 
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€ 

E3 = B∪C

    

€ 

E1 = A∪ B∪C( )
    

€ 

E4 = A∩B

    

€ 

E2 = C∪ A∩B( )

    

€ 

T = E1∩E2 = A∪B∪C( )∩ C∪ A∩B( )( )
  

€ 

T = A∪B∪C( )∩C( )∪ A∪B∪C( )∩ A∩B( )( )
  

€ 

T = A∩C( )∪ B∩C( )∪C∪ A∩B( )∪ A∩B( )∪ A∩B∩C( )
  

€ 

T = C∪ A∩B( )
Minimal cut sets :   

€ 

C{ }, A,B{ }

T 

E1 E2 

E3 E4 A 

B C 

C 

B A 
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E4 

T 

  

€ 

P T{ } = P C ∪ A∩B( ){ } = P C{ }+ P A{ }P B{ }−P A{ }P B{ }P C{ }

C 

A C 



From qualitative to quantitative 
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  Fault forecasting : use of mathematical tools for 
calculation of reliability and availability 

  Statistics and probabilities 



Chapter 5. A scenario based risk 
analysis approach 

Using UML and HAZOP  



From system modelling to UML 



System complexity 
  Domain problematic (medical, rahabilitation, 

transportation, etc.) 

  Development process 

  Software adapdability and modifiability 



Complexity outcomes 
  Catastrophic failure probability is high 
  Tuning/adjustment is slow and chaotic 
  Maintainability is out of proportion 
  Cost is high 
  Software crisis (1970) 



Complexity management 

  For lack of reducing complexity, one must control it : 
  Give an illusion of simplicity 

  modelling 
  Apply decomposition criteria 

  break into component parts 



What is a model ? 

  System development → need for concepts manipulation  (software, 
hardware, environment, users, etc.) 

  Model and modelling 
  Could represent something that already exits but also something that does not 

exist (physical parts of the robot or software entities) 

  Is an abstraction of the original object of study (a formula or a box is an 
abstraction) 

  Only some aspects are considered (e.g. kinematics,  thermodynamics, etc.) 

  Has an objective. It is only considering the objective that the efficiency of the 
model can be evaluate.  



Why use a model? 

  A model is used when: 
  Reality is too complex (simplification) 
  A concept is required (abstraction) 
  Direct modification of the design is too hazardous 

(representation) 
  Communicate between developpers 
  Prevent and eliminate errors of specification/design 
  Guarantee tracability from requirements to implementation 

Concept

Real object

Descriptive 
model

Prescriptive 
model

Modeling

Modification 
"virtuelle"

Implementation

Hazardous 
modification



Models for system development 



quences via the spoken command “Change Mode.” This
makes the system very flexible.

Programming Complex Motions
by Demonstration
To program new motions, the robotic system is equipped
with two programming environments. In keyboard mode, the
robot is programmed in the traditional way, available in almost
all robots. In this mode, with the keyboard point-to-point po-
sitions on a trajectory are generated that are traced and stored
in a database. In programming by demonstration mode

(RPD), the programmer demonstrates the task to be executed
with his own hand. The motions are measured, recorded, and
processed so that the robot can reproduce them. Many ap-
proaches described in the literature [3-5] share a common fea-
ture: they are designed mainly for simple pick-and-place
applications like those found in industry, such as loading pal-
ettes and sorting and feeding parts. Neither the demonstrated
motion trajectory nor the dynamics of the motion, such as the
speed or general time response, are considered. But in the field
of rehabilitation robots like FRIEND, where the tasks are
much more complicated, this information is of great impor-

MARCH 2001 IEEE Robotics & Automation Magazine 59

Speech Control Feedback Programmer
With Data Glove Feedback

Man-Machine Interface

Command Interpreter

Programming

Teach-In Program by
Demonstration

Controller

Robot
Controller

KCC Wheelchair
Controller

Sequences

Preprogrammed
Movements

Parameterizable
Scripts

RS232

CAN

CAN

Actions

Gripper
Action

Docking
Action

Knowledge Base

Environment
Model

Object
Database

Sensors

Image
Processing Odometry

Component

Component

Component

Component

Implemented

Future Integration

Current
Integration

Work of 2nd
Research

Group

Command

Data Command + Status

Status

Fig. 2. Architecture of the system FRIEND.

A FRIEND for Assisting Handicapped People, CHRISTIAN MARTENS, NILS RUCHEL, OLIVER LANG, OLEG IVLEV, and AXEL GRÄSER, IEEE Robotics & Automation Magazine, 2001 



Models 
  List all modeling language that you know: 

  Modeling of the dynamics 

  Structual modelling 



Division role 
  « Divide and rule » 
  Recursive refinement until reach comprehensive elements 
  Divide system state space 



Functional decomposition 

  Traditional approach 
  Each module is a step of the global process 
  Functional division from specification to subprograms 



Functional decomposition 

Main function 

Subfunction 1 Subfunction 2 

Subfunction 1.1 Subfunction 1.2 Subfunction 2.1 Subfunction 2.2 



Object decomposition 
  More recent approach (computer systems) 
  Each module is an object of the application 
  Objects are autonopous entities that collaborate to reach 

a goal 



  Function is carried with collaborative objects 

Object division 

Door 

Light Button 

Lift 

3:open 

2 : blink 

1. go to ground floor 



Decomposition/ Composition 
  Object decomposition is restrictive 
  Object approach is not only top-down 
  Top-down, bottom-up, recursice, iterative, incremental 



Comparison functions / objects 
  Both are interesting but really different 
  One must be choosen, to start to decompose 



Functional approach 
  More intuitive 
  Focus on “DO” 
  Suits when all is known in advance 
  BUT 

  Stiff Architecture 
  Evolvability is limited 
  Not suitable to discovery 



Object approach 
  Focus on “BE” 
  Simple (small number of concepts) 
  Reasonning on abstraction (object of the domain) 
  Suitable for discovery and evolvability 
  BUT 

  Hard to understand for people used to functional approach. 



Object Oriented advantages 
  Lead to more stable model 

  Based on real world 

  Independancy from fucntions 
  Evolvability 

  Encapsulate complexity 
  Suitable for reuse 



System complexity : conclusion 
  Computer systems are complex by nature 
  Necessity to manage this complexity 
  Systems can be decomposed according to what they DO 

or what they ARE? 
  The object approach manage with more efficiency the 

complexity 
  Reuse, evolvability, stability 



What do we need ? 
  A modelling language 

  Clear notation 
  Usability 

  Not too complex 
  Exchange data between developers, and stakholders  

  Completeness and consistency semantics 

  A developement process 

Method = Language + Process 



The unified notation UML 
  Comes from BOOCH, OMT and OOSE 
  And take good ideas from other methods 
  Convergence of notations 
  A unique example of standard notation which is a de 

facto standard (in computer science) 



UML development 

UML 1.0 

UML 1.5 

UML 2.0 (free on www.omg.org) 

September 2001 

August 2005 

1995 

1996 

Standardization by OMG 
Sptember 1997 



Summary 
  UML is a notation not a method 
  UML is an object modelling language 
  UML is suitable for all object development 
  UML is free 

UML is a de facto standard for the 
notation of object oriented 

development 



UML diagrams 



  Structural representation fo an element 
  Internal structure (composition) et external (relationships 

and dependencies wtih other elements) 

  Dynamic representation 
  Behavior considering time : interaction with other elements, 

modification of its internal state… 

Element C 

Two types : structural and dynamic 

SubElement A 

SubElement B 

Element A Element B Inti () 



UML 2 diagrams 



Object diagram 
  Represents objects and their relationships 
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3.40 Composite Object

3.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is

an instance of a composite class, which implies the composition aggregation between

the class and its parts. A composite object is similar to (but simpler and more restricted

than) a collaboration; however, it is defined completely by composition in a static

model. See Section 3.48, “Composition,” on page 3-81.

3.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite

object is placed in a compartment near the top of the rectangle (as with any object).

The lower compartment holds the parts of the composite object instead of a list of

attribute values. (However, even a list of attribute values may be regarded as the parts

of a composite object, so there is not a great difference.) It is possible for some of the

parts to be composite objects with further nesting.

3.40.3 Example

Figure 3-39 Composite Objects

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves



Class diagram 

  Represents static structure with classes and their 
relationships 
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3.48.4 Example

Figure 3-45 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2
1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11



Component diagram 

  Represents  physical components of a system 



Deployement diagram 

  Represents the deployement of the components on hardware 
devices 



Use case diagram 
  Represents objectives of the use of the system according 

to actors view point 
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Sequence diagram 
  Represents interations between objects according to 

time. 
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Communication diagram 

  Equivalent to sequence diagram but with a spacial 
representation 



Timing Diagram 
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State-Transition diagram 

  Represents life cycle of an object 

3-142 OMG-Unified Modeling Language, v1.4 September 2001

3

A final state is shown as a circle surrounding a small solid filled circle (a bull’s eye). It

represents the completion of activity in the enclosing state and it triggers a transition

on the enclosing state labeled by the implicit activity completion event (usually

displayed as an unlabeled transition), if such a transition is defined.

In some cases, it is convenient to hide the decomposition of a composite state. For

example, the state machine inside a composite state may be very large and may simply

not fit in the graphical space available for the diagram. In that case, the composite state

may be represented by a simple state graphic with a special “composite” icon, usually

in the lower right-hand corner. This icon, consisting of two horizontally placed and

connected states, is an optional visual cue that the state has a decomposition that is not

shown in this particular statechart diagram (Figure 3-74 on page 3-142). Instead, the

contents of the composite state are shown in a separate diagram. Note that the “hiding”

here is purely a matter of graphical convenience and has no semantic significance in

terms of access restrictions.

3.76.3 Examples

Figure 3-73 Sequential Substates

Figure 3-74 Composite State with hidden decomposition indicator icon

Start

entry/ start dial tone

Partial Dial

entry/number.append(n)

digit(n)

digit(n)

[number.isValid()]

Dialing

exit/ stop dial tone

HiddenComposite

entry/ start dial tone
exit/ stop dial tone



Activity diagram 

  Represents an activity flow 
in an operation, a use case 
or a business process 

Coffee 
Pot 

Wake Up 

Get Cups 

Turn on Coffee Pot 

Coffee Done 

Drink Coffee 



Classes and objects 



The objects 
  Real world objects born, live and dead 
  Computer system objects are a simple representation of 

real world elements 
  Objects represent concrete entities (a sensor, an 

actuatur) or abstract (PID regulator, Neural…) 



Graphical notation of object 

One object Another object 

And another one 



Objects are abstractions 
  An abstraction is a summary 
  Of essential caracteristics 
  Hide the details 
  An abstraction depends on a viewpoint (e.g. 

mathematicals, automatics, architectural) 



Abstraction examples 
  A television 
  A complex number 
  A financial operation 
  A logical gate 
  A battery 
  An actuator 
  A sensor 



Object chaos 
  Many many objects 
  To understand : categorization, classification 
  Humans are always classing : animals, plants, 

mushrooms, atoms… 



Object chaos cont’d 



Classes 

  A class is an abstraction of several objects 
  Can be interpreted as a factorization 



Classes and objects 
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3.48.4 Example

Figure 3-45 Different Ways to Show Composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar title body

scrollbar:Slider

Header Panel

2
1 1

Window

Slider

2

title:Header
1

body:Panel
1

1
11
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3.40 Composite Object

3.40.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is

an instance of a composite class, which implies the composition aggregation between

the class and its parts. A composite object is similar to (but simpler and more restricted

than) a collaboration; however, it is defined completely by composition in a static

model. See Section 3.48, “Composition,” on page 3-81.

3.40.2 Notation

A composite object is shown as an object symbol. The name string of the composite

object is placed in a compartment near the top of the rectangle (as with any object).

The lower compartment holds the parts of the composite object instead of a list of

attribute values. (However, even a list of attribute values may be regarded as the parts

of a composite object, so there is not a great difference.) It is possible for some of the

parts to be composite objects with further nesting.

3.40.3 Example

Figure 3-39 Composite Objects

horizontalBar:ScrollBar

verticalBar:ScrollBar

awindow : Window

surface:Pane

title:TitleBar

moves

moves



Classes Relationship 
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3.50.4 Example

Figure 3-47 Styles of Displaying Generalizations

Shape

SplineEllipsePolygon

Shape

SplineEllipsePolygon

Shared Target Style

Separate Target Style

. . .

. . .
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3.43.4 Style Guidelines

If there are multiple adornments on a single association end, they are presented in the

following order, reading from the end of the path attached to the classifier toward the

bulk of the path:

• qualifier

• aggregation symbol

• navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are

not confused with a different association. They may be placed on either side of the

line. It is tempting to specify that they will always be placed on a given side of the line

(clockwise or counterclockwise), but this is sometimes overridden by the need for

clarity in a crowded layout. A rolename and a multiplicity may be placed on opposite

sides of the same association end, or they may be placed together (for example, “*

employee”).

3.43.5 Example

Figure 3-41 Various Adornments on Association Roles

3.43.6 Mapping

The adornments on the end of an association path map into properties of the

corresponding role of the Association. In general, implications cannot be drawn from

the absence of an adornment (it may simply be suppressed) but see the preceding

descriptions for details. The interface specifier maps into the “specification” rolename

in the AssociationEnd-Classifier association.

Polygon Point
Contains

{ordered}

3..!1

GraphicsBundle

color
texture
density

1

1

-bundle

+vertex

Generalization 

Composition 

Aggregation 



Object dynamics 



Communication between objects 
  System = society of collaborative objects 
  Object work together to perform the service  
  The behavior of a system depends on how the objects 

collaborate 



A message 
  Is the communication unit between objects 
  Very general concepts with various application 
  Can represents both control and data flow 
  And also events, or activities 



Communication diagram 
  A send a message X to object B, the object B sent Y to C, then 

etc… 



Sequence diagram 

  Lifelines are objects  
  The tag is 

objectName:ClassName 

  is for a message  
         is a return  

Time 



Collaboration and sequence diagram 



Exercise : Simple Watch 

From class diagram : 
1.  Perform a sequence diagram of the following scenario : a user wants to 

set the minutes  
 Pushing twice the button 1, he can set the minutes (hours blinks and then 
minutes). Then with the button 2 (with releasing it), minutes are 
incremented. Once minutes are set, the user push the button 1 and the 
minutes stop blinking. 

Button 1 

Button 2 



Simple watch: Sequence diagram 

loop            [B2.state = Pushed] 

UML2 notation 



Simple Watch: Communication diagram 



State machine diagram 
  A state machine diagram is used to represents 

  Lifecyle of an object (instance of a class), 
  Events that produce transitions from a state to another 
  Actions due to change state 



State 

  Initial state 

  Intermediate state 

  Final state 
StateName 



Transitions 

  Unidirectional connections for a directed graph 
  Triggered by an event if the condition is true and 

produce an action.  

State1 
Event[condition]/action 

State 2 



Event, condition and actions 

  Event 
  4 main types : 

  Signals : asynchronous occurrence of external event (e.g. button pusched) 
  Call: another object request a service 
  Change of an attribute (ex:  battery level = 10%) 
  Time : delay (after 15s) or absolute time event (time=12.42 pm) 

  Condition : boolean expressions 

  Actions :  

  Services/operation of the class  

  Instantaneous, cannot be interrupted 



Exercice : Telephone 
  Model the state machine of the telephone 



State diagram exemple 
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Use cases 



Use cases 

  Represent functional requirement 

System

Actor 1

Use case X

Use case Y

Actor 2



Why use case diagrams ? 
  A graphical modelling of requirements 
  Used by final users to express/discuss about their 

requirements 
  Are usefull to communicate at the first steps of the 

developement 
  Are a basis for functional testing 



Project main thread 

User

Use cases

Analyst
express

Testing

Architect

Developper

understand

check
realize

implement



Actors 

  Represent roles that humans, hardware devices, or 
external systems play while interacting with a given 
system 

  They are not part of the system and are situated outside 
of the system boundary 

  Actors may be both at input and output ends of a use 
case  



Identify actors 
  Define system boundary to identify actors correctly  
  Identify users and systems that depend on the system’s 

primary and secondary functionalities  
  Identify hardware and software platforms with which the 

system interacts  
  Select entities that play distinctly different roles in the 

system  
  Identify as actors external entities with common goals 

and direct interaction with the system  
  Denote actors as nouns 



Identifying Use Cases 
  Business / Domain Use Cases:  

  Interactions between users and the business (or domain)  

  System Use Cases:  
  Interactions between users and the system  
  One business use cases contains a set of system use cases  

  To name the use cases, give it a verb name to show the 
action that must be performed 
  Describe a transaction completely  
  No description of user interface whatsoever 



Capture Use Cases 
  Capture use cases during requirements elaboration  
  Use cases are not mapped one-to-one to requirements  

  Each requirement must be covered by at least one use case  
  However, use cases may contain many requirements  

  Use scenarios to model assumptions and define system 
scope  

  List exceptions separately  



Scenarios 
  Specify behaviour of use case by description, not modeling  

  Examples include informal structured text, formal structured 
text with conditions, and pseudocode  

  Typically specify:  
  How and when the use case starts and ends  
  Interaction with the actors and the exchange of objects  
  Flow of events: main / typical (success), alternative (success), 

and exceptional (failure) flows 



Identifying Scenarios  
  Extract the functionality that is available to each actor 
  Establish specific instances and not general descriptions 
  Denote situations in the current and future systems 

Identify:  
  Tasks to be performed by the user and the system 
  Flow of information to the user and to the system 
  Events that are conveyed to the user and to the system 
  For the events flow, name steps in active voice 



Example of textual description 
<project> 

Use-Case: <use-case name> 

Brief Description <brief description of use-case> 

Actor Brief Descriptions <Actor 1 Name> 

Preconditions <pre-condition 1> 

Basic Flow of Events The use case begins when <actor>, <does something>… 
<basic flow step 1> 
…  
<basic flow step n> 
The use case ends. 

Alternative Flows <alternate flow 1> 
If in step <x> of the basic flow the <actor or system does something>, then  
<describe flow>   
The use case resumes at step <y> 

Subflows  <subflow 1, step 1> 
… 
<subflow 1, step n> 

Post-conditions <post-condition 1> 

Special Requirements <special requirement 1> 



A process for scenario based risk 
analysis 



Issues 
  A method usable at the very first steps of the 

development process 
  Studying the dynamics of the system  
  Not requiring important skills in modelling 
  Easily understandable by non experts 
  Integrating human factors 



Integration of several Methods 
  Based on the risk management approach 
  Integrating UML 
  Integrating task analysis and function allocation results 
  Integrating human error analysis 
  HAZOP for deviation analysis 
  FTA for risk estimation 



Risk management 

Risk analysis 
1. System and intended use 
description 

2. Hazard identification and risk 
estimation  

Judge if the risk is tolerable or not 

        Reduction of the risk until it 
becomes tolerable  

Risk evaluation 

Risk reduction 

Function allocation and  
task analysis 

Human error analysis 

UML Modeling 



Process overview 
1.  System intended use and description 

a)  General scenario description UML Use Case 
b)  Robot integration UML Use Cases 
c)  System definition UML System use cases 
d)  Task description : UML Sequence diagrams 

2.  Preliminary Hazard identification 
3.  Hazard identification with HAZOP 

a)  HAZOP on use cases conditions 
b)  HAZOP on sequence diagrams 
c)  Communication of results and determination of top events 

4.  Risk estimation 
a)  Fault tree analysis without any risk reduction strategy 
b)  First risk estimation and determination of integrity levels (recommendations)  

 Risk evaluation / Risk Reduction (not presented here) 
5.  Residual risk estimation 

a)  Fault Tree Analysis with risk reduction strategies (minimal cut sets analysis and use of 
PARETO for order 2 min. cut sets.) 

b)  Final recommendations for safeguards and integrity levels. 



  Master site 
  Expert move by hand virtual probe and 

diagnose 

  Slave Site 
  parallel robot, artificial muscles   

Example of application :  Tele ultrasound system overview 



Risk analysis 
1. System and intended use 
description 

2. Hazard identification and risk 
estimation  

Function allocation and  
task analysis 



System and intended use description 

  Function allocation and task analysis 
  Determine distribution of work 
  Identify details of specified tasks (required knowledge, 

skills, attitudes) 

Four steps with UML based development 
A. General scenario 
B. Robot integration 
C. System definition 
D. Task description 



A. General scenario with business modeling 

Diagnose Perform Ultrasound Scan 

Probe Management 

Patient Management 

Patient 

Specialist 

Use Case diagram Robot 
Equipment  
servicer  

Robot Management 

Perform task 



B. Robot integration 

Probe  
Management 

Specialist  

Assistant 

Patient Management 
Patient 

Master Site 
Perform  

Ultrasound Scan 
Robot 

Equipment  
Servicer 

Robot Management 



C. System definition 

Patient 

Operator 

Patient Management 

Robot Management 
<<include>> 

Robot 
Master Site Perform Ultrasound Scan 

Use Case diagram 



 : Operator 
 : TER Control  

System 
 : Patient  : Robot 

Prepare Patient 
Calibrate for Patient corpulence 

Identify Patient position 

Identify Robot configuration 

Validate models 

Install Robot 
Calibrate Robot 

Calculate Patient model 

Calculate Robot model 

Install 
Put Power on 

Connection with Master Site 

Put air pressure on 
Start Teleoperation 

Sequence diagram 

{The order of 
the messages 
cannot be 
changed} 



Risk analysis 
1. System and intended use 
description 

2. Hazard identification and risk 
estimation  Human error analysis 



Preliminary Hazard Analysis 
  At the very first step of the project 
  Brainstorming / short meeting (max 2h) 
  Same organisation as HAZOP (see chapter 4) but with a 

more simple worksheet 
1)  Identify system hazards and sources  
2)  Translate system hazards into high-level system safety design 

constraints. 
3)  Assess hazards if required to do so.  
4)  Establish the hazard log.  



Example: System Hazards for Automated 
Train Doors 

1.  A pair of controlled aircraft

1b.  ATC shall provide conflict alerts.

maintain safe separation between
aircraft.

1a.  ATC shall provide advisories that

direct aircraft into areas with unsafe
atmospheric conditions.

2a.  ATC must not issue advisories that

2b.  ATC shall provide weather advisories
and alerts to flight crews.

2c.  ATC shall warn aircraft that enter an 
unsafe atmospheric region.

Hazards must be translated into design constraints.

Door areas must be clear before door

Door opens while train is in motion.

violate minimum separation

c

Example PHA for ATC Approach Control

areas, thunderstorm cells)

(icing conditions, windshear

REQUIREMENTS/CONSTRAINTSHAZARDS

unsafe atmospheric region.
2.  A controlled aircraft enters an

standards.

doorway.

Door must be capable of opening only after

motion.

Doors must remain closed while train is in 

any door open.

Train must not be capable of moving withTrain starts with door open.

DESIGN CRITERIONHAZARD

train is stopped and properly aligned with

Doors cannot be opened for

emergency evacuation.

Door that closes on an obstruction

does not reopen or reopened door 

does not reclose.

Door closes while someone is in

with station platform.

Door opens while improperly aligned

emergency evacuation.

anywhere when the train is stopped for

Means must be provided to open doors

reclose.

removal of obstruction and then automatically

An obstructed door must reopen to permit

closing begins.

platform unless emergency exists (see below).



PHA worksheet example 

Num. Hazard Source Remarks Recommendation Who is in 
charge of 
application 

Hardware 
Software 
Human 
Environment 
Mechanical 
Electrical 
Etc. 



UML-HAZOP analysis 
1)  UML Use cases + sequence diagrams 
2)  Uses cases conditions 
3)  The HAZOP method is applied to:  

1)  Each use case  
2)  Each sequence diagram 



HAZOP overview 

WHAT is UML system entity ? And associated attributes ?  



  UML Entity :  
  Use cases  
  Sequence diagrams 



Use case attributes  



Use case guidewords 



Sequence diagram attributes 



Sequence diagram guidewords 





HAZOP worksheet 



Example : PHRIENDS case study 
  Take an object from a specified location 
  Place an object at a specified location 
  Go to a location (holding or not holding an object) 
  Take an object from the user’s hand 
  Give an object to the user 
A second group of use cases applies to when the user can 

interrupt the previous actions to: 
  Abort a task 
  Guide the robot arm to a location 
  Pause and resume a task 
  Physical interaction 



Use cases 











Some results of the application of the 
method 

  PHRIEND project safety analysis artefacts 
  Hazard list 
  Recommendation list 
  Integrity level requirements list 
  Top events list => used for fault tree analysis 



MIRAS example 
Multimodal Interactive Robot for Assistance in Strolling 

  The MIRAS project’s aim is to develop an assistive robot for 
mobility capable of health state monitoring. It is designed to be 
used in elderly care centers by elderly people suffering from 
gait and orientation problems. 

  The purpose is to offer more freedom and time to staff 
personnel, by releasing them from basic assistance tasks in 
mobility (such as rising from a chair and/or going to the 
bathroom etc.), so that they can focus on other more 
demanding tasks.  

  It integrates the following functionalities, enabled by 
multimodal interaction: 
  Transparent control of the robot by the user when walking. 

  Dynamic stabilization of the user if a fall or inappropriate motion is 
detected, using force sensors combined with visual estimation of 
posture. 

  Adaptation of the robot’s behavior to a detection of user overstrain 
(physiological state monitoring + changes in gait patterns). 

  “hello” function to call the robot (in dock position). The robot is 
able to autonomously move to the patient position.  (a “bye bye” 
function should also exist…) 


