
Dependable Execution Control for
Autonomous Robots

Fréd́eric Py F́elix Ingrand
LAAS/CNRS

7 Avenue du Colonel Roche,
F-31077 Toulouse Cedex 04, France

{fpy,felix}@laas.fr

Abstract— This paper presents a new approach to integrate
real-time execution control on autonomous systems and how
such an approach integrates in their software architecture.
The use of decisional autonomy is becoming more widely
accepted as a solution to the increasing need to deploy
complex systems (robots, satellites, etc) able to perform non
trivial tasks in various environments. We present an overview
of the organization of such systems. Then we explain why the
increasing complexity of functional components as well as
the presence of autonomy components become an obstacle
to system safety and dependability. To address this issue, we
propose the integration of an execution control component
in the software architecture. This component is synthesized
from a model of the acceptable and dangerous state using
model-checking techniques. The execution controller has a
generic representation of system behavior and, according to
some specified system constraints, acts as a “safety bag”
allowing acceptable states and avoiding forbidden ones. The
controller uses an OBDD1 like data structure which offers a
bounded execution time, and which can be formally validated
offline to check temporal properties. Real experimentations
have been made on our autonomous mobile robots, and have
confirmed it can catch in real-time design errors from the
decisional components which would have lead to disastrous
consequences.

I. I NTRODUCTION

Advanced systems such as robots or satellites have an
increasing need for a high level autonomy while perform-
ing in a hard real-time environment. However, this raises
a major non trivial problem: most complex autonomous
systems, which operate with a minimal human intervention
and in a highly non deterministic environment are hard to
validate. First because little has been done in the field of
validating autonomous components2, second the increasing
number of the functional components, their raising intrinsic
complexity and their interactions is becoming a serious
concern to be addressed by system architects. Nevertheless,
if these autonomous systems are to be seriously considered
(e.g. for costly missions or for interacting with humans)
one must propose approaches to make them safe and
dependable (e.g. avoid non nominal and dangerous system
states, which could lead to the loss of mission or to harm
humans).

The paper is organized as follow. We present in sec-
tion II a “classical” autonomous system architecture and
the reasons why it is rather difficult to prove safety and
dependability of autonomous systems based on this archi-
tecture. A solution to address this problem is to introduce
a component acting as a “safety bag” [2] to control that it
will never let the system engage in inconsistent state. The

1OBDD: Ordered Binary Decision Diagram
2This does not mean that they are intrinsically harder to validate than

traditional program. But various real world experiences [1] show that the
trust people put in these components is, as of today, rather limited.

role and the requirements of this component are further
detailed in section III. The Request & Resource Checker
– presented in section IV – is specified according to these
requirements. It is supported by a formal representation
of the system described step by step in section V. This
model is used to specify the constraints of the system
and to generate the corresponding controller based on
an OBDD like data structure described briefly in section
VI. Section VII presents some encouraging experimental
results on one of our robotic platforms. We then conclude
and present some of the prospectives opened by this work.

II. A UTONOMOUSSYSTEMS: THE COMPLEXITY
DILEMMA

An autonomous robot is commonly seen as a system
integrating perception and action in a dynamic environment
and, most important, deliberative capabilities, with minimal
human supervision. These systems make an increasing use
of advanced and complex techniques in order to enhance
their robustness to environment variability.

Fig. 1. A Generic Robots Architecture

As illustrated in Fig. 1, most autonomous robots archi-
tectures [3], [4] are organized in two main layers or levels:

• Decisional Level:This level centralizes the high level
decisional capabilities of the system. It may embeds
a number of components such as (but not limited
to): a planner, which produces high level plans to
achieve goals, and anexecutivewhich decomposes
and refines plans into atomic actions executable by
functional components.



• Functional Level: This level, controlled by the deci-
sional one, includes all the basic system functional-
ities (sensors, effectors, . . . ) and processing (motion
planning, image processing, . . . ). It may be organized
into modular components including a set of services
corresponding to one particular functionality or to a
physical component.

On one hand, the decisional level provides some high
level decision-making capabilities, however such capabil-
ities require a global and somewhat abstract view of the
system. Indeed, the complexity of the overall system cannot
reasonably be globally encompassed by the planner or the
executive. As a consequence, the model used at this level
must remain at a level of abstraction low enough to enable
the system to reason about it in an acceptable time, while
being high enough to make their use non trivial.

However, using such high level partial model in say
the planner is bound to lead to plans which first need to
be refined using yet another partial model (for example a
refinement procedure) and at a lower level. This aggrega-
tion of partial and independent models (actions planning,
procedures, etc) leads to an overall incompleteness of
the set of the states covered by the models, and thus to
unforeseen interactions or execution traces which can be
harmful to the system. To take an example, if one consider
a plan produces by a planner, while being perfectly valid
with respect to the actions model used by the planner; its
execution through a procedural executive providing parallel
procedures execution may lead to unexpected effects due
to the interactions between the resulting commands issued
by this executive.

Another point to consider with respect to decisional
components is their growing complexity. Some of these
tools offer functionalities like planning under uncertainty,
executing learned policies, least committed plans or learn-
ing abilities. The introduction of such techniques provide
an increased robustness to environment variability but
makes these components far more complex to validate. We
are then unable to certify that such program will never
trigger an action in a particular state which may lead to an
unwanted system states.

On the other hand, the functional level embeds modules
with little decisional capabilities and close to the hardware
and to the environment. Moreover, to increase the modu-
larity of this layer, and the re-usability of these modules,
each of them is developed independently and has little
knowledge about the others. As a consequence, they are
not aware of conflicts or unforeseen interactions which may
arise. Moreover, two or more modules may exchanges data
(one producer, and one consumer) through link created by
the executive. For example, let us consider an example with
two modules:

1) The arm module controls the arm of the robot and
can receive commands to stow or unstow the arm.

2) The locomotion module is used to get the robot
moving.

Both modules have been developed independently, still
the overall design is such that at no time, the robot should
move while its arm is not in the stowed position. It is
clear that from each module point of view nothing a priori
prevents it to accept an unstowed request (respectively
a move request) while the robot is moving (respectively
while the arm is an unstowed position).

Similarly, one could consider a third modulemotion
control which produces a speed reference (e.g. from a mo-

tion planner trajectory) executed by thelocomotionmodule
(through a data flow link established by the executive). If
both locomotion and motion control modules have been
developed independently and are indeed used on various
platforms, one can imagine that they are both accepting to
produce/use a wide range of speed. For a particular robot in
a particular environment though, it is clearly inappropriate
to allow an arbitrary range of speed. For example a speed of
50cm.s−1 may be acceptable in a flat terrain for a regular
ATRV but not in a rough terrain. While such constraint
may not hold for an UMV like vehicle.

Last, for an autonomous robot, it is usually impossible to
make sufficient simulation tests to cover the high variability
of the environment and the different situations that may
occur. So when the real system will be deployed, it is
bounded to run in unforeseen and untested situations.

Still, autonomous robots are intended for missions where
safety and dependability is critical: they may have to
interact directly with humans (museum guide, nurse robot,
. . . ) or they may have to perform missions in dangerous
or still unreachable environments (to the human) where
any mistake could have dramatic consequences (nuclear
plants, extraterrestrial exploration, . . . ). Even if high level
decision capabilities and complex functional level are the
key to achieve these ambitious goals, autonomy will re-
main largely unused if the software architecture does not
offer reasonable safety and dependability. The solution we
propose is based on an execution control presented in the
next section.

III. E XECUTION CONTROL

The main idea supporting execution control is to offer a
component that controls the system will never reach an
inconsistent state. It is a fault protection system acting
as a filter or “safety bag”[2]. It captures all events that
can change the system state (request of services, . . . ) and
checks if they do not lead into a prohibited state. Then
it eventually proposes alternate actions (rejecting requests,
killing services, suspending processes, . . . ) to keep the
system consistent.

In this paper, we shall consider that the functional level
is composed with a set of modules, each of them offering
a set of services. These services can be launched by a
request with arguments, they can normally terminate or can
be killed. In any case, a report is sent to the requester giving
information about the action (success, failure, specific
information, . . . ). On the top of this client/server protocol,
we also assume that services can provides data flows
exporting informations to other programs (modules or
decisional components).These assumptions are clearly not
over constraining with respect to the classical architecture
used for autonomous systems, for example:

• In the LAAS architecture [3] services are activated
by requests and may export data to “posters” offering
data exchange between the modules and other com-
ponents.

• In CLARAty [4] functional modules are object in-
stances, then we can consider that a method call is
a request for a service and public attributes may be
viewed as data flows.

To control efficiently this functional level, the execution
controller must respect some basic requirements:

• Observability:The component must have the ability
to monitor and catch all events that may lead or partic-
ipate to a system inconsistency. Indeed, the execution



control requires this information to properly monitor
the evolution of the system.

• Controllability: The execution control must be able
to control the system (i.e. block or deny commands)
to avoid inconsistent states. If this requirement is not
validated then there is no way to avoid these states.

• Synchronous and Bounded cycle time:The compo-
nent must act under a synchronous hypothesis (i.e.
computation and communication take virtually no
time). Apart from avoiding asynchronous formalism
difficulties, this allows us to have a cleaner formal
model of the system behavior and state transitions. In
a practical way, this implies that the system will run
as a loop with a bounded cycling time, offering, by
this way, guarantees on the overall system reactivity.

• Verifiability: The execution control component has to
offer a formalism and a representation that allow the
developer to check if it safely controls the system
behavior.

As the decisional components control the functional
ones, the execution control component takes place naturally
as an interface between these two layers. Our experience
has proven that it is not sufficient, indeed the interaction
between modules is also done by data flows between them
created by the decisional level. For example the motion
execution module reads the speed vectors from another
module computing the path to get to the next way point.
The decisional level just manages the creation and destruc-
tion of these data flows but does not explicitly see the
exchanged data. So the execution control component also
needs to monitor the interactions between the functional
components. Thus it fits in between the decisional level and
functional level as well as between the functional modules
which interact between each other.

A. State of the Art in Execution Control
Many of these concerns are not new, and some au-

tonomous system architectures address them in one way
or another.

Indeed, some of the requirements presented above were
clearly fulfilled by a previous version of the LAAS archi-
tecture [3] based on the KHEOPS system [5]. KHEOPS
is a tool for checking a set of propositional rules in real-
time. A KHEOPS program is thus a set of production rules
(condition(s) → action(s)), from which a decision tree
is built. The main advantage of such a representation is
the guaranty of a maximum evaluation time (corresponding
to the decision DAG3 depth). However, the KHEOPS
language is not adapted to resource checking and appears
to be quite cumbersome to use.

Another interesting approach to prove various formal
properties of robotics system is the ORCCAD system [6].
This development environment, based on the ESTEREL [7]
language, provides extensions to specify robots “tasks” and
“procedures”. However, this approach does not address ar-
chitecture with advanced decisional level such as planners.

In [8], the authors propose a system based on a model-
based approach. The objective is to abstract the system in
a state transitions based language abstracting the depend-
ability concerns. The programmers specify state evolutions
with invariants and a controller will execute this maintain-
ing these invariants. To do that the controller estimates
the most likely current state – using observation and a
probabilistic model of physical components – and find the

3DAG: Directed Acyclic Graph.

most dependable sequence of commands to reach specified
goal (i.e. with a minimum failure probability).

In [9], the authors present another work related to
synchronous language which has some similarities with
the work presented here. The objective is also to develop
an execution control system with formal checking tools
and a user-friendly language. This system makes use of
an abstract representation of services (without explicit
representation of arguments nor returned value). This de-
velopment environment gives the possibility to validate the
resulting automata via model-checking techniques (with
SIGALI , a SIGNAL extension).

In [10], the authors present the CIRCA SSP planner
for hard real-time controllers. This planner synthesizes off-
line controllers from a domain description (preconditions,
postconditions and deadlines of tasks). It can then deduce
the corresponding timed automaton to control the system
on-line, with respect to these constraints. This automaton
can be formally validated with model checking techniques.

In [11] the authors present a system which allows the
translation from MPL (Model-based Processing Language)
and TDL (Task Description Language) – the executive
language of the CLARAty architecture[12] – to SMV,
a symbolic model checker language. Compared to our
approach, this system seems to be more designed for the
high level specification of the decisional level, while our
approach focuses on the online checking of the outcomes
of the decisional level.

Another approach to consider is IDEA presented in [13].
It relies on two main ideas: (1) most components can be
seen as agents which share a common virtual machine,
defining their reactive planning behavior (planning here has
to be taken in a wide sense);(2) all these agents share parts
of a global temporal model which specifies the internal
“behavior” of the agent, as well as the communication be-
tween agents. The time-lines representation of constraints
supporting this architecture seems to be a good model for
a formal validation of the system.

IV. T HE REQUEST& RESOURCECHECKER

Our proposal for execution control is a software compo-
nent named Request & Resource Checker (R2C). As shown
on Fig. 2, it acts as follows:

Fig. 2. The Request & Resource Checker



• Input Buffercaptures the incoming events4 from the
system. Possible events are:

1) Requests for new services: generally coming
from the executive.

2) End of services, or reports: Coming from func-
tional modules. It gives informations about the
causes of the services completion (success, fail-
ure, . . . ) and, possibly, some output values.

3) Data changes. These data may represent the level
of a resource (battery power, fuel level, . . . ) or
data exchanged between components.

• System State Data-basemaintains a representation of
the system state built by the R2C from the flow of
events captured in theInput Buffer, and the previous
system state. If the state has changed, it activates the
State Checker.

• State Checkerchecks if incoming events are not
leading to an inconsistent state and deduces actions
to avoid it.

• Effectorlaunches actions deduced by R2C and reports
its deductions to the clients of the services.

The main component of the R2C is thus thestate
checker. It encodes the constraints of the system which
specify the acceptable and unacceptable states. To spec-
ify these constraints we have defined a language, named
EXoGEN, to model the system and its evolution. The model
we use is presented below.

V. SYSTEM CONSTRAINTS DESCRIPTION

As the R2C maintains the functional level consistency, it
has to be supported by a model of this layer. We propose
here to describe step by step the model we use to represent
the system and its constraints.

A. Model of services
Let S be the set of all the services offered by the

modules, andP the set of running processes. We define
the predicateinstanceof: P× S → {>,⊥} expressing that
a process is an instance of one service(>) or not (⊥). At
each time pointt one can check if a service is running
using this formula:

∀t,∀s ∈ S :

running(s)t ⇔
`
∃x ∈ P, instanceof(x, s) : active(x)t

´
Where:

active(x)t+1 ⇔
`
launched(x)t ∨ active(x)t

´
∧¬finished(x)t+1

launched(x)t ⇔ requested◦(x, arg)t ∧ ¬rejected∗(x)t

finished(x)t+1 ⇔ end◦(x, ret)t+1 ∨ killed∗(x)t

Note: Predicates marked with a◦ are uncontrollable –
they correspond to contingent events – as opposed with
the predicates marked with a∗ , which are the R2C
possible actions and thus fully controllable. These special
predicates give us information about the controllability and
observability of services.

The attributesarg and ret are respectively the argument
value given to the request of service and the report of the
service. As the report can indicate one service instance
failure we define the predicatecorrect taking a returned
value as argument which is true if and only if the returned
value indicates a correct process completion.

4Events here are all the informations exchanged between the decisional
and the functional modules, as well as the one exchanged between
modules themselves.

As a process execution has an influence on the subse-
quent states of the system, we need to know the previous
service instances. For example, let consider a service
calibrating a laser sensor, if this service fails then we
can consider that measures taken from this sensor are not
correct. To keep informations of the past services we define
the following function:

∀t ≥ t0,∀s ∈ S :

last(s)t+1 =

8>>>>>>><>>>>>>>:

undefined if running(s)t+1∨`
∀x ∈ P, instanceof(x, s),

end◦(x, r)t+1 : ¬correct(r)
´

(x, ret, t + 1) if ¬running(s)t+1∧`
∃x ∈ P, instanceof(x, s) :

end◦(x, r)t+1 ∧ correct(r)
´

last(s)t else

With ∀s ∈ S : last(s)t0 = undefined.
We also need to know argument of a process. This can

be done using therequested◦ predicate. Then we define the
argumentoffunction supported by this rule:

∀x ∈ P : argumentof(x) = arg ⇔
`
∃t : requested◦(x, arg)t

´
The past of a service is not sufficient to express all the

system evolutions. We also need to have an order relation
between service dates, so we can point to the last of the past
services. Using thelast function, we define this precedence
test:
∀t,∀(s1, s2) ∈ S× S :

s1 ≺t s2 ⇔
“ `

last(s1)t = (x, r1, τ)
´
∧`

(last(s2)t = undefined)∨
(last(s2)t = (y, r2, τ

′) ∧ τ < τ ′)
´”

B. Model for data flows
Our system must take into account the data flow between

services. As presented in section III, they provide the data
sharing mechanism of the system.

First we defineM the set of possible data flows. To
access the data flowm ∈ M we can specify two special
services:read[m]() ∈ S and write[m](value) ∈ S. Using
the last predicate on thewrite[m](value) service we can
determine the current value ofm at each time point.

Then we can extract this rule:
∀x ∈ P,∀m ∈M, instanceof(x, read[m]) :`
end◦(x, r)t ∧ last(write[m])t = (p, v, τ)

´
⇒ argumentof(p) = r

These two specific services are requested by specific pro-
cesses. Thewrite[m] one can be called only by processes
owning m and theread[m] may be called by any client
of m. To allow system specifier to describe these links
we define two predicates:produces:P × M → {>,⊥}
expressing that a process will be able to write a new value
on a data flow; andread: P ×M → {>,⊥} expressing
that a process will probably read one data flow. These
two predicates will be used during the system constraints
specification phase to express the producers and consumers
of one data flow.

C. Constraint specifications
The model previously presented offers a representation

based on service instances. It could be interesting to distin-
guish instances of one service according to their arguments
and/or returned values. Indeed these values frequently give
information about the service instance behavior. To express
them in a general way, we define service classes (classified



by constraints applied to these values). These constraints
are fixed hypercubes in the domain of arguments and
returned values of the service.

Let Cas be the set of constraints we can apply to
arguments ofs ∈ S, we can define a predicate which
checks one instance ofs satisfyingc ∈ Cas is running:

∀t,∀s ∈ S,∀c ∈ Cas :

running(s, c)t ⇔
“

∃x ∈ P, instanceof(x, s) :

active(x)t ∧ c
`
argumentof(x)

´”
The generalization of the past of one service with con-

straints is done addingCrs, the set of possible constraints
we can apply to the returned values of the services. Then,
using thelast function, we can express this service has a
past which respects the constraint(ca, cr) ∈ Cas × Crs

with:

∀t,∀s ∈ S,∀(ca, cr) ∈ Cas ×Crs :
past(s, (ca, cr)) ⇔

`
last(s)t = (x, ret, τ)∧
ca(argumentof(x)) ∧ cr(ret)

´
We can also extend the ordering predicate and the data

flow management with constraints following the method
used to extend thepastand therunning test.

D. System constraint rules
To specify possible conflicts and constraints of the sys-

tem, we use the formal model presented above to express
contexts leading to inconsistent states.

Here is an example of a simple system with two services:
• The move service takes a distance and a speed as

arguments.
• The camera service is able to take images. An

argument specifies if we want a high or low resolution
picture.

We want to express that we cannot take any image
in high resolution if the robot is moving faster than 0.5
m.s−1. This can be expressed with this formula:

∀t : ¬
`

running(move, speed > 0.5)t∧
running(camera, mode = high)t

´
The role of the R2C is to maintain this formula true

in all the states of the system. Using the definitions of
the running predicate we can decompose this formula
into atomic predicates including the controllable ones (i.e.
rejected∗ andkilled∗) applied tomoveandcamerarequests
instances satisfying the constraints.

To maintain this formula true, the R2C manages the
controllable predicate values (i.e. setting them to the proper
value). In this case it can reject or kill service instances of
moveor camerawhen incoming events threaten the formula
consistency.

To express these constraints in a more “human legible”
representation, we have developed a language and its
compiler namedEXoGEN [16].

VI. M AINTAINING CONSTRAINT RULES IN REAL-TIME

The previous section shows that the R2C may be seen
as a component maintaining a formula true. Still, such
approach is reasonable in our context if and only if the
R2C deductions are fast enough to keep the synchronous
hypothesis “acceptable”. The approach we propose to sat-
isfy this requirement is to use Ordered Binary Decision Di-
agrams (OBDDs, see [15]). This graph based data structure
expresses logical formulas with the following properties:

• The resulting structure is a complete factorization of
the initial formula. This implies that a predicate value
is checked only one.

• The traversal is bounded (complexity is on the order
of the variables number).

• We can validate it using model checking techniques.
OBDDs are used to express first order logic formulas.

This is not sufficient when our model is more complex
with the introduction of constraints. Thus we have defined
an OBDD like data structure named OCRD5(see [16]).

This data structure is quite similar to OBDDs but is
able to express formulas with predicates with the following
form:

pred(?v1 . . .?vn)with cstr(?vi1 . . .?vim
)

The construction algorithm of one OCRD is quite sim-
ilar to the OBDD one. It differs on the introduction of
predicates which are similar but which have different
constraints. In this case the compiler makes a partition of
the constraints and split nodes accordingly. An example of
such OCRD is given in Fig. 3.

The main interest of the OCRD data structure is that
the resulting diagram is strictly equivalent to an OBDD.
In fact it is an OBDD where each variable corresponds
to one partition of the state space of the system. As
a consequence OCRDs keep the properties of OBDDs
(canonical form, time bounded traversal, . . . ) while adding
some expressiveness.

VII. E XPERIMENTAL RESULTS

We have implemented and integrated the R2C on the
LAAS architecture[3] and the results are quite encour-
aging. The platform for our experimentation – Dala, our
ATRV robot – is based on the architecture instantiation
represented partially in Fig. 4. This robot embeds modules
managing the following functions:

• Camera manages the stereo bench.
• SCorrel computes a stereo correlation to from the

stereo bench images.
• STEO uses SCorrel outputs to deduce the robot posi-

tion.
• Lane maintains a 3D map of the environment.
• P3D computes a motion plan based on a 3D repre-

sentation of the environment and its goal position.
• Platine controls the camera pan/tilt.
• RFLEX manages the wheels and exports the odometry

data.
• POM is a module producing the best position estimate

according to positions produced by other modules and
their precision.

• . . .
We have extracted for this system 13 constraints rules

representing all the conflicts and faulty interactions be-
tween 14 services. For example, one constraint we have
specified for the POM module specifies that a position
cannot be read from this module if we have not connected
this one to any position producer.

The resulting OCRD has a maximum depth of 22 with
a total size of 399 nodes. The R2C traversing this graph
has a maximum cycle time of 300µs. The overall system
reactivity is kept (the global system cycle is approxima-
tively around 100ms). We have tried to inject many
situations threatening these constraints and all of these are

5OCRD: Ordered Constrained Rules Diagram.



requested(move(?v) with ?v>0.5)

requested(camera(?m) with ?m 
in {HIGH,HIGHER})

requested(camera(?m) with ?m 
in {HIGH,HIGHER})

running(move(?v) with ?v>0.5)

T

T

reject(camera(?m) with 
?m in {HIGH,HIGHER}

running(move(?v) with ?v>0.5)

running(camera(?m) with ?m in 
{HIGH,HIGHER})

reject(move(?v) with ?v>0.5)

uncontrollable

controllable

when false
when true

Fig. 3. Example of OCRD

Decisional Level

Functional Level

Temporal Executive

Requests Control Level

Environment

mission report

ExoGen

GenoM

Requests and Resources Checker

OpenPRS

Procedural
Executive

Planner

IxTeT-eXeC

POM
Position 
Manager

Pos

Camera Images
pos-tag

LANE
Local 
Env.

Env

P3D
3D reactive

Motion 
Planner

Speed

SCorrel Cor. Im
pos-tag

STEO
Stereo 

Odometry
Pos

Platine
Pla
Pos RFLEXPos

Fig. 4. An instance of the LAAS architecture

detected and treated properly (rejecting requests or killing
of existing services) maintaining the system in a state that
not threatens functional level consistency.

An interesting result is that the R2C helped us detect one
faulty behavior in one of the decisional level components.
The error, due to a coding mistake, was avoided and
reported to the executive. Unfortunately, as of today, the
executive has not been programmed to take into account
this kind of messages. Moreover it is rather simple to
consider these messages as a service failure and to react
accordingly.

VIII. C ONCLUSION AND PERSPECTIVES

In this paper, we show that an autonomous robot cannot
offer safety guarantees without execution control. We pro-
pose a solution based on a synchronous model supported
by a specification of controllable and observable events of
the system.

The R2C is a quite simple, but yet powerful, component
implementing this solution. It uses a general model of the
functional level to supervise its state changes.

To control and avoid inconsistent states in real-time, the
R2C is supported by a data structure similar to OBDD,
named OCRD, which encodes the acceptable states of the
system. The resulting diagram has a limited depth and thus
provides a real time guaranty on its maximum evaluation
time. As we use an approach similar to OBDDs, we expect
to be able to use model checking tools to validate some
more complex temporal properties of the R2C.

The R2C is currently integrated in the LAAS architecture
and our first tests show that it performs efficiently on
our mobile robots. Still, the current version does not have
a complete view on the state change as it just captures
events coming from the control flow of the system (re-
quests/reports) and not the data exchanged by data flow
(posters reading). We are currently adding this feature to
the latest version of the R2C. Another possible extension is
to enhance the decisional components to take into account
the reports coming from the R2C, i.e. how to recover from
a rejected or killed request. Finally, we plan to investigate
existing model checkers approaches (based on OBDD) to
see if they can bring some new advantages to this system.

REFERENCES

[1] N. Muscettola, P. P. Nayak, B. Pell, and B. Williams, “Remote agent
: To boldly go where no ai system has gone before,”Aritificial
Intelligence, vol. 103, 1998.

[2] P. Klein, “The Safety Bag Expert System in the Electronic Railway
Interlocking System ELEKTRA,”Expert Systems with Applications,
pp. 499–560, 1991.

[3] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An
architecture for autonomy,”International Journal of Robotics Re-
search, Special Issue on Integrated Architectures for Robot Control
and Programming, vol. 17, no. 4, pp. 315–337, April 1998.

[4] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
“The CLARAty Architecture for Robotic Autonomy.,” inProceed-
ings of the 2001 IEEE Aerospace Conference, Big Sky Montana,
March 2001.

[5] A. D. de Medeiros, R. Chatilla, and S. Fleury, “Specification
and Validation of a Control Architecture for Autonomous Mobile
Robots,” in IROS. 1996, pp. 162–169, IEEE.

[6] B. Espiau, K. Kapellos, and M. Jourdan, “Formal verification
in robotics: Why and how,” inThe International Foundation for
Robotics Research, editor, The Seventh International Symposium of
Robotics Research, Munich, Germany, October 1995, pp. 201 – 213,
Cambridge Press.

[7] F. Boussinot and R. de Simone, “The ESTEREL Language,”
Proceeding of the IEEE, pp. 1293–1304, September 1991.

[8] B. C. Williams, M. D. Ingham, S. Chung, P. Elliott, M. Hofbaur,
and G. T. Sullivan, “Model-Based Programming of Fault-Aware
Systems,”Aritificial Intelligence, pp. 61–75, winter 2003.

[9] F. Maraninchi K. Altisen, A. Clodic and E. Rutten, “Using
controller synthesis to build property-enforcing layers,” inEuropean
Symposium on Programming (ESOP), Apr. 2003.

[10] R. P. Goldman and D. J. Musliner, “Using Model Checking to Plan
Hard Real-Time Controllers,” inProc. AIPS Workshop on Model-
Theoretic Approaches to Planning, April 2000.

[11] R. Simmons, C. Pecheur, and G. Srinivasan, “Towards automatic
verification of autonomous systems,” inIEEE/RSJ International
conference on Intelligent Robots & Systems, 2000.

[12] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Es-
tlin, “Claraty and challenges of developing interoperable robotic
software,” in International Conference on Intelligent Robots and
Systems (IROS), Nevada, October 2003, invited paper.

[13] N. Muscettola, G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt,
“Idea: Planning at the core of autonomous reactive agents,” in
Proceedings of the 3rd International NASA Workshop on Planning
and Scheduling for Space, October 2002.

[14] F. Ingrand and F. Py, “Online execution control checking for
autonomous systems,” inInternational Conference on Intelligent
Autonomous Systems, Marina del Rey USA, March 2002.

[15] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE Transactions on Computers, vol. C-35, no.
8, pp. 677–691, Aug. 1986.

[16] F. Ingrand and F. Py, “An execution control system for autonomous
robots,” inIEEE International Conference on Robotics and Automa-
tion, Washington DC (USA), May 2002.


