Abstract

In this chapter, we present the interest of introducing lpgism in domain decom-
position methods. In particular, we detail on an origingraach: the flexible asyn-
chronous iterations applied to the Schwarz alternatindhotetApplication to various
boundary value problems such as nonlinear convectionsidgh problem, Hamilton-
Jacobi-Bellman problem and obstacle problem are preseAtedupled problem, i.e.
the electrophoresis problem is also studied in details.
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1 Introduction

The present contribution concerns the numerical solutitinear and nonlinear bound-
ary value problems via flexible asynchronous Schwarz aterg methods. Various
kinds of nonlinearities are considered: pertubation ohadr operator by a diagonal
monotone increasing operator, nonlinear complementpriiplems which occur in
particular in mechanics, image processing and financidicgtipns, Navier-Stokes
equations in fluid mechanics which model flow problems andengenerally coupled
problems. Various boundary conditions are consideredaméttial differential equa-
tions quoted above: Dirichlet, Neumann, Robin and mixede fitaterial presented
in this chapter can be extended to the case of evolution @nubkolved via implicit,
semi implicit or predictor corrector schemes since thetsmiuof evolution problems
leads to the solution of sequences of stationary problems.

Stationary problems considered here are discretized s@etization technics such
as classical finite difference methods, finite elementdgefvolume and variational fi-



nite difference methods. We note that under appropriatengssons verified by the
continuous problem, the above discretization technias$ teshe solution of algebraic
systems of equations involving M-functions in the nonlinease and M-matrices in
the linear case, respectively. These good properties pemaito insure the conver-
gence of discrete asynchronous flexible Schwarz altempatiathods. Finally, we
note that the parallel asynchronous methods presentedsiolttapter are well suited
to massive parallelism in high performance computing, gachputing and peer to
peer computing.

Section 2 deals with continuous Schwarz alternating meth8dction 3 concerns
the presentation of general discrete Schwarz alternatieifpaals and more particu-
larly, linear and nonlinear convection diffusion problerrsSection 4, we study com-
plementarity problems: Hamilton Jacobi Bellman problemd abstacle problems.
Section 5 is devoted to the analysis of a particularly irgng coupled problem: i.e.
continuous electrophoresis problem. Finally, parallgblementation and significant
computational results are presented and analyzed in &e&tio

2 The continuous Schwarz alternating method

Domain decomposition methods, such as the Schwarz altegnatthod introduced
by P.L. LIONS[1, 2, 3] and M. DRYJA [4, 5, 6], are well suited to the parallel solution
of boundary values problems (see [7]). For more details erStthwarz alternating
method see also [8, 9, 10, 11].

Let us first present the Schwarz alternating method in a \ne1gle one-dimensional
context. For this purpose, consider the Poisson equatitthh@mogeneous Dirichlet
boundary condition and defined in the dom&ir= [0, 1] C R

dz?

u(0) = u(l) = 0.
Consider first the sequential context and assumeihasplitted into two overlapping
subdomaing); and,, whereQ); = [0,~1],0 < 7¥ < L andQy = [3,1],0 < 13 <
v < 1,wherey?, ~1 respectively are the right boundary@f and the left boundary of
2, respectively ; note that = Q; [ J Q2 and); (2, # 0); and consider accordingly
the decomposition of into two subvectors; andu,. In order to solve equation (1)
by the sequential Schwarz alternating method, let us definmitial guessu® =
<u§°>, u§°>); then the first component; is computed on the subdom&in using the
boundary conditions; (0) = 0 andu,(y}) = u,, Whereu, is the restriction tey? of
the value of the subvectas of u, computed on the other subdomain On the other
hand, the component, is computed symmetricaly on the subdom&msnusing the
boundary conditions,(y3) = u; anduy(1) = 0, whered; is the restriction tey; of
the value of the subvectar. Then this iterative process is repeated alternatively. For
choosing the values af; andu, various strategies can be considered.

In the sequel let us denote bythe label of the Schwarz iteration. The case where
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Figure 1: Additive Schwarz alternating method.

at each stepr + 1), we havei; = u\”(12) andi, = u{” (12) corresponds to a Jacobi
like method, similar to an additive Schwarz alternatingmoelt(see Figure 1). On the
other hand for the computation af"+), we can also consider thay = u{"™" (+2)
andu, = ué’”) (74), algorithm corresponding to a Gauss-Seidel like methodijairo

a multiplicative Schwarz alternating method (see Figure 2)

More generally, in order to parallelize the computatior, domaint2 of a bound-
ary value problem is splitted into rectangular subdomairthé 2D case or into par-
allelepiped subdomains in the 3D case. In order to computengerical solution of
a boundary value problem, sequences of smaller subprohbieiinse solved using
several processors of a parallel computer ; practicallyenagcuracy is obtained.

Consider a boundary value problethu = f defined on the bounded domdin
with boundary conditiorB.u. = ¢ on 012, the boundary of). For the sake of sim-
plicity, we consider) c R?; furthermore we consider also a decomposition in two
overlapping subdomains denoted®y and(2, respectively (see Figure 3).

The parallel asynchronous solution with two processorshefabove boundary

value problem using the continuous Schwarz alternatingnatetonsists in solving
simultaneously at each iteration :

Al.uYH) = fl on <) Ag.ug—’_l) = f2 on{),
Bl = g onoQ N, and { By.ul™ = g, 0n00 N Q,
W = a8 ony? = 00, Ny WS =3\ onqyld = 00, Ny

whereA; andB;, i = 1, 2 respectively, denote the restriction.dfand 3, to the subdo-
maing;, andﬂg’”) andﬂé’”) denote the available values of the components of the iterate
vector(uy, uq) at the current iteration ; more precis@ly,) andag") are the restriction



Figure 2: Multiplicative Schwarz alternating method.

Figure 3: Decomposition of the domaihinto 2 subdomains
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Figure 4. An example of asynchronous algorithm with flexidenmunications.

of the the computed componerits , u,) on the boundaries? and~,. Flexible paral-
lel asynchronous Schwarz alternating method (see [12,4]Bate a general class of
parallel iterative methods whereby computations can beenuathg the current val-
ues of each component of the iterate vector. The main feafutes class of parallel
iterative methods is to allow flexible data exchange betwblerprocessors. In this
iterative procesﬁf.") are not necessarily associated to components that aréeldbgl
an iteration number as data exchanges may occur at any tihen, Tn this class of
method, partial updates can be used at any time in the cotigputdahus value of the
components of the iterate vector which is used in an updatnage may come from
updates which are still in progress.

Figure 4 displays the typical behavior of parallel asynalogs iterations with flex-
ible communication in the simple case where two processiersoted byP, and P,
respectively, exchange data. In Figure 4, boxes and arnaspgectively, represent
updating phases and communications, respectively. Tleax#hliké data exchanges be-
tween processors are allowed; as a consequence, the gphbetimeen communication
and computation is improved.

This general method extends classical asynchronous Sztaktarnating method
(see [15] to [19]), whereby computations are performed nalpel by several proces-
sors without any order nor synchronization by using valdeh® block component
of the iterate vector produced at the end of each updatingeph@his last kind of
method generalize also the classical parallel synchroscdusme such as parallel Ja-
cobi method, parallel Gauss - Seidel method ; note also thssical sequential Jacobi
and Gauss - Seidel method can be infered from the synchraoesne (see [20] to
[31]).



3 General discrete Schwarz alternating method

3.1 Alinear model convection-diffusion problem

Consider the following linear convection-diffusion prebi

{ —vAu +a§t + 5% + cu = f, everywhere inf2, )

u =0, onodsY,

wherec > 0, v > 0, Q is a bounded domairy, is a given function of£?(2) anddQ
denotes the boundary ©f For the sake of simplicity, we assume that the discretinatio
grid of the domairt? is uniform. In the sequel will denote the discretization step-
size. We assume that the columns of the discretization gechambered naturally.
The discretization of the operators which occur in probl@nig made according to
the following rules: the Laplacian is discretized via thasdlical five points scheme
and the first derivatives are discretized as follows acogrth the sign of: andb

u(z,y)—u(z—h,y) i
ou { + O(h), if a >0, 3)

R h
o7 wethy)zu@y) 4 O(h), if a < 0.

h

Let A denote the discretization matrix of problem (2) ; let us alsnote byF' the
corresponding right hand side of the discretized system.idfstrictly positive, then
regardless the sign afandb, it follows from (3) that the off-diagonal entries of matrix
A are non-positive and the diagonal entriesAddire positive. Moreover, the matrix
is strictly diagonally dominant; thus} is a nonsingulaf/-matrix, i.e.a;; < 0 for all
i # jandA~! > 0 (see[32], [33]).

If c=0, then we can show that the matrixis diagonally dominant. Moreover, by
using the characterization of irreducible matrices (s&) [®e can verify that the ma-
trix A isirreducibly diagonally dominant. Thus, in this cases also an\/-matrix(see
[33)).

Consider now a red-black ordering of the columns of the grid et A be the
corresponding discretization matrix derived frohby a permutation which preserves
the sign of the entries. We consider the former discrebmasicheme; it is strictly
positive, then, the matrid is strictly diagonally dominant; i = 0, then we can show
analogously that the matrix is irreducibly diagonally dominant. Thus, in both cases
A is anM-matrix.

Let us now consider the parallel Schwarz alternating metRodthe sake of clarity
and simplicity, domain decomposition is presented in thecaBe. The effectiveness
of domain decomposition methods is well known for boundaiye problems. These
methods are also well suited to parallel computing (see MIp concentrate here on
parallel Schwarz alternating methods, which are based enapping subdomains.
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Figure 5: Example of decomposition Qfwith 3 subdomains.

Problem (2) can be decomposed intgub-problems as follows. For=1, ..., a,

—vAu; + a4 b4 + cu; = f;, everywhere inf);,
,u”l/r‘Z = 07

for2<i<a, (4)
foril<i<a-1,

Ui, = Ui—1/v_1
1

= aiﬂ/ﬁ
whereu; and f;, respectively, are the restriction aefand f, respectively, td2;, 2 =
U?:lQ% Qiin—i-l % (Z),Z € {1,...,0& — 1}, ’)/Zl = 892092_1,Z c {2,...,0[},’}/2-2 =
0% N1, e{l,...,a—1}, I =00, 0,1 € {1,...,a} anda,;, j =i+ 1are
the restriction of the available values of the iterate vieatothe overlapping boudaries
vk k= 1,2 (see Figure 5).

The decomposition (4) corresponds to an overlapping subdodecomposition,
wherebyu; is computed using the restriction of ; andu, ., respectively, on; and
72, respectively. In the sequential case, the scheme of cotimuizorresponds ex-
actly to a multiplicative Schwarz scheme. In the parallske;dhe Schwarz alternating
method can be combined with an asynchronous iterative seloégomputation with
flexible communication in order to be as close as possiblenaléiplicative scheme.

If we solve the linear simultaneous equatiofls = F’, via the Schwarz alternating
method, then the augmentation process of the Schwarz @itegrmethod transforms
the M-matrix A (respectively the right hand side€) into anM-matrix A (respectively
a vectorF)(see [34] and [12]). Thus, for the solution of the resultlimgar system
AU = F we are in the convergence analysis framework consideretiZpfpr the
study of the parallel Schwarz alternating method with flexdommunications ; so,
for any initial guesd/(©) satisfyingAU® — I > 0, the asynchronous Schwarz al-
ternating method converge and according to [12] the comverg is monotone, i.e.
U0 >y > >U" > U whereAU = F.

Note that the initial guesg(®) can be also choosen such thdf () — F < 0; in such



a case, according to the monotone convergence results ved Hav< 171 <
V() < ... U. By combining both previous initializations for the |te|m|process we
can derlve an effective stopplng criterion of the |teralpm0cess indeed at each step

the following inequalityV " . < U < ... < U holds and we can stop the
iterative algorithm whe/ (") — V(’” )is sufficiently small.
More generally, we note that under realistic hypothesgsfitiite element’; or P,

discretization matrices occurring in the following analag linear partial differential
equations

— 2 (p(z,9) %) — - (p(x,9) §4) + q(a, y)u = [, everywhere irf2,
uw =0, onTY, (5)
% +ou=g, onl’y

wheredQ =T, JTy, p,q € C(Q) ando € C(T;), with

0< Po S p(xuy) S p17v<xuy) € Q?

0 S Q(xuy) S q17v(x7y) € ﬁa
0<og<o(z,y) <o,V(r,y) €Ty
is also an M-matrix (see [35]).

3.2 Nonlinear problems

In this subsection, let us consider various situations aflinear problems derived
from the previous linear model problem by perturbation & linear operator. We
consider a first situation where nonlinearities are defingde domairf2. The general
model can be given as follows

ou ou _ ;

{ ;y§u+a%+ba—y+cu+gp(u)—f, inQ, ®)

wherec > 0, f € L%(9), ¢ : R — Ris a continuous, nondecreasing function and B.C.
represents a classical boundary condition, i.e. Diri¢giNetumann, Robin or mixed.
The following nonlinear increasing functions occur in wai$ nonlinear convection-
diffusion problems :p(u) = e**, with a > 0 and alsop(u) = Log(5 + du), with

9 > 0 and a suitable sign fof, can be considered (see [36]). The discretization
techniques lead to the solution of the following algebraimytem

A(U) = AU + ®(U) — F =0, 7)

whereA is the discretization matrix associated with the lineat pathe equationsp
is a diagonal operator derived from the discretization efdiragonal operatap and
(F,U) € R@™A) » RE™A) - According to the properties of the operatothen® is
a monotone increasing mapping. Assume that the same dlisti@t techniques as



Figure 6: Different graphs fap.

the one quoted in the previous subsection are used,Ahs@an M-matrix. ThusA is
an M -function, according to Theorem 13.5.6 in [33] and [37], i&is off-diagonally
monotone decreasing and inverse monotone increasing thmadtan the linear case,
A(U) = AU — F = 0 and we are in the framework of the previous subsectin since
A is an M-matrix. If we solve the nonlinear simultaneous et A(U) = 0, using
the Schwarz alternating method with flexible communicaidascribed in [12], then
the augmentation process of the Schwarz alternating métaonsforms thel/-matrix
A into an M-matrix A and the monotone increasing mappignto the monotone
increasing mappin@ (see [34], [12]). Thus, the resulting nonlinear mappitgs a
surjective M -function and, for such asynchronous Schwarz alternatiathad with
flexible communications we are in the monotone convergeraredwork considered
in [12].

We can also consider nonlinear convection-diffusion peotd where nonlinearities
arise on the boundary of the domain (see [38]). This kind objem occurs, for
example, in the following boundary temperature controbpem

{ —vAu + aft + 05" + cu = f everywhere irf), @)

% +p(u) =00onT;andu = 0 onod2 — Iy,

whereQQ C R%, ¢ > 0,y C 99, f € L%Q) andyp : R — R is a continuous,
nondecreasing, nonlinear function. Figure 6 displays seramples of graphs for
function. In particular, the graphs (a) and (b) model saturation pheama and the
graph (c) models a multi-valued function correspondinghi® boundary condition:
%+ p(u) 2 0.

The discretization techniques presented in the previoosesgion can be also used
for the interior points of domaif. For all points inT',, the discretization of the
Neumann condition leads to the solution of the followingcdé$e equations

Uj — Uj—1

Thus, we have to solve the problem
AU) =AU +d(U) — F =0, (10)

whereA is the discretization matrix associated with the lineat pathe equationsp
is a diagonal, nondecreasing operator 8Ad/) € R¥™A) x Rém(A),



It follows from (9) that thej-th component of® is equal tohy(u;) if j is the index
of a point which belongs tb,; otherwise is null. I > 0, then the matrix4 is a strictly
diagonally dominant matrix. Thus} is an M-matrix. In the case where = 0, we
can verify by a similar argument that the matrxs irreducibly diagonally dominant,
regardless the sign af andb; thus, A is an M-matrix. SinceA is an M-matrix and
® is a continuous, nondecreasing, diagonal mappigs a surjectivel/-function,
according to Theorem 13.5.6 in [33].Thus, once again, tlyacsonous Schwarz
alternating method with flexible communications convemgpesotonically.

Note that the particular case of convection-diffusion peats with Neumann con-
ditions defined everywhere a#f) can also be considered. Then, the above analysis
still holds when the condition > 0 is satisfied.

Note also that the results of this subsection can also badstkto the case where
a red-black ordering of the grid points is considered ; imsaicase, the parallel asyn-
chronous Schwarz alternating method with flexible commations converge also
monotonically .

4 Complementarity problems

In the present section, we will study two kinds of compleraeity problems, i.e. the
discretized and linearized Hamilton-Jacobi-Bellman pgobon the one hand and the
obstacle problem on the other hand.

4.1 Thediscretized and linearized Hamilton-Jacobi-Bellman prob-
lem

The Hamilton-Jacobi-Bellman problem occurs in many fielashsas stochastic con-
trol, management, economy, mechanics and image processiagecall briefly the
formulation of the Hamilton-Jacobi-Bellman problem witlribhlet boundary condi-
tion

Find u solution of

sup(A(v)u — f(v)) =0, everywhere in €2, (11)

veV

u =0, on 0,

where() C R" is a bounded domaird)? is the boundary of2, V' is a convex set of
controls andA(v) is an elliptic operator defined by

0? 0
A(U) = _Zaij(x’v)axﬁx- + Zbi(xvv)% —l—C(IL‘,U),
UL :

.. (2
2%

7

wherea;;(x,v), b;(z,v) andc(z,v),1 < 4,5 < n are bounded nonnegative functions
of O x V — R anda,;(z,v), b;(z,v) ande(z,v) € C*(Q).

10



P.L. LioNs in [39, 40, 41] has proved that, under appropriate assumgtipar-
ticularly regularity of coefficients and ellipticity of mamgs, the previous problem
has a unique solution ; moreover problem (11) can be forradlas the following
equivalent problem which is more easy to solve

Find u solution of

k, _ pky _
1r<r}€a<>;1(A u— f%) =0, everywherein €

u =0, on 09,

wherem is a fixed integer and for alt € {1,2, ..., m}, AF and f* are defined by

Ab) = = "ali(z,v aaxj Zbk

2,] 7

( 7“)7 andfk = f(Uk:)

In the sequel we will restrict the study to the case= 2. Thus, we consider the
following problem

Find v such that
max {A'u — f1, A%u — f2} =0, everywhere in, (12)
u =0, onosY,

whereA; and A, are two elliptic operators of the second order satisfyiregNtaxi-
mum Principle, if previous appropriate assumptions argiedbya;;(z,v), c¢(x,v),1 <
i,j <nandfy, f, are element of.?(9Q).

If we consider appropriate discretization of problem (12jibite differences, then
we obtain the following discretized problem

{ Find U solution of (13)

max (A'U — F', A?U — F?) =0,

where, F', F? € R", and A', A* are matrices of size x n with entriesa;;, a7;,
respectlvely, which satlsfy

at >0,aF <0,i,j=1,...n,j#i,k=1,2, (14)

» g

daf>0i=1,..nk=12, (15)

andn denotes the number of grid points inside the donfiriurtheremore assume
that

there exists at least orisuch that) _al; > 0and » _a?; > 0, (16)
j j
the matricesA! and A? are irreducible. (17)

Note that the matriced! and A? are diagonally dominant. Under the above as-
sumptionsA! and A% are also M-matrices (see [32]). The problem (13) can be lin-
earized as follows:

AU)=C(U).U - F(U) =0,

11



whereF (U) € R™ andC(U) is a matrix of sizex x n. In fact the linearization process
is defined by the Howard method as follows :

If (A'U — F'); is greater thaf AU — F?);, then thei-th row of matrixC'(U) is equal
to thei-th row of matrix A' otherwise it is equal to theth row of matrix A2. The
vectorF'(U) is defined analogously.

It follows from the above assumptions that the magri)/) is an irreducible diag-
onally dominant matrix; thu€'(U) is an M-matrix. ThusA is a continuous surjective
M-function (see [12]).

Then, consider now the use of Schwarz alternating methothésolution of the
linearized and discretized Hamilton-Jacobi-Bellman d¢igna. Taking into account
of the previous properties, particularly the fact that thapping.4 is a continuous
surjective M-function, then the Schwarz augmentation @ssdeads to solve the aug-
mented systerd(U) = 0, where A(U') = C(U).U — F(U). Thus, according to
results of subsection 3.2 (see also [12]) , the mappinig a continuous surjective
M-function and the parallel asynchronous Schwarz altergahethod with flexible
communications converge monotonously.

4.2 The obstacle problem

The obstacle problem occurs in many fields such as mechanécéireance. In fi-
nancial applications there exists various mathematicaletso We consider first the
european option derivatives which is modelled by a lineffusion boundary value
problem or more generally by a linear convection-diffustmundary value problem
defined in a normed vectorial space ; such partial diffea¢etuation, similar to (2)
can be solved by flexible parallel asynchronous Schwareatieg method. For the
study of convergence of the parallel asynchronous Schweemating with flexible
communications, the reader is refered to subsection 3.1.

We consider now american option derivative modelled by edirdiffusion bound-
ary value problem or more generally by a linear convectidfusion boundary value
problem defined in a closed convex &tThis mopdel occurs also in mechanics. In
order to introduce this problem we will consider first an aicer option derivative
derived from a diffusion boundary value problem. Indeetiytedefine the symmetric
bilinear form

a(u,v) = /(VUVU + duv)dzx,
0

where2 C R” is a bounded domain antlis a real positive bounded function ; let us
also define the linear form

L(v) = /Q foda,

wheref is a given function of22(2). Consider now the following convex optimization
problem
Findu € K such that
{ J(u) < J(v), Yo € K,

12



whereJ(v) is defined by
1
J(v) = ia(v,v) — L(v),
K is a closed convex set defined by
K = {ve Hy(Q),v > everywhere if)},

and H; (Q2) denotes classically the set of functions belonging () whith gradi-
ents belonging to the same space and £2(Q2). Classicaly, a characterization of
the solution of the previous convex optimization probleee($42], [43]) is given by
solving the following problem

(—Au+du— f)(lu—1)=0Iin Q,
—Au+du< fandu <y in Q,
u =0, onofd.

An other characterization of the solution of such problem loa given by:

Sup (—Au + du — f,u — ) =0, everywhere irf),
u =0, onofl.

More generally, assume thdtis a real positive bounded function and consider
now the american financial derivative option associateth witonvection-diffusion
boundary value problem

(—Au+bg—g+cg—z+du—f)(u—¢):o in 0,

ou ou -
—Au+ba—x+08—y+du§f and u <1 in Q,
u =0, onofl.

A characterization of the solution of the previous problean also be given by:

{ Sup (—Au + b% + c%ﬂ + du — f,u—1) =0, everywhere irf2, (18)

Y
uw =0, onofl.
With appropriate discretization of the obstacle proble®) (dy finite difference

methods, we obtain the following discretized complemetytaroblem

FindU e R" solution of
(19)

Max (AU—F,U—\I/): 0.

whereA the discretization matrix of the convection-diffusion oger associated with
Dirichlet boundary condition, satisfies the assumption

A'is a strictly diagonally dominant/-matrix, (20)
andF andV are two vectors derived frormhiandy which result from the discretization

process. Sincd is a nonnegative function, in the case of the convectiofusiibn

13



operator, the assumption (20) is well satisfied if the firstvdgive is discretized via
appropriate backward or forward decentered schemes aogota the sign of the
convection coefficientd andc (see (3)) and if the second derivative is discretized
by the classical five points scheme ; classically, in the cdske diffusion operator
assumption (20) is also satisfied. The complementaritylpnolf19) is a particular
form of the following discrete Hamilton-Jacobi-Bellmaroptem

max(A'U — F', AU — F?) = 0,
with A2 = [ (identity matrix) andF? = V.

The linearization of the previous discretized problem (&®3ccomplished by the
Howard-Mosco-Scarpini method, similar to the one congden subsection 4.1 for
the linearization of the Hamilton-Jacobi-Bellman probleihe linearized system is
defined by

AU = C(U).U — G(U) = 0, (1)

whereC'(U) andG(U) are defined as follows

- if the first argumentAU — F' is dominant in (19), then théth line of the matrix
C(U) is equal to the-th line of the matrixA and thei-th component of the vectar
is equal toF}, i-th component of the vectar,

- otherwise if the second argumdnt— ¥ is dominant in (19), then theth line of the
matrix C(U) is zero, except for the diagonal entpywhich is equal to one and thieh
component of the vectar which is equal tol;, i-th component of the vectar.

It follows from (20) and Theorem 3.12 in [32], th&{(U) is an M-matrix. Then,
A is a continuous surjectiv@/-function. Thus, the parallel asynchronous Schwarz
alternating method with flexible communications convergmotonously. The reader
is refered to [44] for more details.

Note that the stationary obstacle problem associated wi#tbcand order elliptic
operator satisfying the maximum principle can be claskicatitten as an Hamilton-
Jacobi-Bellman problem and the parallel asynchronougiéthgas with flexible com-
munications presented here can be used for the numeriealasobf this problem.
Nevertheless, it can be noted that the convergence analfyperallel asynchronous
iterative methods derived from the linearization procesdle obstacle problem and
for the Hamilton-Jacobi-Bellman problem does not followrfr the same arguments
since the discretization matrix can be reducible in the fieste, whereas it is irre-
ducible in the general latter case.

5 Continuous 3D flow electrophoresis problem

Now we present in details a practical application in ordeltigtrate our approach.

14



5.1 Principle of continuous flow electrophoresis

Continuous flow electrophoresis is a process for separgtiatgin mixtures. This
process is currently used for analysis in biology. Its reSoh is determined by the
migration distance at the collection plane and by the sdalleedfilament occuped by
each protein species. Set of proteins, i.e. filaments undgngading due to a number
of different phenomena, among which electrokinetics aedtebhydrodynamics are
known to be important. In the first of these phenomena, diffees in migration ve-
locity between the ionic species give rise to local variaio electrical conductivity
near the protein filament. In the second phenomenum, thé dbeage in electrical
conductivity distorts the electrical field, thus includislgear stress in the liquid and
creating a local flow pattern. More precisely, density coygppphenomena involving
thermal and solutal connection induce strong instabilitgae and numerical simu-
lations can bring useful informations concerning the reatfr expected effects. A
physical model has been developed (see [45], [46] and [A)der to describe these
phenomena when two or several proteins are being sepaifé@teximodel consists in
coupling three evolutive boundary value problems definec dmounded domaif
included in the three dimensional space ; taking into actthenclassical shape of the
electrophoresis chamber, in the sequel we will considdr?hia a parallelepiped. So
the coupled equations describing the considered physiegmena are

- the Navier-Stokes equations with mixed boundary condidhe Dirichlet bound-
ary conditions being preponderant), which describe the, flow

- an evolutive equation with mixed boundary conditions, eymecisely the Dirich-
let boundary conditions arising on three faces, which dessithe transport of
protein

- apotential equation which corresponds to a generalizgethlcaan with Dirichlet
boundary conditions, which describe the the electricahphgena.

This process takes place in a very long parallelepipedi¢ aedolution strains with
low speed through this cell (see Figure 7). The solution titated by the mixture to
separate is injected in this flow by the face C of the cell asaagsliquid filament. An
electrical field is created through the cell by two electotieated on both sides of
the cell, on the faces E and F, respectively.

The proteins are transfered by the flow along the cell; furttege due to the effect
of the electrical field they migrate. The various speciesrotgn having different
electrical mobilities, they can be collected separatlyranface D.

In the sequel, the flow is assumed to be isothermal and witbloeinical reac-
tion; consequently the various physical coefficients agsn the phenomenom are
constant.

The physical phenomena related to the present study cancern

- the mass conservation,
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Figure 7: The principle of continuous flow electrophoresis.

- the main flow of the fluid in the three dimensional space, deed by the ve-
locity V' = (u, v, w), which belongs on the one hand to the presguaad on
the other hand to the electrokinetic effect,

- the transport and the migration of the proteins and moreialte the concen-
trationc of protein, which belongs t¥,

- the electrokinetic effect, connected to the spatial ckangf the potential in
terms of the concentration of the various ionic species.

5.2 The physical problem

We present in the sequel the physical parameters which gdlierelectrophoresis
flow, in the physical model developped by M.JLIETON, V. SANCHEZ et all (see
[45], [46] and [47]) ; the parameters are given at each point= (z,y, z) of the
bounded domaif included in the three dimensional space

- the velocity fieldV = (u, v, w),
- the pressure,

- the electrical field® = (E,, E,, E.),
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- the concentration,,, of each proteimn,

- the potentiald,

- the temperaturé’,

- the kinematic viscosity of the fluid,

- the volumetric mass of the fluial

- the dielectric permittivity of the fluid,

- the diffusion coefficient of the proteim D,,,

- the electrical conductivity of the fluid,

- the mean ionic conductivity of the protein ),

- the electrophoretic mobility of the protein .

In the actual problem, we consider the flow of an incompréssitscous fluid in
the domair?; the volumetric mass of the fluidis then a constant and the following
mass conservation law 5

P
— + div(pV) =0
g (hV)

is reduced to
- ou Ov Ow

dl"U(V):%—Fa—y“—a

The main flow is described by the following 3D Navier-Stokgsi@ions which take
into account the external strength field

—0. (22)

T LWV =AY — VS (23)

where, for = z,y, 2z, S = (S, Sy, Sw) IS the source term defined by

. ~ 0 0 0
S77 = € d|V<E§E) = €<%E§Em -+ 8—yE§Ey -+ @E%EZ), for n=u,v,w,
and
ou du  Ou
— or Oy 0z
wo k% &
Ow Ow  Jw
ox oy 0z

The transport equation for a proteinis modelled by the following evolution convec-
tion - diffusion evolution equation

O 4 yfom 4 pfom 4 plem — D Ney, = . (24)

wherey is the source term.
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The potentialb is governed by a generalized Poisson equation
—div (K grad®) = AQ, (25)

which can also be written as follows
0 K8<I> 0 K(?CI) 0 K(?CI)

_8_x< %)_8_31( 8_y>_$( @)IAQ, (26)

with @ = Qo + RT > ptmcm, WhereR is the constant arifing in the law of the perfect
gas, andK = Ky + > A\, WhereVm, A, > 0 andzp Am = 1. The equation
governing the flow (23) is coupled with the above relanfiT)ln by

E = —grad® (27)

The above partial differential equations (23) to (25) mwestbmpleted by the def-
inition of boundary values induced by physical considerai

The fluid comes in the cell by the upper face C and comes outéblptier face D.
We consider that the velocity fulfils non homogeneous Dlethoundary conditions
on the face A and homogeneous Neumann boundary conditiotisediace D. Fur-
thermore the velocity is equal to zero on the other four facgsthe velocity fulfils
homogeneous Dirichlet boundary conditions on these lasstan brief the boundary
conditions for the velocity can be written as follows

(U4 =4 =w/ =up=vp=wp=0,

U/jc =w/c = O,U/C = VC 28
du v _dw (28)
on /D on /D on /D ’

u/E:v/E:w/E:u/F:U/F:w/on

Concerning the transport equation (24), the proteins contiee cell by the face C
; SO on this upper face the concentration is known and thestdration fulfils non ho-
mogeneous Dirichlet boundary condition on the face C. feuntiore the concentration
is unfixed on the other five faces of the cell; so we can consideion these five faces
the concentration fulfils homogeneous Neumann boundarglitons. Nevertheless
we assume that the proteins do not reach the electrodes dack® E and F. Con-
sequently, we consider that the concentration fulfils hoamegus Dirichlet boundary
conditions on the faces E and F. In brief the boundary comatfor the concentration
can be summarized as follows

dem __ Odem __ OJem =0
on /A~ on /B~ On /D

Cm/c = Clet (29)

Cm)E = Cmjr =0
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The potential is known and constant at every points of theteedes, i.e. on the
two lateral faces E and F; thus the potential fulfils non hoemagpus Dirichlet bound-
ary conditions on the faces E and F. Furthermore the two otrtical faces A and B
are electricaly isolated ; consequently the potentiallutfon homogeneous Dirichlet
boundary conditions on these two faces obtained by a limeargolation between the
values of the potential defined on the electrodes. On thedwaial faces C and D, the
potential fulfils non homogeneous Dirichlet boundary ctinds obtained by the solu-
tion of the potential equation restricted to each upper anei face ; these boundary
conditions are preliminary computed. Taking into accotmat the concentration on
the face C is constant, the potential on this face is comparted only and the bound-
ary condition on the face C does not change. On the other Handdncentration
on the face D changes during the time; then, in order to obtemissing boundary
condition on the face D, at each time step the potential meisbmputed on this face.
In brief, the boundary conditions for the potential can besharized as follows

_ (Zl=2)®p+2%F _ (Z]=2)®p+2PF
®ra= 2 b5 = -

(30)
Q)0 =0, P)p = dp(t), Qg =P, ®/p = Op

where|Z| denotes the width of the cell.

In order to solve numerically the coupled boundary valueagiqus, we will con-
sider in the sequel various well adapted discretizatiohrims and we will also estab-
lish usefull properties verified by the discrete operatdhese assumptions allows to
analyze the behaviour of the parallel asynchronous Schaltemating method used
in order to solve the large algebraic systems derived frardibcretization.

5.3 Discretization of the Navier-Stokes equations

The Navier-Stokes equations are solved by the PISO algofi@Eressure Implicit with
Split of Operators), a predictor-corrector method, introed by R.I. Issa (see [48])
coupled with a discretization by the standart finite volumethod (see [49]). In the
case of incompressible flow, the PISO method is an impligbathm corresponding
to a time marching predictor-corrector method based upeslitting of the solution
of velocity equations and pressure equations. The priacifihe PISO method allows
to deal with the coupling of the variabléh?,p) by dividing each time step into three
sub-time steps

The predictor step : starting fromV™ = (U™, V", W) and P™, this step al-
lows to compute by an implicit way™+3 = (U"+%, Vnts, W"+%), satisfying the
momentum equation when the pressure is fixed at its valueegbévious time step
P™, Note that, in this first step, the mass conservation equg#ia) is not verified.
Then the velocity components are solution of the three systike the following one
written in order to obtairt/" "3

D,.U"3 = H (U"3) — %AEP” + Sy + %U“, (31)
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whereH,, is the discretization matrix of the convection-diffusienrhs given by, =
A¢+H, andAY is the diagonal part off,,, S,, is the term source equal ¢div (E,.E),
D, = (é—Ag) is a diagonal matrix, andD,, being defined accordingly) ank is
the difference operator approximation of the first spacc'a/d'e'w/ea@§ (E=x0rl=y
or ¢ = z ). Note that the predictor step consists in the solution océ¢huncoupled
algebraic linear sytems each system allowing to obtain gpom@nt of the velocity ;
so these systems can be solved independantly by a parajtel wa

First corrector step : this first explicit step compute the field velociﬁy"*% as-
sociated with the pressurié(“%), verifying the discrete approximate Navier-Stokes
eguations and the approximate mass conservation equttisistep consists, for ex-
ample, in finding/"+3 such that

D, U™ = H,(U"3) = 1A, PO+2) 4 5, 4 LU"

divi/"+3 =0

Note that the approximation consists in maintaining ungearthe termH;(U"*%).
By subtracting the previous equation to the equation (3&)otatain

DU — Uy = AL (PR - ),
P

then )
Un-i—% — Un-i—% o —D;le(P(TH_%) o P(n))
p

The continuity equation di"+3 = 0 can be written in a discrete form as follows
A (U™5) + A, (VIFE) + A, (W) = 0.

Finally, the first corrector step consists in computing aspuee correctionP =
P+3) — p( solution of the following linear system

1
—= (DDA + ADSIA, + ALDIAL) P = G (32)

p
where ) ) 1 1

G"s = —(A U™ s + A V™5 + A, W3,

In order to obtainP™+2) andU™*3, V™5 Wn+3 | itis sufficient to computé("+z) =
P + Pe and for examplé/™+5 = U3 — 1D.'A, P¢, and analogously fovn+s
andWnts,

Second corrector step : using the same procedure, a second corrector step is set
up and allows to improve the approximation of the pressuckthe velocity fields ;

. . = 2 2 2 2 1
starting from the field$/"+5 = (U"*+5, V"5 W"+3) and P*+2) | we compute the
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fields V! = (Un*L, Vot Jyntl) and P which are taken as the approximation
at time stepg(n + 1); the continuity equation is taken into account by consitethe
discrete Navier-Stokes equations under a more complatelgiperforming evolution
the termH;?(V”JF%),n = u, v, w. S0, in order to find for exampl&™*!, we consider
the momentum equation written as follows

/ 2 1 1
D, U = H (U5) — —A,P"D 4§ + U™ (33)
P

By subtracting (33) to (31), we obtain

Un+1 — Un+% 4 D;1<H;<Un+% _ Un+l,) _ lAz<P(n+1) . P(n+%))).
P

Then

- o 1
divi/"t! = divi/" 5 — Z(A, D A, + A,D'A, + A, D AP 4+ G'E
p

wherepec = P+l — plits),
G"5 = —(A,D; H,.U* + A,D; . H,.V*+ A,D;' . H, W*),

with U* = Un+5 — Unts, V* = Vnts — ynts andW* = Wn+s — Wnts. Taking
. — 2 . . . .
into account that div"*s = divi/"*! = 0, the pressure correctiaf“ is obtained
by solving the following linear system

1

(A,D;'A, + AyD;' A, + A, D A, )P = G5, (34)
p

It can be noted that the matrix of the second corrector stepeisame as the one
obtained after the first corrector step ; in fact the equatwirthe first corrector step
and of the second corrector step are different only by tlegiosd member.

Isaa [48] has shown that two correctors steps are sufficeenbtain a suitable
accuracy compatible with the discretization scheme anddaf error propagation;
furthermore, the previous time marching scheme, based @rktier's scheme, is
unconditionally stable.

The finite volume method : in order to achieve the discretization of the Navier-
Stokes equation the PISO method must be coupled with a bgiiatieetization. Among
the spatial discretization technics, the finite volume rodtf#9] is the most appropri-
ate. The finite volume method needs classically the use of $taggered meshes
denoted by2,, €2, Q, (where the discrete components andw of the velocity are
approximated) an€, (where the discretization of the pressyrées achieved). It is
not possible to know the pressure and the velocity in anytpafithe mesh ; so, in
order to obtain both the value of the pressure and of the itglatthe same point,
extrapolation of their values are necessary. In Figure &to 1
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e the pressure is computed at the points M, E, W, N, S, H, B.

e the component/ of the velocity is computed at the poirggandw.

e the component of the velocity is computed at the poimsands.

e the componentl’ of the velocity is computed at the poirtisandb.

¢ the size of the volume control round the point Mjg™ x §,y™ X d,,2™.

e the size of the volume control round the point w for the corapah of the
component/ of the velocity isd,z* x J,y™ X 6,2™.

Discretization of the flow equations for the predictor step. For the predictor step,
the complete discretization of the Navier-Stokes equatieads to three uncoupled
algebraic linear systemg’U = bV, AVV = bV, AYW = b obtained from the
momentum equations ; note that the three matritésA" andA" are obtained by
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the same way. So, let us denote ®yany component of the velocity (i.€9 = u or
© = v or ©® = w) ; then we have to integrate on a volumel = Az Ay Az the
following equation

0(0) 0 0(vO)

or 20T

] = Be (35)

round a point of the staggered mesh where the compd@hehthe velocity is defined.
Then, after elementary computations [49], we finally obtaefollowing discretized
equation

—CL%@B - a?@s - CL%@W + CL%@M — ag@E - a%@]\/ - CL%@H = p° (36)

b@:/// Be du dyds + ST2Y 2% g
Vol 6t

and where the coefficientd’ are the entries of the matritV if © = U, of the matrix
AV if © = V or of the matrixA" if © = V. The values of the entries of the previous

where
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matrices are very useful for the study of the behaviour ofpthkallel asynchronous
algorithms for the solution of the uncoupled linear systetfi® = v°. Let us denote
by P; the Peclet number ([49]) on the fateso, for the componertf of the velocity,
we obtain

o lower face of the control volum&z® x §,y™ X 0,,2™

a¥% = Dy a(|Py]) + max(0, F3),
WhereDb = M) Fb = Wb 5wzm ande = %,

Spzb
¢ south face of the control volumgz™ x d,y™ X §,,2™ :

ag = D, o|Ps|) + max(0, F}),

VOpT™ 2™ Fs .
]J(ST’ FS = ‘/S(Svym andPs = D_s7
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west face of the control volumgx™ x 6,y™ x ,,2™

all; = Dy, a(|Py]) + max(0, F,),
WhereDw = M? Fo=Uy, 5pxm andpw = g_j,u

Oy

east face of the control volundgz" x 0,y™ x d,,2™

ap = D, a|Pe|) + max(0, Fe),
WhereDe = M? F.=U. 5pxm andpe = g_ee’

du €

north face of the control volum&az® x §,y™ X 0,,2™

af, = D, a(|Py,]) + max(0, F,),

whereD,, = %, E, =V, 6,y™ andP, =

Fs .
D’!L’

upper face of the control volumgz™ x 6,y™ X 9,2

a%y = Dy, a(|Py|) + max(0, Fy),
whereD,, = 220" W, 5,2™ and Py, = La

L
5pzh Dh ’

and lastly for the diagonal entry

0px™ Oy Y™ 0p2™
ot

S (C] (C] S (S (S (C]
a’M:aB+aS +a’W+a’E+a’N+aH+

In the previous relations the mapping§/?;|) are defined in the table 1 in order to
define many kinds of discretization scheme according to. [49]

Scheme s a(|Pi])

Centered differences:1 — 0.5|P]

Upwind 1

Hybrid : Maz(0;1 — 0.5P))
Power Law . Maz(0; (1 —0.5|P])°)
Exponential | Pil/(exp|P;| — 1)

Table 1: Definition ofx(|P;|).

For the points in the neighbourhood of the boundaries, theesponding entries
are zero :

e near the lower boundary ( resp. uppet$,(resp.a$ ) is zero,
e near the south boundary ( resp. north,( resp.a$ ) is zero,

e near the west boundary (resp. eastd), (resp.a9 ) is zero.
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Other Neumann boundary conditions are discretized acogtdistandard technics
(see [49)).

The entries of the matriced"” and A" are defined accordingly. Then, from the
values of the entries of the three matric#s, AV and A" we can easily verify that
these matrices are diagonally dominant. MoreovEf, A and A" are bothM-
matrices for all discretization schemes of table 1 exceptttie central difference
scheme. For the central difference scheméPif < 2, AY, AV and A" are also
M-matrices ; indeed the diagonal entries of the matritésA" and A" are strictly
positive and their off-diagonal entries are non-positiartheremore the matricet’,
AV andA" are obviously irreducible (see [33]) ; since there was diadlg dominant,
then the M-matrix property is proved (see [50]).

Discretization of the equations for the corrector step. For the two corrector steps
the PISO method leads to the following system to solve

1
——(A,D'A, + A, DA, + A,D'A,) P = G.
p u Yy v Yy w

equivalent to the linear system

AP P =@, (37)
where
P P< for the first corrector step,
~ | Pecfor the second corrector step.
and

G™*3 for the first corrector step,
G - 2
G™*3 for the second corrector step.

After discretization we finally obtain for each point M of theain mesh the fol-
lowing discrete equation

—dpp), — dsps — dwply + dupy — depy — dnply — dupl = gu,  (38)

where :
(dp = 1/(a¥(b) 6,2™ 6,2°),
ds = 1/(al(s) 0,5™ ).
dyw = 1/(a%(w)5m 9",
dg = 1/(ap(e) dua™ dpa°),
dy = 1/(ab(n) buy™ o,07")
dg = 1/(a¥(h) 6,2™ 6,2"),
\dM = dg+ds+dw +dg +dy +dg.

Finally, the matrixA” arising in the corrector step has properties analog to the ma
trices arising in the predictor step. Indeed, considetiedgtoundary conditions ([49]),
the matrixA” is diagonally dominant and, since the previous matrix educible,A”
is an M -matrix.
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Note also that, in the case of incompressible flow computatibe parallel asyn-
chronous Schwarz alternating method with flexible commatioos can be analyzed
when the Navier-Stokes equation is formulated in vortisttgam function (see [51]).

5.4 Discretization of the transport equation for proteins

The transport equation (24) is in fact a convection-ditbmsequation. In the sequel
we will consider a finite difference discretization for treguation. The diffusion
term is discretized using the classical seven points digateon scheme. The convec-
tion terms can be discretized using either the centralrdiffee discretization scheme
or the one-sided finite difference scheme. For theoreticalenience and in order
to satisfy always the convergence of the iterative algorjttve will consider in the
sequel only upwind finite difference schemes ; then accgrthrihe sign of the com-
ponentsu, v andw we consider only backward or forward discretization schémne
the convection terms. For example, if we consider the he?—gy of the equation (24),
the discretization is as follows

w2y 2@ 8:2) [l g, )t S) 1 O5), i > 0,
7y7 ax u(x’ y’ Z) Cm(x-l-(s,y,?x—cm(x,y,z) _|_ O(éx)) if w < O‘

Let us denote byl® the associated discretization matrix ; then, the matfixis
an M-matrix.

If we consider a central difference discretization scheardtie convection term,
then, the matrixA® is an M-matrix, in the case where the magnitude of the compo-
nents of the velocity are small enough. More precisely, exdhse wheréxr = jy =
0z = h, if

2D,, 2D,, 2D,,

ul < 7 v < 7 lw| < o
then, the matrix4® is an M-matrix. Nevertheless, from a practical point of view,
the previous conditions are not interesting for the considelectrophoresis problem,

since the components of the velocity are unknown.

In the sequel of the study, we will consider the migration olfycone protein ; so,
we will denote bye the concentration of the protein.

5.5 Discretization of the potential equation

For the potential equation, we consider a finite differeniserdtization. The numer-
ical scheme is the same for every term of the diffusion equatiThis scheme is
obtained by making the mean of two intermediate schemeseXanple let us con-
sider firstly the discretization oﬁa—i (Kg—ﬁ) for y = y; andz = 2 fixed. In order to

simplify, we shall use the following notations :
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® hy =um; — 11,

K; = K(xiv Yjs Zk) = Kz’jk’

Kt = K(L‘ih Yj, Zk) = Kz’:l:l,jk,
o &, = ‘I)(«Tiayjazk) = (I)ijku
o Oy = ‘I’(%ﬂ,yj,zk) = ‘I’iil,jk-
Let us first consider the two following schemes

o forward-backward scheme
~2(K%), = =ik (K (3, — K (52),]

= = [Kﬁl ( S ) < )]

z+l
> - (I)2+1

_ K .
- hihi+l®2_1 + <h hL+1 hZ s

e backward-forward scheme
—2(K%), = —E[K(5Y), - K (3, ]

_ 1 Dip1—9; i—P;
()R ()

- _Kiag. Kion | Ki K .
= h22 ¢Z—1 _I_ ( h? _I_ hihi+1 ¢Z hihi+1 (bl-i—l

Then, the final discretization scheme is obtained by makiegitean of each pre-
vious scheme ; for example the second derivative with régdpecis approximated

by
8¢ B K4 K;
8',’17 ( 8x)xi,yj7zk B N ( hz2 * hihi+1> q)l_l

1
2
K 2K; K
®; 39
" ( h? " hihiia " h22+1) (39)

Ki Ki+l
_ D,
(hihHl " hi ) H]

Analogously the other second derivative with respegt &md =z are approximated
with the method used to obtain the scheme (39) : on one hand; &éndz;, fixed,
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00 Kj1 K
_ = — b,
Ay ( 5y)mi,yj,zk { ( h? +hjhj+1 e

1
2
K, 2K; K,
+( e e 5“)@ (40)
> _

K Kj-i-l) }
_ + (I) .
(hjth n,)

and on the other hand, fat andy; fixed

8¢ Ky Ky,
— = — D)
8z ( 8z)ri,yj7zk |: ( h2 - hkhk-H) o

1
2
- Kk:+1)
+ d (41)
( hi hkhk+1 W)t

Ky, Kk:-i—l) ]
- + d
(hkhkz-i-l hi i1 e
Finally, the discretization matri® of the potential equation is a heptadiagonal matrix

and the approximation of the potential is obtained by sawime following linear
system

P® = Ss (42)

whereSs = AQ); the electrical conductivity' being positive, then the matrik is
positive definite. Moreover the discretization error carcbmputed by very simple
calculation and it is very easy to show that this quantitgd$ést® zero with the step size
discretization. Furthermore, we can verify easily thatrtrerix P is an M -matrix.

Finally, according to the result of section 3.1, since thérites of the seven pre-
vious discretized systems associated with the NaviereStekjuations, the transport
equation of the proteins and the potential equation are atidfrices, we can conclude
that the solution of the previous algebraic linear systeynthb parallel synchronous
and flexible asynchronous Schwarz alternating method egavi® the solution of
the considered discretized boundary value problem for aitiali guess and for any
ordering of the subdomains.

6 Parallel experiments

The parallel asynchronous Schwarz alternating methodflexible communications
has been implemented for solving many numerical problerdsraparticular the vari-
ous boundary value prolems quoted above ; among them wetegtheiparallel simu-
lations applied to the solution of the electrophoresis [@mj52], and also the parallel
solution of the obstacle problem [44], of the Hamilton-JaieBellman problem [12],
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of a nonlinear diffusion problem [36] and of the Navier-Stelproblem formulated in
the classical way [50] or formulated in the vorticity streumction [51]. These par-
allel simulations have been carried out on various multpssors architectures such
as shared memory machines, or distributed memory machines.

Flexible asynchronous schemes of computation have alsodpgadied to the solu-
tion of nonlinear optimization problems (see [53, 54]).

6.1 Parallel implementation of Schwarz alternating method

The implementation principle of the parallel flexible asyranous Schwarz alternat-
ing method is similar for all applications quoted previgudlhe main implementation
effort concerns the solution of very large scale algebrgstesns. In particular lin-

ear systems must be solved since linearization techniques @& Newton method,
Howard method or PISO method are used. Experimentally we naticed (see

[12], [36], [44], [50, 52]) that the general behavior of péehflexible asynchronous
Schwarz alternating method is very similar for all studipglecations. In the specific
case of evolution problems, where series of stationarylpnob are solved, the syn-
chronization of all the computations must occur before tbgiming of a solution of

new stationary problem.

For sake of clarity, we present in the sequel implementatizh experimental re-
sults for the solution of the 3D convection-diffusion preiml (2).

The Schwarz alternating method can be combined with vasokiemes of compu-
tation. In each case an asynchronous iterative scheme exibl® communications
and a synchronous one have been implemented for the pamatfedrical experiments
with 3D physical model. The domaii, where the boundary value problem is de-
fined, is splitted into overlapping parallelepiped subdm®dsee Figure 11). We
have choosen the smallest subdomain overlapping, i.e. @s&.mrhus, sequences
of smaller subproblems are solved on each processor of tadgg@omputer in order
to compute a solution of the global problem ; practically enaccuracy is obtained.
Several subdomains, i.e. parallepipeds, are assigneagoeacessor in order to im-
plement a strategy which is close to the multiplicativetstyg [8]. To obtain a faster
convergence of the parallel computations, each processutiés contiguous subdo-
mains, numbered according to red-black ordering ; suchriorglées more appropriate
for parallel computations (see [58]) ; according to resaftsection 3.1, the conver-
gence of the parallel iterative algorithms is then obtained

Each processor updates the components of the iterate \esgociated with its
subdomains and computes the residual norm correspondihg snibdomains in order
to participate to the convergence detection. A block relaranethod is used in order
to solve each subproblem on each subdomain ; this kind of ededliows to have
very flexible communications between the processors. Mageigely, all points of a
subdomain are updated twice by the relaxation procedutédimsard, then backward,
by an SSOR scanning. Note also that a direct method couldsbecahsider for this
purpose (see [44, 36]) but combersome with 3D domains skmsdind of algorithm
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Figure 11: General 3D splitting with parallelepiped ovpdang subdomains.

induce fill-in during the factorisation of the matrix.

Convergence detection of the parallel iterative processsovhen a given predi-
cate on a global state is true ; an usual predicate corresgorible fact that, on every
subdomain, the norm of the local residual remains under enginreshold (see [55],
page 580).

Various strategies of data exchange can be implemente{b@&ge\We present here
a strategy based on systematic communications betweendbessors with a given
fixed exchange frequency. Note that the efficiency of pdraligorithms strongly
depends on the communication frequency within the comjpumgtas communica-
tions increase the overhead. Point to point communicati@t&een two processes
have been implemented using persistent communicationeségnd MPI (Message
Passing Interface) facilities in both version of Schwateralating methods. Message
exchanges with the same argument list is repeatedly ex@dtimrresponds to data
transmission of successive values of the components otehaste vector associated
with a subdomain frontier. That is the reason why persistentmunication request
has been used. A persistent communication request can bghthof as a one way
channel. This approach permits one to reduce the commionoaterhead between
the process and the communication controller.

For the sake of robustness, we have used a synchronous nmebepseration since
ready mode is unsafe and buffered mode may lead to overfloheitigh commu-
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Figure 12: 3D splitting with slice overlapping subdomains.

nication frequency case. Note that the use of a synchronaae reend operation is
not in contradiction with the implementation of asynchrosderations since the im-
plementation of communication layers and the type of im@eted parallel iterative
computation scheme are independent.

If global convergence is detected, then computations catedmeinated and re-
sources can be freed. All persistent communication requastcancelled. Note that
cancellation of send requests must occur before canaellafireceive requests; oth-
erwise data exchange based on rendezvous mechanism mayofarthore details on
the implementation of asynchronous iterative schemes wipctation, the reader is
referred to [56, 57, 58]. The principle of implementationpafrallel asynchronous
iterative algorithms with flexible communication can be suanized as follows

do until global convergence
for each subdomain assigned to the procedsor
if local convergence is not reachtxn

foriinl.. Ndo
receive the latest frontier values
relaxation

end do

send the frontier values to the neighbors
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end if
end do
end do

Implementation of parallel synchronous iterative scheofieemputation was based
on the blocking reception of boundary values. The termamatirder of communica-
tions requests is totally handled with MPI facilities. Itnst necessary to provide
additional information about synchronous Schwarz altémgamethod, since its im-
plementation and message passing issues between thegmacare straightforward
in this case. Reference is made to [57, 59] for implementatietails concerning
parallel synchronous iterative algorithms.

6.2 Numerical experiments

We present now the main computational results for a 3D cdinediffusion-problem
(2). For all experiments, we have considered 3,750,000atigation points and 256
well balanced, cubic subdomains. We have tested severahocaioation frequencies
for data exchange. The tuning of the number of relaxatiorssmade experimentally.
We present here results in the case where data exchange eveuy two relaxations
on each subdomain. Reception of boundary values occursibeginning of each
updating phase. For sake of effectiveness, a different@uhlah is considered af-
ter a communication. As previously said, the subdomaingyasd to a processor
are treated cyclically according to a red-black orderingpdtimentally, this strategy
turned out to be the most efficient one.

Computational experiments were carried out using an IBM-S&ies machines
located at IDRIS computing centers in Paris. More precjsbl/main support of our
experiments was an IBM-SP4 with twelve SMP nodes of thintg-P690+ processors
(at 1.3 Ghz); nodes are connected via a Federation netwd@k3hits per seconds).
The latency of Federation network is between 5 and 7 miccors#s and its bandwith
is 2 Ghits per second for each node (see http://www.arcadegéoverview/); note
that the bandwidth is good since there are few processonsqakr. We have used up
to 128 processors.

Figures 13, display the elapsed time of parallel iteratige@hms for different
values of the number of processors in the case of 3D linedlgms with the fol-
lowing convection parameters: 0.5, 1.5 and -@.5; 10, andv = 1, wherev is the
diffusion parameter.

Figures 14 show the efficiency of parallel iterative aldaris in function of the
number of processors.

The number of relaxations is given in Figures 15.
Parallel experimental results are summarized in table 2Zand
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| procs. | time (sec.)| relaxations| speed-up efficiency |

| Seq | 8681 | 1573740 - | - |
As2 | 5781 | 1603558 1.50 0.75
As4 | 2846 | 1632888 3.05 0.76
As8 1470 | 1651626| 5.91 0.74
As16 796 1705320| 10.91 0.68
As32 466 1758772| 18.63 0.58
As64 241 1822306 36.02 0.56
As128| 133 1998848 65.27 0.51

Table 2: Asynchronous Algorithmy, = 1

From Figures 15, we see that the number of relaxations isesewith the num-
ber of processors. In the case of parallel synchronous ssheimcomputation, this
phenomenon is mainly due to slight modifications in the omfetreatment of the
different subdomains; in the case of asynchronous schefresnputation, this fact
is mainly due to the chaotic behavior of the algorithm. Ndtattasynchronous al-
gorithms perform more relaxations than synchronous onéen,tin asynchronous
domain decomposition methods, boundary values of subdmaae exchanged with
no order : thus, regarding the number of relaxations, cqarere may be slower. We
must note that despite higher numbers of relaxations, ethpse of asynchronous
parallel iterations are less than the elapsed time of spmcius ones. In other words,
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| procs. | time (sec.)| relaxations| speed-up efficiency |
| Seq | 8681 | 1573740 - | - |
Sy2 6 232 1587 852 1.39 0.70
Sy4 3132 1 600 460 2.77 0.69
Sy8 2061 1614 310 4.21 0.53
Sy16 1004 1628 400 8.65 0.54
Sy32 577 1656002| 15.05 0.47
Sy64 317 1683804| 27.38 0.43
Sy128 185 1743758 | 46.92 0.37

Table 3: Synchronous Algorithmr,= 1

the withdrawal of synchronization can overcome slower eogence in number of
relaxation. Asynchronism is an efficient way to deal with coomication overhead
and load unbalance, which are major issues in parallel ctingpuOn the other hand,
in the case of synchronous algorithm, as the number of subihsnis bounded to
256, the more processors is being used, the less subdomaiassigned to each one.
The order in which boundary values are exchanged betweeprtwessors, varies
as the assignment of the subdomains changes. This ordehdeesa slight influ-
ence on the convergence speed of domain decomposition dsetRkimally, we note
that asynchronous algorithms with flexible communicatios @ore efficient than
synchronous algorithms. It turns out that the overhead rgée@ by additional re-
laxations in the case of asynchronous algorithms is smiddéar the synchronization
overhead combined with processor idle time of parallel bymgous schemes of com-
putation. Moreover, the efficiency of synchronous algonisidecreases faster than the
efficiency of asynchronous algorithms when the number ofggsors increases.

7 Conclusion

In this chapter, we have studied the solution of linear analinear boundary val-
ues problems via parallel Schwarz alternating method. We khown the interest
of introducing flexible asynchronous scheme of computdtomvarious applications
such as linear and nonlinear convection-diffusion prolsigdamilton-Jacobi-Bellman
problem, obstacle problem, Navier-Stokes equations anpled problems of contin-
uous electrophoresis flow problem. We have also presenteddanplement such
parallel methods on a supercomputer. We have also showthihatse of persistent
communication request with MPI library can lead to efficiemplementation. Parallel
synchronous and asynchronous iterative schemes of cotiguuitaive been also com-
pared. Computational results were displayed for test on-lBRseries machines have
clearly shown the benefits of using parallel algorithms aadiqularly the efficiency
of parallel asynchronous Schwarz alternating method coedpt the synchronous
one.
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