
Abstract

In this chapter, we present the interest of introducing parallelism in domain decom-
position methods. In particular, we detail on an original approach: the flexible asyn-
chronous iterations applied to the Schwarz alternating method. Application to various
boundary value problems such as nonlinear convection-diffusion problem, Hamilton-
Jacobi-Bellman problem and obstacle problem are presented. A coupled problem, i.e.
the electrophoresis problem is also studied in details.

Keywords: Domain decomposition methods, Schwarz alternating method, parallel
asynchronous iterations, boundary value problems, convection-diffusion problems,
Hamilton-Jacobi-Bellman problem, obstacle problem, Navier-Stokes equations.

1 Introduction

The present contribution concerns the numerical solution of linear and nonlinear bound-
ary value problems via flexible asynchronous Schwarz alternating methods. Various
kinds of nonlinearities are considered: pertubation of a linear operator by a diagonal
monotone increasing operator, nonlinear complementarityproblems which occur in
particular in mechanics, image processing and financial applications, Navier-Stokes
equations in fluid mechanics which model flow problems and more generally coupled
problems. Various boundary conditions are considered in the partial differential equa-
tions quoted above: Dirichlet, Neumann, Robin and mixed. The material presented
in this chapter can be extended to the case of evolution problems solved via implicit,
semi implicit or predictor corrector schemes since the solution of evolution problems
leads to the solution of sequences of stationary problems.

Stationary problems considered here are discretized via discretization technics such
as classical finite difference methods, finite elements, finite volume and variational fi-
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nite difference methods. We note that under appropriate assumptions verified by the
continuous problem, the above discretization technics lead to the solution of algebraic
systems of equations involving M-functions in the nonlinear case and M-matrices in
the linear case, respectively. These good properties permit one to insure the conver-
gence of discrete asynchronous flexible Schwarz alternating methods. Finally, we
note that the parallel asynchronous methods presented in this chapter are well suited
to massive parallelism in high performance computing, gridcomputing and peer to
peer computing.

Section 2 deals with continuous Schwarz alternating methods. Section 3 concerns
the presentation of general discrete Schwarz alternating methods and more particu-
larly, linear and nonlinear convection diffusion problems. In Section 4, we study com-
plementarity problems: Hamilton Jacobi Bellman problems and obstacle problems.
Section 5 is devoted to the analysis of a particularly interesting coupled problem: i.e.
continuous electrophoresis problem. Finally, parallel implementation and significant
computational results are presented and analyzed in Section 6.

2 The continuous Schwarz alternating method

Domain decomposition methods, such as the Schwarz alternating method introduced
by P.L. LIONS [1, 2, 3] and M. DRYJA [4, 5, 6], are well suited to the parallel solution
of boundary values problems (see [7]). For more details on the Schwarz alternating
method see also [8, 9, 10, 11].

Let us first present the Schwarz alternating method in a very simple one-dimensional
context. For this purpose, consider the Poisson equation with homogeneous Dirichlet
boundary condition and defined in the domainΩ = [0, 1] ⊂ R

{
−d2u

dx2 = 0 sur [0, 1],
u(0) = u(1) = 0.

(1)

Consider first the sequential context and assume thatΩ is splitted into two overlapping
subdomainsΩ1 andΩ2, whereΩ1 = [0, γ2

1 ], 0 < γ2
1 < 1 andΩ2 = [γ1

2 , 1], 0 < γ1
2 <

γ2
1 < 1,whereγ2

1 , γ
1
2 respectively are the right boundary ofΩ1 and the left boundary of

Ω2 respectively ; note thatΩ = Ω1

⋃
Ω2 andΩ1

⋂
Ω2 6= ∅; and consider accordingly

the decomposition ofu into two subvectorsu1 andu2. In order to solve equation (1)
by the sequential Schwarz alternating method, let us define an initial guessu(0) =

(u
(0)
1 , u

(0)
2 ); then the first componentu1 is computed on the subdomainΩ1 using the

boundary conditionsu1(0) = 0 andu1(γ
2
1) = ũ2, whereũ2 is the restriction toγ2

1 of
the value of the subvectoru2 of u, computed on the other subdomainΩ2. On the other
hand, the componentu2 is computed symmetricaly on the subdomainΩ2 using the
boundary conditionsu2(γ

1
2) = ũ1 andu2(1) = 0, whereũ1 is the restriction toγ1

2 of
the value of the subvectoru1. Then this iterative process is repeated alternatively. For
choosing the values of̃u1 andũ2 various strategies can be considered.

In the sequel let us denote byr the label of the Schwarz iteration. The case where
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Figure 1: Additive Schwarz alternating method.

at each step(r+ 1), we haveũ1 = u
(r)
1 (γ2

1) andũ2 = u
(r)
2 (γ1

2) corresponds to a Jacobi
like method, similar to an additive Schwarz alternating method (see Figure 1). On the
other hand for the computation ofu(r+1), we can also consider that̃u1 = u

(r+1)
1 (γ2

1)

andũ2 = u
(r)
2 (γ1

2), algorithm corresponding to a Gauss-Seidel like method, similar to
a multiplicative Schwarz alternating method (see Figure 2).

More generally, in order to parallelize the computation, the domainΩ of a bound-
ary value problem is splitted into rectangular subdomains in the 2D case or into par-
allelepiped subdomains in the 3D case. In order to compute a numerical solution of
a boundary value problem, sequences of smaller subproblemswill be solved using
several processors of a parallel computer ; practically more accuracy is obtained.

Consider a boundary value problemA.u = f defined on the bounded domainΩ
with boundary conditionB.u = g on ∂Ω, the boundary ofΩ. For the sake of sim-
plicity, we considerΩ ⊂ R

2; furthermore we consider also a decomposition in two
overlapping subdomains denoted byΩ1 andΩ2 respectively (see Figure 3).

The parallel asynchronous solution with two processors of the above boundary
value problem using the continuous Schwarz alternating method consists in solving
simultaneously at each iteration :






A1.u
(r+1)
1 = f1 onΩ1

B1.u
(r+1)
1 = g1 on∂Ω ∩ Ω1

u
(r+1)
1 = ũ

(r)
2 onγ2

1 = ∂Ω1 ∩ Ω2

and






A2.u
(r+1)
2 = f2 onΩ2

B2.u
(r+1)
2 = g2 on∂Ω ∩ Ω2

u
(r+1)
2 = ũ

(r)
1 onγ1

2 = ∂Ω2 ∩ Ω1

whereAi andBi, i = 1, 2 respectively, denote the restriction ofA andB, to the subdo-
mainΩi, andũ(r)

1 andũ(r)
2 denote the available values of the components of the iterate

vector(u1, u2) at the current iteration ; more precisely,ũ
(r)
1 andũ(r)

2 are the restriction
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Figure 2: Multiplicative Schwarz alternating method.
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Figure 3: Decomposition of the domainΩ into 2 subdomains
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Figure 4: An example of asynchronous algorithm with flexiblecommunications.

of the the computed components(u1, u2) on the boundariesγ2
1 andγ1

2 . Flexible paral-
lel asynchronous Schwarz alternating method (see [12, 13, 14]) are a general class of
parallel iterative methods whereby computations can be made using the current val-
ues of each component of the iterate vector. The main featureof this class of parallel
iterative methods is to allow flexible data exchange betweenthe processors. In this
iterative process̃u(r)

i are not necessarily associated to components that are labelled by
an iteration number as data exchanges may occur at any time. Then, in this class of
method, partial updates can be used at any time in the computation ; thus value of the
components of the iterate vector which is used in an updatingphase may come from
updates which are still in progress.

Figure 4 displays the typical behavior of parallel asynchronous iterations with flex-
ible communication in the simple case where two processors,denoted byP1 andP2,
respectively, exchange data. In Figure 4, boxes and arrows,respectively, represent
updating phases and communications, respectively. Thus, flexible data exchanges be-
tween processors are allowed; as a consequence, the coupling between communication
and computation is improved.

This general method extends classical asynchronous Schwarz alternating method
(see [15] to [19]), whereby computations are performed in parallel by several proces-
sors without any order nor synchronization by using values of the block component
of the iterate vector produced at the end of each updating phase. This last kind of
method generalize also the classical parallel synchronousscheme such as parallel Ja-
cobi method, parallel Gauss - Seidel method ; note also that classical sequential Jacobi
and Gauss - Seidel method can be infered from the synchronousscheme (see [20] to
[31]).
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3 General discrete Schwarz alternating method

3.1 A linear model convection-diffusion problem

Consider the following linear convection-diffusion problem

{
−ν∆u + a∂u

∂x
+ b∂u

∂y
+ cu = f , everywhere inΩ,

u = 0, on∂Ω,
(2)

wherec ≥ 0, ν > 0, Ω is a bounded domain,f is a given function ofL2(Ω) and∂Ω
denotes the boundary ofΩ. For the sake of simplicity, we assume that the discretization
grid of the domainΩ is uniform. In the sequelh will denote the discretization step-
size. We assume that the columns of the discretization grid are numbered naturally.
The discretization of the operators which occur in problem (2) is made according to
the following rules: the Laplacian is discretized via the classical five points scheme
and the first derivatives are discretized as follows according to the sign ofa andb

∂u

∂x
=

{
u(x,y)−u(x−h,y)

h
+ O(h), if a > 0,

u(x+h,y)−u(x,y)
h

+ O(h), if a < 0.
(3)

LetA denote the discretization matrix of problem (2) ; let us alsodenote byF the
corresponding right hand side of the discretized system. Ifc is strictly positive, then
regardless the sign ofa andb, it follows from (3) that the off-diagonal entries of matrix
A are non-positive and the diagonal entries ofA are positive. Moreover, the matrixA
is strictly diagonally dominant; thus,A is a nonsingularM-matrix, i.e.aij ≤ 0 for all
i 6= j andA−1 ≥ 0 (see[32], [33]).

If c=0, then we can show that the matrixA is diagonally dominant. Moreover, by
using the characterization of irreducible matrices (see [33]) we can verify that the ma-
trix A is irreducibly diagonally dominant. Thus, in this caseA is also anM-matrix(see
[33]).

Consider now a red-black ordering of the columns of the grid and let Â be the
corresponding discretization matrix derived fromA by a permutation which preserves
the sign of the entries. We consider the former discretization scheme; ifc is strictly
positive, then, the matrix̂A is strictly diagonally dominant; ifc = 0, then we can show
analogously that the matrix̂A is irreducibly diagonally dominant. Thus, in both cases
Â is anM-matrix.

Let us now consider the parallel Schwarz alternating method. For the sake of clarity
and simplicity, domain decomposition is presented in the 2Dcase. The effectiveness
of domain decomposition methods is well known for boundary value problems. These
methods are also well suited to parallel computing (see [7]). We concentrate here on
parallel Schwarz alternating methods, which are based on overlapping subdomains.
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Figure 5: Example of decomposition ofΩ with 3 subdomains.

Problem (2) can be decomposed intoα sub-problems as follows. Fori = 1, ..., α,





−ν∆ui + a∂ui

∂x
+ b∂ui

∂y
+ cui = fi, everywhere inΩi,

ui/Γi
= 0,

ui
/γ1

i

= ũi−1
/γ1

i

for 2 ≤ i ≤ α,

ui
/γ2

i

= ũi+1
/γ2

i

for 1 ≤ i ≤ α− 1,

(4)

whereui andfi, respectively, are the restriction ofu andf, respectively, toΩi, Ω =⋃α
i=1 Ωi, Ωi

⋂
Ωi+1 6= ∅, i ∈ {1, . . . , α − 1}, γ1

i = ∂Ωi

⋂
Ωi−1, i ∈ {2, . . . , α}, γ2

i =
∂Ωi

⋂
Ωi+1, i ∈ {1, . . . , α−1}, Γi = ∂Ωi

⋂
∂Ω, i ∈ {1, . . . , α} andũj, j = i±1 are

the restriction of the available values of the iterate vector on the overlapping boudaries
γk

i , k = 1, 2 (see Figure 5).

The decomposition (4) corresponds to an overlapping subdomain decomposition,
wherebyui is computed using the restriction ofui−1 andui+1, respectively, onγ1

i and
γ2

i , respectively. In the sequential case, the scheme of computation corresponds ex-
actly to a multiplicative Schwarz scheme. In the parallel case, the Schwarz alternating
method can be combined with an asynchronous iterative scheme of computation with
flexible communication in order to be as close as possible to amultiplicative scheme.

If we solve the linear simultaneous equationsAU = F, via the Schwarz alternating
method, then the augmentation process of the Schwarz alternating method transforms
theM-matrixA (respectively the right hand sideF ) into anM-matrix Ã (respectively
a vectorF̃ )(see [34] and [12]). Thus, for the solution of the resultinglinear system
ÃŨ = F̃ we are in the convergence analysis framework considered in [12] for the
study of the parallel Schwarz alternating method with flexible communications ; so,
for any initial guessU (0) satisfyingAU (0) − F ≥ 0, the asynchronous Schwarz al-
ternating method converge and according to [12] the convergence is monotone, i.e.
U (0) ≥ U (1) ≥ . . . ≥ U (r) ≥ . . . U, whereAU = F .

Note that the initial guessV (0) can be also choosen such thatAV (0)−F ≤ 0; in such
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a case, according to the monotone convergence results we haveV (0) ≤ V (1) ≤ . . . ≤
V (r) ≤ . . . U. By combining both previous initializations for the iterative process, we
can derive an effective stopping criterion of the iterationprocess ; indeed at each step
the following inequalityV (r

′

) ≤ · · · ≤ U ≤ . . . ≤ U (r) holds and we can stop the
iterative algorithm whenU (r) − V (r

′

) is sufficiently small.

More generally, we note that under realistic hypothesis, the finite elementP1 or P2

discretization matrices occurring in the following analogous linear partial differential
equations





− ∂
∂x

(p(x, y)∂u
∂x

) − ∂
∂y

(p(x, y)∂u
∂y

) + q(x, y)u = f , everywhere inΩ,
u = 0, onΓ0,
∂u
∂n

+ σu = g, onΓ1

(5)

where∂Ω = Γ0

⋃
Γ1 , p, q ∈ C(Ω) andσ ∈ C(Γ1), with

0 < p0 ≤ p(x, y) ≤ p1, ∀(x, y) ∈ Ω,

0 ≤ q(x, y) ≤ q1, ∀(x, y) ∈ Ω,

0 < σ0 ≤ σ(x, y) ≤ σ1, ∀(x, y) ∈ Γ1.

is also an M-matrix (see [35]).

3.2 Nonlinear problems

In this subsection, let us consider various situations of nonlinear problems derived
from the previous linear model problem by perturbation of the linear operator. We
consider a first situation where nonlinearities are defined in the domainΩ. The general
model can be given as follows

{
−ν∆u + a∂u

∂x
+ b∂u

∂y
+ cu+ ϕ(u) = f, in Ω,

B.C.,
(6)

wherec ≥ 0, f ∈ L2(Ω),ϕ : R → R is a continuous, nondecreasing function and B.C.
represents a classical boundary condition, i.e. Dirichlet, Neumann, Robin or mixed.
The following nonlinear increasing functions occur in various nonlinear convection-
diffusion problems :ϕ(u) = eαu, with α > 0 and alsoϕ(u) = Log(β + δu), with
δ > 0 and a suitable sign forβ, can be considered (see [36]). The discretization
techniques lead to the solution of the following algebraic problem

A(U) = AU + Φ(U) − F = 0, (7)

whereA is the discretization matrix associated with the linear part of the equations,Φ
is a diagonal operator derived from the discretization of the diagonal operatorϕ and
(F, U) ∈ R

dim(A) × R
dim(A). According to the properties of the operatorϕ thenΦ is

a monotone increasing mapping. Assume that the same discretization techniques as
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Figure 6: Different graphs forφ.

the one quoted in the previous subsection are used, thenA is an M-matrix. ThusA is
anM-function, according to Theorem 13.5.6 in [33] and [37], i.e. A is off-diagonally
monotone decreasing and inverse monotone increasing ; notethat, in the linear case,
A(U) = AU − F = 0 and we are in the framework of the previous subsectin since
A is an M-matrix. If we solve the nonlinear simultaneous equationsA(U) = 0, using
the Schwarz alternating method with flexible communications described in [12], then
the augmentation process of the Schwarz alternating methodtransforms theM-matrix
A into anM-matrix Ã and the monotone increasing mappingΦ into the monotone
increasing mapping̃Φ (see [34], [12]). Thus, the resulting nonlinear mappingÃ is a
surjectiveM-function and, for such asynchronous Schwarz alternating method with
flexible communications we are in the monotone convergence framework considered
in [12].

We can also consider nonlinear convection-diffusion problems where nonlinearities
arise on the boundary of the domain (see [38]). This kind of problem occurs, for
example, in the following boundary temperature control problem

{
−ν∆u + a∂u

∂x
+ b∂u

∂y
+ cu = f everywhere inΩ,

∂u
∂n

+ ϕ(u) = 0 onΓd andu = 0 on∂Ω − Γd,
(8)

whereΩ ⊂ R
2, c ≥ 0, Γd ⊂ ∂Ω, f ∈ L2(Ω) andϕ : R → R is a continuous,

nondecreasing, nonlinear function. Figure 6 displays someexamples of graphs for
functionϕ. In particular, the graphs (a) and (b) model saturation phenomena and the
graph (c) models a multi-valued function corresponding to the boundary condition:
∂u
∂n

+ ϕ(u) ∋ 0.

The discretization techniques presented in the previous subsection can be also used
for the interior points of domainΩ. For all points inΓd, the discretization of the
Neumann condition leads to the solution of the following discrete equations

uj − uj−1

h
+ ϕ(uj) = 0. (9)

Thus, we have to solve the problem

A(U) = AU + Φ(U) − F = 0, (10)

whereA is the discretization matrix associated with the linear part of the equations,Φ
is a diagonal, nondecreasing operator and(F, U) ∈ R

dim(A) × R
dim(A).
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It follows from (9) that thej-th component ofΦ is equal tohϕ(uj) if j is the index
of a point which belongs toΓd otherwise is null. Ifc > 0, then the matrixA is a strictly
diagonally dominant matrix. Thus,A is anM-matrix. In the case wherec = 0, we
can verify by a similar argument that the matrixA is irreducibly diagonally dominant,
regardless the sign ofa andb; thus,A is anM-matrix. SinceA is anM-matrix and
Φ is a continuous, nondecreasing, diagonal mapping,A is a surjectiveM-function,
according to Theorem 13.5.6 in [33].Thus, once again, the asynchronous Schwarz
alternating method with flexible communications convergesmonotonically.

Note that the particular case of convection-diffusion problems with Neumann con-
ditions defined everywhere on∂Ω can also be considered. Then, the above analysis
still holds when the conditionc > 0 is satisfied.

Note also that the results of this subsection can also be extended to the case where
a red-black ordering of the grid points is considered ; in such a case, the parallel asyn-
chronous Schwarz alternating method with flexible communications converge also
monotonically .

4 Complementarity problems

In the present section, we will study two kinds of complementarity problems, i.e. the
discretized and linearized Hamilton-Jacobi-Bellman problem on the one hand and the
obstacle problem on the other hand.

4.1 The discretized and linearized Hamilton-Jacobi-Bellman prob-
lem

The Hamilton-Jacobi-Bellman problem occurs in many fields such as stochastic con-
trol, management, economy, mechanics and image processing. We recall briefly the
formulation of the Hamilton-Jacobi-Bellman problem with Dirichlet boundary condi-
tion 




Find u solution of
sup
v∈V

(A(v)u− f(v)) = 0, everywhere in Ω,

u = 0, on ∂Ω,

(11)

whereΩ ⊂ R
η is a bounded domain,∂Ω is the boundary ofΩ, V is a convex set of

controls andA(v) is an elliptic operator defined by

A(v) = −
∑

i,j

aij(x, v)
∂2

∂xi∂xj
+

∑

i

bi(x, v)
∂

∂xi
+ c(x, v),

whereaij(x, v), bi(x, v) andc(x, v), 1 ≤ i, j ≤ η are bounded nonnegative functions
of Ω × V → R andaij(x, v), bi(x, v) andc(x, v) ∈ C2(Ω).
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P.L. LIONS in [39, 40, 41] has proved that, under appropriate assumptions, par-
ticularly regularity of coefficients and ellipticity of mappings, the previous problem
has a unique solution ; moreover problem (11) can be formulated as the following
equivalent problem which is more easy to solve





Find u solution of
max

1≤k≤m
(Aku− fk) = 0, everywhere in Ω

u = 0, on ∂Ω,

wherem is a fixed integer and for allk ∈ {1, 2, . . . , m}, Ak andfk are defined by

Ak(v) = −
∑

i,j

ak
ij(x, v)

∂2

∂xi∂xj

+
∑

i

bki (x, v)
∂

∂xi

+ ck(x, v), andfk = f(vk).

In the sequel we will restrict the study to the casem = 2. Thus, we consider the
following problem





Findu such that
max {A1u− f 1,A2u− f 2} = 0, everywhere inΩ,
u = 0, on∂Ω,

(12)

whereA1 andA2 are two elliptic operators of the second order satisfying the Maxi-
mum Principle, if previous appropriate assumptions are verified byaij(x, v), c(x, v), 1 ≤
i, j ≤ η andf1, f2 are element ofL2(Ω).

If we consider appropriate discretization of problem (12) by finite differences, then
we obtain the following discretized problem

{
FindU solution of
max (A1U − F 1, A2U − F 2) = 0,

(13)

where,F 1, F 2 ∈ R
n, andA1, A2 are matrices of sizen × n with entriesa1

ij , a
2
ij,

respectively, which satisfy

ak
ii > 0, ak

ij ≤ 0, i, j = 1, ..., n, j 6= i, k = 1, 2, (14)
∑

j

ak
ij ≥ 0, i = 1, ..., n, k = 1, 2, (15)

andn denotes the number of grid points inside the domainΩ; furtheremore assume
that

there exists at least onei such that
∑

j

a1
ij > 0 and

∑

j

a2
ij > 0, (16)

the matricesA1 andA2 are irreducible. (17)

Note that the matricesA1 andA2 are diagonally dominant. Under the above as-
sumptionsA1 andA2 are also M-matrices (see [32]). The problem (13) can be lin-
earized as follows:

A(U) = C(U).U − F (U) = 0,
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whereF (U) ∈ R
n andC(U) is a matrix of sizen×n. In fact the linearization process

is defined by the Howard method as follows :
If (A1U −F 1)i is greater than(A2U −F 2)i, then thei-th row of matrixC(U) is equal
to the i-th row of matrixA1 otherwise it is equal to thei-th row of matrixA2. The
vectorF (U) is defined analogously.

It follows from the above assumptions that the matrixC(U) is an irreducible diag-
onally dominant matrix; thusC(U) is an M-matrix. Thus,A is a continuous surjective
M-function (see [12]).

Then, consider now the use of Schwarz alternating method forthe solution of the
linearized and discretized Hamilton-Jacobi-Bellman equations. Taking into account
of the previous properties, particularly the fact that the mappingA is a continuous
surjective M-function, then the Schwarz augmentation process leads to solve the aug-
mented systemÃ(Ũ) = 0, whereÃ(Ũ) = C̃(Ũ).Ũ − F̃ (Ũ). Thus, according to
results of subsection 3.2 (see also [12]) , the mappingÃ is a continuous surjective
M-function and the parallel asynchronous Schwarz alternating method with flexible
communications converge monotonously.

4.2 The obstacle problem

The obstacle problem occurs in many fields such as mechanics and finance. In fi-
nancial applications there exists various mathematical models. We consider first the
european option derivatives which is modelled by a linear diffusion boundary value
problem or more generally by a linear convection-diffusionboundary value problem
defined in a normed vectorial space ; such partial differential equation, similar to (2)
can be solved by flexible parallel asynchronous Schwarz alternating method. For the
study of convergence of the parallel asynchronous Schwarz alternating with flexible
communications, the reader is refered to subsection 3.1.

We consider now american option derivative modelled by a linear diffusion bound-
ary value problem or more generally by a linear convection-diffusion boundary value
problem defined in a closed convex setK. This mopdel occurs also in mechanics. In
order to introduce this problem we will consider first an american option derivative
derived from a diffusion boundary value problem. Indeed, let us define the symmetric
bilinear form

a(u, v) =

∫

Ω

(∇u∇v + duv)dx,

whereΩ ⊂ R
η is a bounded domain andd is a real positive bounded function ; let us

also define the linear form

L(v) =

∫

Ω

fvdx,

wheref is a given function ofL2(Ω).Consider now the following convex optimization
problem {

Findu ∈ K such that
J(u) ≤ J(v), ∀v ∈ K,
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whereJ(v) is defined by

J(v) =
1

2
a(v, v) − L(v),

K is a closed convex set defined by

K = {v ∈ H1
0 (Ω), v ≥ ψ everywhere inΩ},

andH1
0 (Ω) denotes classically the set of functions belonging toL2(Ω) whith gradi-

ents belonging to the same space andψ ∈ L2(Ω). Classicaly, a characterization of
the solution of the previous convex optimization problem (see [42], [43]) is given by
solving the following problem





(−∆u + du− f)(u− ψ) = 0 in Ω,
−∆u + du ≤ f and u ≤ ψ in Ω,
u = 0, on∂Ω.

An other characterization of the solution of such problem can be given by:
{

Sup (−∆u+ du− f, u− ψ) = 0, everywhere inΩ,
u = 0, on∂Ω.

More generally, assume thatd is a real positive bounded function and consider
now the american financial derivative option associated with a convection-diffusion
boundary value problem





(−∆u + b∂u
∂x

+ c∂u
∂y

+ du− f)(u− ψ) = 0 in Ω,

−∆u + b∂u
∂x

+ c∂u
∂y

+ du ≤ f and u ≤ ψ in Ω,

u = 0, on∂Ω.

A characterization of the solution of the previous problem can also be given by:
{

Sup (−∆u+ b∂u
∂x

+ c∂u
∂y

+ du− f, u− ψ) = 0, everywhere inΩ,

u = 0, on∂Ω.
(18)

With appropriate discretization of the obstacle problem (18) by finite difference
methods, we obtain the following discretized complementarity problem

{
FindU ∈ R

n solution of

Max
(
AU − F, U − Ψ

)
= 0.

(19)

whereA the discretization matrix of the convection-diffusion operator associated with
Dirichlet boundary condition, satisfies the assumption

A is a strictly diagonally dominantM-matrix, (20)

andF andΨ are two vectors derived fromf andψ which result from the discretization
process. Sinced is a nonnegative function, in the case of the convection-diffusion
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operator, the assumption (20) is well satisfied if the first derivative is discretized via
appropriate backward or forward decentered schemes according to the sign of the
convection coefficientsb andc (see (3)) and if the second derivative is discretized
by the classical five points scheme ; classically, in the caseof the diffusion operator
assumption (20) is also satisfied. The complementarity problem (19) is a particular
form of the following discrete Hamilton-Jacobi-Bellman problem

max(A1U − F 1, A2U − F 2) = 0,

with A2 = I (identity matrix) andF 2 = Ψ.

The linearization of the previous discretized problem (19)is accomplished by the
Howard-Mosco-Scarpini method, similar to the one considered in subsection 4.1 for
the linearization of the Hamilton-Jacobi-Bellman problem. The linearized system is
defined by

A(U) = C(U).U −G(U) = 0, (21)

whereC(U) andG(U) are defined as follows
- if the first argumentAU − F is dominant in (19), then thei-th line of the matrix
C(U) is equal to thei-th line of the matrixA and thei-th component of the vectorG
is equal toFi, i-th component of the vectorF,
- otherwise if the second argumentU −Ψ is dominant in (19), then thei-th line of the
matrix C(U) is zero, except for the diagonal entrycii which is equal to one and thei-th
component of the vectorG which is equal toΨi, i-th component of the vectorΨ.

It follows from (20) and Theorem 3.12 in [32], thatC(U) is anM-matrix. Then,
A is a continuous surjectiveM-function. Thus, the parallel asynchronous Schwarz
alternating method with flexible communications converge monotonously. The reader
is refered to [44] for more details.

Note that the stationary obstacle problem associated with asecond order elliptic
operator satisfying the maximum principle can be classically written as an Hamilton-
Jacobi-Bellman problem and the parallel asynchronous algorithms with flexible com-
munications presented here can be used for the numerical solution of this problem.
Nevertheless, it can be noted that the convergence analysisof parallel asynchronous
iterative methods derived from the linearization process for the obstacle problem and
for the Hamilton-Jacobi-Bellman problem does not follow from the same arguments
since the discretization matrix can be reducible in the firstcase, whereas it is irre-
ducible in the general latter case.

5 Continuous 3D flow electrophoresis problem

Now we present in details a practical application in order toillustrate our approach.
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5.1 Principle of continuous flow electrophoresis

Continuous flow electrophoresis is a process for separatingprotein mixtures. This
process is currently used for analysis in biology. Its resolution is determined by the
migration distance at the collection plane and by the scale of the filament occuped by
each protein species. Set of proteins, i.e. filaments undergo spreading due to a number
of different phenomena, among which electrokinetics and electrohydrodynamics are
known to be important. In the first of these phenomena, differences in migration ve-
locity between the ionic species give rise to local variations in electrical conductivity
near the protein filament. In the second phenomenum, the local change in electrical
conductivity distorts the electrical field, thus includingshear stress in the liquid and
creating a local flow pattern. More precisely, density coupling phenomena involving
thermal and solutal connection induce strong instability effect and numerical simu-
lations can bring useful informations concerning the nature of expected effects. A
physical model has been developed (see [45], [46] and [47]) in order to describe these
phenomena when two or several proteins are being separated.This model consists in
coupling three evolutive boundary value problems defined ona bounded domainΩ
included in the three dimensional space ; taking into account the classical shape of the
electrophoresis chamber, in the sequel we will consider that Ω is a parallelepiped. So
the coupled equations describing the considered physical phenomena are

- the Navier-Stokes equations with mixed boundary conditions (the Dirichlet bound-
ary conditions being preponderant), which describe the flow,

- an evolutive equation with mixed boundary conditions, more precisely the Dirich-
let boundary conditions arising on three faces, which describes the transport of
protein

- a potential equation which corresponds to a generalized Laplacian with Dirichlet
boundary conditions, which describe the the electrical phenomena.

This process takes place in a very long parallelepipedic cell; a solution strains with
low speed through this cell (see Figure 7). The solution constituted by the mixture to
separate is injected in this flow by the face C of the cell as a sharp liquid filament. An
electrical field is created through the cell by two electrodes located on both sides of
the cell, on the faces E and F, respectively.

The proteins are transfered by the flow along the cell; furthermore due to the effect
of the electrical field they migrate. The various species of protein having different
electrical mobilities, they can be collected separatly on the face D.

In the sequel, the flow is assumed to be isothermal and withoutchemical reac-
tion; consequently the various physical coefficients arising in the phenomenom are
constant.

The physical phenomena related to the present study concerns

- the mass conservation,
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Figure 7: The principle of continuous flow electrophoresis.

- the main flow of the fluid in the three dimensional space, described by the ve-
locity ~V = (u, v, w), which belongs on the one hand to the pressurep and on
the other hand to the electrokinetic effect,

- the transport and the migration of the proteins and more specially the concen-
trationc of protein, which belongs to~V ,

- the electrokinetic effect, connected to the spatial changes of the potential in
terms of the concentration of the various ionic species.

5.2 The physical problem

We present in the sequel the physical parameters which govern the electrophoresis
flow, in the physical model developped by M.J. CLIFTON, V. SANCHEZ et all (see
[45], [46] and [47]) ; the parameters are given at each pointM = (x, y, z) of the
bounded domainΩ included in the three dimensional space

- the velocity field~V = (u, v, w),

- the pressurep,

- the electrical field~E = (Ex, Ey, Ez),
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- the concentrationcm, of each proteinm,

- the potentialΦ,

- the temperatureT ,

- the kinematic viscosity of the fluidν,

- the volumetric mass of the fluidρ,

- the dielectric permittivity of the fluidǫ,

- the diffusion coefficient of the proteinmDm,

- the electrical conductivity of the fluidK,

- the mean ionic conductivity of the proteinm λm,

- the electrophoretic mobility of the proteinm µm.

In the actual problem, we consider the flow of an incompressible viscous fluid in
the domainΩ; the volumetric mass of the fluidρ is then a constant and the following
mass conservation law

∂ρ

∂t
+ div(ρ~V ) = 0

is reduced to

div(~V ) =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (22)

The main flow is described by the following 3D Navier-Stokes equations which take
into account the external strength field

∂~V

∂t
+ ∇~V .~V = ν∆~V −

1

ρ
∇p+ S (23)

where, forξ = x, y, z, S = (Su , Sv , Sw) is the source term defined by

Sη = ǫ div(Eξ. ~E) = ǫ(
∂

∂x
EξEx +

∂

∂y
EξEy +

∂

∂z
EξEz), for η = u, v ,w ,

and

∇~V =




∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


 .

The transport equation for a proteinm is modelled by the following evolution convec-
tion - diffusion evolution equation

∂cm

∂t
+ u∂cm

∂x
+ v ∂cm

∂y
+ w ∂cm

∂z
−Dm∆cm = ϕ. (24)

whereϕ is the source term.
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The potentialΦ is governed by a generalized Poisson equation

− div (K gradΦ) = ∆Q, (25)

which can also be written as follows

−
∂

∂x
(K

∂Φ

∂x
) −

∂

∂y
(K

∂Φ

∂y
) −

∂

∂z
(K

∂Φ

∂z
) = ∆Q, (26)

with Q = Q0 +RT
∑
µmcm, whereR is the constant arising in the law of the perfect

gas, andK = K0 +
∑
λmcm, where∀m, λm > 0 and

np∑

m=1

λm = 1. The equation

governing the flow (23) is coupled with the above relation by

~E = − ~gradΦ (27)

The above partial differential equations (23) to (25) must be completed by the def-
inition of boundary values induced by physical considerations.

The fluid comes in the cell by the upper face C and comes out by the lower face D.
We consider that the velocity fulfils non homogeneous Dirichlet boundary conditions
on the face A and homogeneous Neumann boundary conditions onthe face D. Fur-
thermore the velocity is equal to zero on the other four faces; so the velocity fulfils
homogeneous Dirichlet boundary conditions on these last faces. In brief the boundary
conditions for the velocity can be written as follows





u/A = v/A = w/A = u/B = v/B = w/B = 0,

u/C = w/C = 0, v/C = VC

∂u
∂n/D

= ∂v
∂n/D

= ∂w
∂n /D

= 0,

u/E = v/E = w/E = u/F = v/F = w/F = 0

(28)

Concerning the transport equation (24), the proteins come in the cell by the face C
; so on this upper face the concentration is known and the concentration fulfils non ho-
mogeneous Dirichlet boundary condition on the face C. Furthermore the concentration
is unfixed on the other five faces of the cell; so we can considerthat on these five faces
the concentration fulfils homogeneous Neumann boundary conditions. Nevertheless
we assume that the proteins do not reach the electrodes on thefaces E and F. Con-
sequently, we consider that the concentration fulfils homogeneous Dirichlet boundary
conditions on the faces E and F. In brief the boundary conditions for the concentration
can be summarized as follows





∂cm

∂n /A
= ∂cm

∂n /B
= ∂cm

∂n /D
= 0,

cm/C = cJet

cm/E = cm/F = 0

(29)
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The potential is known and constant at every points of the electrodes, i.e. on the
two lateral faces E and F; thus the potential fulfils non homogeneous Dirichlet bound-
ary conditions on the faces E and F. Furthermore the two othervertical faces A and B
are electricaly isolated ; consequently the potential fulfils non homogeneous Dirichlet
boundary conditions on these two faces obtained by a linear interpolation between the
values of the potential defined on the electrodes. On the horizontal faces C and D, the
potential fulfils non homogeneous Dirichlet boundary conditions obtained by the solu-
tion of the potential equation restricted to each upper and lower face ; these boundary
conditions are preliminary computed. Taking into account that the concentration on
the face C is constant, the potential on this face is computedonce only and the bound-
ary condition on the face C does not change. On the other hand the concentration
on the face D changes during the time; then, in order to obtainthe missing boundary
condition on the face D, at each time step the potential must be computed on this face.
In brief, the boundary conditions for the potential can be summarized as follows





Φ/A = (|Z|−z)ΦE+zΦF

|Z|
,Φ/B = (|Z|−z)ΦE+zΦF

|Z|

Φ/C = ΦC ,Φ/D = ΦD(t),Φ/E = ΦE ,Φ/F = ΦF

(30)

where|Z| denotes the width of the cell.

In order to solve numerically the coupled boundary value equations, we will con-
sider in the sequel various well adapted discretization technics and we will also estab-
lish usefull properties verified by the discrete operators ;these assumptions allows to
analyze the behaviour of the parallel asynchronous Schwarzalternating method used
in order to solve the large algebraic systems derived from the discretization.

5.3 Discretization of the Navier-Stokes equations

The Navier-Stokes equations are solved by the PISO algorithm (Pressure Implicit with
Split of Operators), a predictor-corrector method, introduced by R.I. Issa (see [48])
coupled with a discretization by the standart finite volume method (see [49]). In the
case of incompressible flow, the PISO method is an implicit algorithm corresponding
to a time marching predictor-corrector method based upon the splitting of the solution
of velocity equations and pressure equations. The principle of the PISO method allows
to deal with the coupling of the variables(~V , p) by dividing each time step into three
sub-time steps

The predictor step : starting from~V n = (Un, V n,W n) and P (n), this step al-
lows to compute by an implicit way~V n+ 1

3 = (Un+ 1

3 , V n+ 1

3 ,W n+ 1

3 ), satisfying the
momentum equation when the pressure is fixed at its value of the previous time step
P (n). Note that, in this first step, the mass conservation equation (22) is not verified.
Then the velocity components are solution of the three systems like the following one
written in order to obtainUn+ 1

3

Du .U
n+ 1

3 = H
′

u(Un+ 1

3 ) −
1

ρ
∆xP

n + Su +
1

δt
Un, (31)

19



whereHu is the discretization matrix of the convection-diffusion terms given byHu =
Au

0 +H
′

u andAu
0 is the diagonal part ofHu ,Su is the term source equal toǫ.div (Ex.E),

Du = ( I
δt
−Au

0 ) is a diagonal matrix (Dv andDw being defined accordingly) and∆ξ is
the difference operator approximation of the first space derivative ∂

∂ξ
( ξ = x or ξ = y

or ξ = z ). Note that the predictor step consists in the solution of three uncoupled
algebraic linear sytems each system allowing to obtain a component of the velocity ;
so these systems can be solved independantly by a parallel way.

First corrector step : this first explicit step compute the field velocity~V n+ 2

3 as-
sociated with the pressureP (n+ 1

2
), verifying the discrete approximate Navier-Stokes

equations and the approximate mass conservation equation;this step consists, for ex-
ample, in findingUn+ 2

3 such that
{
DuU

n+ 2

3 = H
′

u(Un+ 1

3 ) − 1
ρ
∆x P

(n+ 1

2
) + Su + 1

δt
Un

div~V n+ 2

3 = 0

Note that the approximation consists in maintaining unchanged the termH
′

u(Un+ 1

3 ).
By subtracting the previous equation to the equation (31), we obtain

Du(Un+ 2

3 − Un+ 1

3 ) = −
1

ρ
∆x (P

(n+ 1

2
) − P (n));

then

Un+ 2

3 = Un+ 1

3 −
1

ρ
D−1

u ∆x (P
(n+ 1

2
) − P (n)).

The continuity equation div~V n+ 2

3 = 0 can be written in a discrete form as follows

∆x (U
n+ 2

3 ) + ∆y(V
n+ 2

3 ) + ∆z (W
n+ 2

3 ) = 0.

Finally, the first corrector step consists in computing a pressure correctionP c =
P (n+ 1

2
) − P (n) solution of the following linear system

−
1

ρ
(∆xD

−1
u ∆x + ∆yD

−1
v ∆y + ∆zD

−1
w ∆z )P

c = Gn+ 1

3 (32)

where
Gn+ 1

3 = −(∆xU
n+ 1

3 + ∆yV
n+ 1

3 + ∆zW
n+ 1

3 ).

In order to obtainP (n+ 1

2
) andUn+ 2

3 , V n+ 2

3 ,W n+ 2

3 , it is sufficient to computeP (n+ 1

2
) =

P (n) + P c and for exampleUn+ 2

3 = Un+ 1

3 − 1
ρ
D−1

u ∆x P
c, and analogously forV n+ 2

3

andW n+ 2

3 .

Second corrector step : using the same procedure, a second corrector step is set
up and allows to improve the approximation of the pressure and the velocity fields ;
starting from the fields~V n+ 2

3 = (Un+ 2

3 , V n+ 2

3 ,W n+ 2

3 ) andP (n+ 1

2
) , we compute the

20



fields ~V n+1 = (Un+1, V n+1,W n+1) andP (n+1) which are taken as the approximation
at time step(n + 1); the continuity equation is taken into account by considering the
discrete Navier-Stokes equations under a more complete form by performing evolution
the termH

′

η(
~V n+ 2

3 ), η = u, v ,w . So, in order to find for exampleUn+1, we consider
the momentum equation written as follows

Du .U
n+1 = H

′

u(Un+ 2

3 ) −
1

ρ
∆xP

(n+1) + Su +
1

δt
Un. (33)

By subtracting (33) to (31), we obtain

Un+1 = Un+ 2

3 +D−1
u (H

′

u(Un+ 2

3 − Un+ 1

3 ) −
1

ρ
∆x (P

(n+1) − P (n+ 1

2
))).

Then

div~V n+1 = div~V n+ 2

3 −
1

ρ
(∆xD

−1
u ∆x + ∆yD

−1
v ∆y + ∆zD

−1
w ∆w )P cc +Gn+ 1

3

whereP cc = P (n+1) − P (n+ 1

2
),

Gn+ 1

3 = −(∆xD
−1
u .H

′

u .U
∗ + ∆yD

−1
v .H

′

v .V
∗ + ∆zD

−1
w .H

′

w .W
∗),

with U∗ = Un+ 2

3 − Un+ 1

3 , V ∗ = V n+ 2

3 − V n+ 1

3 andW ∗ = W n+ 2

3 −W n+ 1

3 . Taking
into account that div~V n+ 2

3 = div~V n+1 = 0 , the pressure correctionP cc is obtained
by solving the following linear system

−
1

ρ
(∆xD

−1
u ∆x + ∆yD

−1
v ∆y + ∆zD

−1
w ∆w)P cc = Gn+ 1

3 . (34)

It can be noted that the matrix of the second corrector step isthe same as the one
obtained after the first corrector step ; in fact the equations of the first corrector step
and of the second corrector step are different only by their second member.

Isaa [48] has shown that two correctors steps are sufficient to obtain a suitable
accuracy compatible with the discretization scheme and round of error propagation;
furthermore, the previous time marching scheme, based on the Euler’s scheme, is
unconditionally stable.

The finite volume method : in order to achieve the discretization of the Navier-
Stokes equation the PISO method must be coupled with a spatial discretization. Among
the spatial discretization technics, the finite volume method [49] is the most appropri-
ate. The finite volume method needs classically the use of four staggered meshes
denoted byΩu,Ωv,Ωw (where the discrete componentsu, v andw of the velocity are
approximated) andΩp (where the discretization of the pressurep is achieved). It is
not possible to know the pressure and the velocity in any point of the mesh ; so, in
order to obtain both the value of the pressure and of the velocity at the same point,
extrapolation of their values are necessary. In Figure 8 to 10
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Figure 8: Section of the mesh by a parallel plane to xOy.

• the pressure is computed at the points M, E, W, N, S, H, B.

• the componentU of the velocity is computed at the pointse andw.

• the componentV of the velocity is computed at the pointsn ands.

• the componentW of the velocity is computed at the pointsh andb.

• the size of the volume control round the point M isδuxm × δvy
m × δwz

m.

• the size of the volume control round the point w for the computation of the
componentU of the velocity isδpxw × δvy

m × δwz
m.

Discretization of the flow equations for the predictor step. For the predictor step,
the complete discretization of the Navier-Stokes equations leads to three uncoupled
algebraic linear systemsAUU = bU , AV V = bV , AWW = bW obtained from the
momentum equations ; note that the three matricesAU , AV andAW are obtained by
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Figure 9: Section of the mesh by a parallel plane to xOz.

the same way. So, let us denote byΘ any component of the velocity (i.e.Θ = u or
Θ = v or Θ = w) ; then we have to integrate on a volumeV ol = ∆x∆y∆z the
following equation

∂(Θ)

∂t
+

∑

j

∂

∂xj
[ujΘ −

∂(νΘ)

∂xj
] = BΘ (35)

round a point of the staggered mesh where the componentΘ of the velocity is defined.
Then, after elementary computations [49], we finally obtainthe following discretized
equation

−aΘ
BΘB − aΘ

S ΘS − aΘ
WΘW + aΘ

MΘM − aΘ
EΘE − aΘ

NΘN − aΘ
HΘH = bΘ (36)

where

bΘ =

∫ ∫ ∫

Vol

BΘ dx dy dz +
∆x∆y∆z

δt
Θ

(n)
M ,

and where the coefficientsaΘ
∗ are the entries of the matrixAU if Θ = U , of the matrix

AV if Θ = V or of the matrixAW if Θ = W . The values of the entries of the previous

23



Figure 10: Section of the mesh by a parallel plane to xOy of thecontrol volume around
a point of the staggered mesh forU .

matrices are very useful for the study of the behaviour of theparallel asynchronous
algorithms for the solution of the uncoupled linear systemsAΘΘ = bΘ. Let us denote
byPi the Peclet number ([49]) on the facei ; so, for the componentU of the velocity,
we obtain

• lower face of the control volumeδpxw × δvy
m × δwz

m

aU
B = Db α(|Pb|) + max(0, Fb),

whereDb = ν δpxmδvym

δpzb , Fb = Wb δwz
m andPb = Fb

Db
;

• south face of the control volumeδpxw × δvy
m × δwz

m :

aU
S = Ds α(|Ps|) + max(0, Fs),

whereDs = ν δpxmδwzm

δpys , Fs = Vs δvy
m andPs = Fs

Ds
;
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• west face of the control volumeδpxw × δvy
m × δwz

m

aU
W = Dw α(|Pw|) + max(0, Fw),

whereDw = ν δvymδwzm

δuxw , Fw = Uw δpx
m andPw = Fw

Dw
;

• east face of the control volumeδpxw × δvy
m × δwz

m

aU
E = De α(|Pe|) + max(0, Fe),

whereDe = ν δvymδwzm

δuxe , Fe = Ue δpx
m andPe = Fe

De
;

• north face of the control volumeδpxw × δvy
m × δwz

m

aU
N = Dn α(|Pn|) + max(0, Fn),

whereDn = ν δpxmδwzm

δpyn , Fn = Vn δvy
m andPn = Fs

Dn
;

• upper face of the control volumeδpxw × δvy
m × δwz

m

aU
H = Dh α(|Ph|) + max(0, Fh),

whereDh = ν δpxmδvym

δpzh , Fh = Wh δwz
m andPh = Fh

Dh
;

• and lastly for the diagonal entry

aΘ
M = aΘ

B + aΘ
S + aΘ

W + aΘ
E + aΘ

N + aΘ
H +

δpx
m δvy

m δwz
m

δt
.

In the previous relations the mappingsα(|Pi|) are defined in the table 1 in order to
define many kinds of discretization scheme according to [49].

Scheme : α(|Pi|)
Centered differences:1 − 0.5|Pi|
Upwind : 1
Hybrid : Max(0; 1 − 0.5|Pi|)
Power Law : Max(0; (1 − 0.5|Pi|)

5)
Exponential : |Pi|/(exp|Pi| − 1)

Table 1: Definition ofα(|Pi|).

For the points in the neighbourhood of the boundaries, the corresponding entries
are zero :

• near the lower boundary ( resp. upper ),aΘ
B ( resp.aΘ

H ) is zero,

• near the south boundary ( resp. north ),aΘ
S ( resp.aΘ

N ) is zero,

• near the west boundary ( resp. east ),aΘ
W ( resp.aΘ

E ) is zero.
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Other Neumann boundary conditions are discretized according to standard technics
(see [49]).

The entries of the matricesAV andAW are defined accordingly. Then, from the
values of the entries of the three matricesAU , AV andAW we can easily verify that
these matrices are diagonally dominant. Moreover,AU , AV andAW are bothM-
matrices for all discretization schemes of table 1 except for the central difference
scheme. For the central difference scheme, if|Pi| ≤ 2, AU , AV andAW are also
M-matrices ; indeed the diagonal entries of the matricesAU , AV andAW are strictly
positive and their off-diagonal entries are non-positive.Furtheremore the matricesAU ,
AV andAW are obviously irreducible (see [33]) ; since there was diagonally dominant,
then the M-matrix property is proved (see [50]).

Discretization of the equations for the corrector step. For the two corrector steps
the PISO method leads to the following system to solve

−
1

ρ
(∆xD

−1
u ∆x + ∆yD

−1
v ∆y + ∆zD

−1
w ∆w )P γ = G.

equivalent to the linear system
APP γ = G, (37)

where

P γ =

{
P c for the first corrector step,
P cc for the second corrector step.

and

G =

{
Gn+ 1

3 for the first corrector step,
Gn+ 2

3 for the second corrector step.

After discretization we finally obtain for each point M of themain mesh the fol-
lowing discrete equation

−dBp
γ
B − dSp

γ
S − dWp

γ
W + dMp

γ
M − dEp

γ
E − dNp

γ
N − dHp

γ
H = gM , (38)

where : 



dB = 1/(aW
P (b) δwz

m δpz
b),

dS = 1/(aV
P (s) δvy

m δpy
s),

dW = 1/(aU
P (w) δux

m δpx
w),

dE = 1/(aU
P (e) δux

m δpx
e),

dN = 1/(aV
P (n) δvy

m δpy
n),

dH = 1/(aW
P (h) δwz

m δpz
h),

dM = dB + dS + dW + dE + dN + dH .

Finally, the matrixAP arising in the corrector step has properties analog to the ma-
trices arising in the predictor step. Indeed, considering the boundary conditions ([49]),
the matrixAP is diagonally dominant and, since the previous matrix is irreducible,AP

is anM-matrix.
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Note also that, in the case of incompressible flow computation , the parallel asyn-
chronous Schwarz alternating method with flexible communications can be analyzed
when the Navier-Stokes equation is formulated in vorticitystream function (see [51]).

5.4 Discretization of the transport equation for proteins

The transport equation (24) is in fact a convection-diffusion equation. In the sequel
we will consider a finite difference discretization for thisequation. The diffusion
term is discretized using the classical seven points discretization scheme. The convec-
tion terms can be discretized using either the central difference discretization scheme
or the one-sided finite difference scheme. For theoretical convenience and in order
to satisfy always the convergence of the iterative algorithm, we will consider in the
sequel only upwind finite difference schemes ; then according to the sign of the com-
ponentsu, v andw we consider only backward or forward discretization schemefor
the convection terms. For example, if we consider the termu∂cm

∂x
of the equation (24),

the discretization is as follows

u(x, y, z)
∂cm(x, y, z)

∂x
=

{
u(x, y, z) cm(x,y,z)−cm(x−δx,y,z)

δx
+O(δx), if u > 0,

u(x, y, z) cm(x+δ,y,z)−cm(x,y,z)
δx

+O(δx), if u < 0.

Let us denote byAC the associated discretization matrix ; then, the matrixAC is
anM-matrix.

If we consider a central difference discretization scheme for the convection term,
then, the matrixAC is anM-matrix, in the case where the magnitude of the compo-
nents of the velocity are small enough. More precisely, in the case whereδx = δy =
δz = h, if

|u| <
2Dm

h
, |v| <

2Dm

h
, |w| <

2Dm

h
,

then, the matrixAC is anM-matrix. Nevertheless, from a practical point of view,
the previous conditions are not interesting for the considered electrophoresis problem,
since the components of the velocity are unknown.

In the sequel of the study, we will consider the migration of only one protein ; so,
we will denote byc the concentration of the protein.

5.5 Discretization of the potential equation

For the potential equation, we consider a finite difference discretization. The numer-
ical scheme is the same for every term of the diffusion equation. This scheme is
obtained by making the mean of two intermediate schemes. Forexample let us con-
sider firstly the discretization of− ∂

∂x

(
K ∂φ

∂x

)
for y = yj andz = zk fixed. In order to

simplify, we shall use the following notations :
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• hi = xi − xi−1,

• Ki = K(xi, yj, zk) = Kijk,

• Ki±1 = K(xi±1, yj, zk) = Ki±1,jk,

• Φi = Φ(xi, yj, zk) = Φijk,

• Φi±1 = Φ(xi±1, yj, zk) = Φi±1,jk.

Let us first consider the two following schemes

• forward-backward scheme

− ∂
∂x

(
K ∂φ

∂x

)
xi

= − 1
hi+1

[
Ki+1

(
∂Φ
∂x

)
i+1

−Ki

(
∂Φ
∂x

)
i

]

= − 1
hi+1

[
Ki+1

(
Φi+1−Φi

hi+1

)
−Ki

(
Φi−Φi−1

hi

)]

= − Ki

hihi+1
Φi−1 +

(
Ki

hihi+1
+ Ki+1

h2
i+1

)
Φi −

Ki+1

h2
i+1

Φi+1

• backward-forward scheme

− ∂
∂x

(
K ∂φ

∂x

)
xi

= − 1
hi

[
Ki

(
∂Φ
∂x

)
i
−Ki−1

(
∂Φ
∂x

)
i−1

]

= − 1
hi

[
Ki

(
Φi+1−Φi

hi+1

)
−Ki−1

(
Φi−Φi−1

hi

)]

= −Ki−1

h2
i

Φi−1 +
(

Ki−1

h2
i

+ Ki

hihi+1

)
Φi −

Ki

hihi+1
Φi+1

Then, the final discretization scheme is obtained by making the mean of each pre-
vious scheme ; for example the second derivative with respect to x is approximated
by

−
∂

∂x

(
K
∂φ

∂x

)

xi,yj ,zk

=
1

2

[
−

(
Ki−1

h2
i

+
Ki

hihi+1

)
Φi−1

+

(
Ki−1

h2
i

+
2Ki

hihi+1
+
Ki+1

h2
i+1

)
Φi

−

(
Ki

hihi+1

+
Ki+1

h2
i+1

)
Φi+1

]
(39)

Analogously the other second derivative with respect toy andz are approximated
with the method used to obtain the scheme (39) : on one hand, for xi andzk fixed,
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−
∂

∂y

(
K
∂φ

∂y

)

xi,yj ,zk

=
1

2

[
−

(
Kj−1

h2
j

+
Kj

hjhj+1

)
Φj−1

+

(
Kj−1

h2
j

+
2Kj

hjhj+1
+
Kj+1

h2
j+1

)
Φj

−

(
Kj

hjhj+1

+
Kj+1

h2
j+1

)
Φj+1

]
(40)

and on the other hand, forxi andyj fixed

−
∂

∂z

(
K
∂φ

∂z

)

xi,yj ,zk

=
1

2

[
−

(
Kk−1

h2
k

+
Kk

hkhk+1

)
Φk−1

+

(
Kk−1

h2
k

+
2Kk

hkhk+1
+
Kk+1

h2
k+1

)
Φk

−

(
Kk

hkhk+1
+
Kk+1

h2
k+1

)
Φk+1

]
(41)

Finally, the discretization matrixP of the potential equation is a heptadiagonal matrix
and the approximation of the potential is obtained by solving the following linear
system

PΦ = SΦ (42)

whereSΦ = ∆Q; the electrical conductivityK being positive, then the matrixP is
positive definite. Moreover the discretization error can becomputed by very simple
calculation and it is very easy to show that this quantity leads to zero with the step size
discretization. Furthermore, we can verify easily that thematrixP is anM-matrix.

Finally, according to the result of section 3.1, since the matrices of the seven pre-
vious discretized systems associated with the Navier-Stokes equations, the transport
equation of the proteins and the potential equation are all M-matrices, we can conclude
that the solution of the previous algebraic linear systems by the parallel synchronous
and flexible asynchronous Schwarz alternating method converge to the solution of
the considered discretized boundary value problem for any initial guess and for any
ordering of the subdomains.

6 Parallel experiments

The parallel asynchronous Schwarz alternating method withflexible communications
has been implemented for solving many numerical problems and in particular the vari-
ous boundary value prolems quoted above ; among them we can cite the parallel simu-
lations applied to the solution of the electrophoresis problem [52], and also the parallel
solution of the obstacle problem [44], of the Hamilton-Jacobi-Bellman problem [12],
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of a nonlinear diffusion problem [36] and of the Navier-Stokes problem formulated in
the classical way [50] or formulated in the vorticity streamfunction [51]. These par-
allel simulations have been carried out on various multiprocessors architectures such
as shared memory machines, or distributed memory machines.

Flexible asynchronous schemes of computation have also been applied to the solu-
tion of nonlinear optimization problems (see [53, 54]).

6.1 Parallel implementation of Schwarz alternating method

The implementation principle of the parallel flexible asynchronous Schwarz alternat-
ing method is similar for all applications quoted previously. The main implementation
effort concerns the solution of very large scale algebraic systems. In particular lin-
ear systems must be solved since linearization techniques such as Newton method,
Howard method or PISO method are used. Experimentally we have noticed (see
[12], [36], [44], [50, 52]) that the general behavior of parallel flexible asynchronous
Schwarz alternating method is very similar for all studied applications. In the specific
case of evolution problems, where series of stationary problems are solved, the syn-
chronization of all the computations must occur before the begining of a solution of
new stationary problem.

For sake of clarity, we present in the sequel implementationand experimental re-
sults for the solution of the 3D convection-diffusion problem (2).

The Schwarz alternating method can be combined with variousschemes of compu-
tation. In each case an asynchronous iterative scheme with flexible communications
and a synchronous one have been implemented for the parallelnumerical experiments
with 3D physical model. The domainΩ, where the boundary value problem is de-
fined, is splitted into overlapping parallelepiped subdomains (see Figure 11). We
have choosen the smallest subdomain overlapping, i.e. one mesh. Thus, sequences
of smaller subproblems are solved on each processor of the parallel computer in order
to compute a solution of the global problem ; practically more accuracy is obtained.
Several subdomains, i.e. parallepipeds, are assigned to each processor in order to im-
plement a strategy which is close to the multiplicative strategy [8]. To obtain a faster
convergence of the parallel computations, each processor handles contiguous subdo-
mains, numbered according to red-black ordering ; such ordering is more appropriate
for parallel computations (see [58]) ; according to resultsof section 3.1, the conver-
gence of the parallel iterative algorithms is then obtained.

Each processor updates the components of the iterate vectorassociated with its
subdomains and computes the residual norm corresponding tothe subdomains in order
to participate to the convergence detection. A block relaxation method is used in order
to solve each subproblem on each subdomain ; this kind of method allows to have
very flexible communications between the processors. More precisely, all points of a
subdomain are updated twice by the relaxation procedure first forward, then backward,
by an SSOR scanning. Note also that a direct method could be also consider for this
purpose (see [44, 36]) but combersome with 3D domains since this kind of algorithm
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Figure 11: General 3D splitting with parallelepiped overlapping subdomains.

induce fill-in during the factorisation of the matrix.

Convergence detection of the parallel iterative process occurs when a given predi-
cate on a global state is true ; an usual predicate corresponds to the fact that, on every
subdomain, the norm of the local residual remains under a given threshold (see [55],
page 580).

Various strategies of data exchange can be implemented (see[54]). We present here
a strategy based on systematic communications between the processors with a given
fixed exchange frequency. Note that the efficiency of parallel algorithms strongly
depends on the communication frequency within the computations as communica-
tions increase the overhead. Point to point communicationsbetween two processes
have been implemented using persistent communications request and MPI (Message
Passing Interface) facilities in both version of Schwarz alternating methods. Message
exchanges with the same argument list is repeatedly executed; it corresponds to data
transmission of successive values of the components of the iterate vector associated
with a subdomain frontier. That is the reason why persistentcommunication request
has been used. A persistent communication request can be thought of as a one way
channel. This approach permits one to reduce the communication overhead between
the process and the communication controller.

For the sake of robustness, we have used a synchronous mode send operation since
ready mode is unsafe and buffered mode may lead to overflow in the high commu-
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Figure 12: 3D splitting with slice overlapping subdomains.

nication frequency case. Note that the use of a synchronous mode send operation is
not in contradiction with the implementation of asynchronous iterations since the im-
plementation of communication layers and the type of implemented parallel iterative
computation scheme are independent.

If global convergence is detected, then computations can beterminated and re-
sources can be freed. All persistent communication requests are cancelled. Note that
cancellation of send requests must occur before cancellation of receive requests; oth-
erwise data exchange based on rendezvous mechanism may fail. For more details on
the implementation of asynchronous iterative schemes of computation, the reader is
referred to [56, 57, 58]. The principle of implementation ofparallel asynchronous
iterative algorithms with flexible communication can be summarized as follows

do until global convergence
for each subdomain assigned to the processordo
if local convergence is not reachedthen
for i in 1 .. N do
receive the latest frontier values
relaxation

end do
send the frontier values to the neighbors
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end if
end do

end do

Implementation of parallel synchronous iterative schemesof computation was based
on the blocking reception of boundary values. The termination order of communica-
tions requests is totally handled with MPI facilities. It isnot necessary to provide
additional information about synchronous Schwarz alternating method, since its im-
plementation and message passing issues between the processors are straightforward
in this case. Reference is made to [57, 59] for implementation details concerning
parallel synchronous iterative algorithms.

6.2 Numerical experiments

We present now the main computational results for a 3D convection diffusion-problem
(2). For all experiments, we have considered 3,750,000 discretization points and 256
well balanced, cubic subdomains. We have tested several communication frequencies
for data exchange. The tuning of the number of relaxations was made experimentally.
We present here results in the case where data exchange occurs every two relaxations
on each subdomain. Reception of boundary values occurs in the beginning of each
updating phase. For sake of effectiveness, a different subdomain is considered af-
ter a communication. As previously said, the subdomains assigned to a processor
are treated cyclically according to a red-black ordering. Experimentally, this strategy
turned out to be the most efficient one.

Computational experiments were carried out using an IBM-SP4 series machines
located at IDRIS computing centers in Paris. More precisely, the main support of our
experiments was an IBM-SP4 with twelve SMP nodes of thirty-two P690+ processors
(at 1.3 Ghz); nodes are connected via a Federation network (1.6 Gbits per seconds).
The latency of Federation network is between 5 and 7 micro-seconds and its bandwith
is 2 Gbits per second for each node (see http://www.arcade-eu.org/overview/); note
that the bandwidth is good since there are few processors pernode. We have used up
to 128 processors.

Figures 13, display the elapsed time of parallel iterative algorithms for different
values of the number of processors in the case of 3D linear problems with the fol-
lowing convection parameters: 0.5, 1.5 and -0.5,c = 10, andν = 1, whereν is the
diffusion parameter.

Figures 14 show the efficiency of parallel iterative algorithms in function of the
number of processors.

The number of relaxations is given in Figures 15.

Parallel experimental results are summarized in table 2 and3
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Figure 13: 3D problem,ν = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4
P690+, elapsed time of synchronous algorithms (solid) and asynchronous algorithms
(dashed).
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Figure 14: 3D problem,ν = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4 P690+,
efficiency of synchronous algorithms (solid) and asynchronous algorithms (dashed).
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Figure 15: 3D problem,ν = 1, 3,750,000 nodes, 256 subdomains, IBM-SP4 P690+,
number of relaxations of synchronous algorithms (solid) and asynchronous algorithms
(dashed).

procs. time (sec.) relaxations speed-up efficiency

Seq 8 681 1 573 740 - -

As2 5 781 1 603 558 1.50 0.75
As4 2 846 1 632 888 3.05 0.76
As8 1 470 1 651 626 5.91 0.74
As16 796 1 705 320 10.91 0.68
As32 466 1 758 772 18.63 0.58
As64 241 1 822 306 36.02 0.56
As128 133 1 998 848 65.27 0.51

Table 2: Asynchronous Algorithm,ν = 1

From Figures 15, we see that the number of relaxations increases with the num-
ber of processors. In the case of parallel synchronous schemes of computation, this
phenomenon is mainly due to slight modifications in the orderof treatment of the
different subdomains; in the case of asynchronous schemes of computation, this fact
is mainly due to the chaotic behavior of the algorithm. Note that asynchronous al-
gorithms perform more relaxations than synchronous ones ; then, in asynchronous
domain decomposition methods, boundary values of subdomains are exchanged with
no order : thus, regarding the number of relaxations, convergence may be slower. We
must note that despite higher numbers of relaxations, elapsed time of asynchronous
parallel iterations are less than the elapsed time of synchronous ones. In other words,
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procs. time (sec.) relaxations speed-up efficiency

Seq 8 681 1 573 740 - -

Sy2 6 232 1 587 852 1.39 0.70
Sy4 3 132 1 600 460 2.77 0.69
Sy8 2 061 1 614 310 4.21 0.53
Sy16 1004 1 628 400 8.65 0.54
Sy32 577 1 656 002 15.05 0.47
Sy64 317 1 683 804 27.38 0.43
Sy128 185 1 743 758 46.92 0.37

Table 3: Synchronous Algorithm,ν = 1

the withdrawal of synchronization can overcome slower convergence in number of
relaxation. Asynchronism is an efficient way to deal with communication overhead
and load unbalance, which are major issues in parallel computing. On the other hand,
in the case of synchronous algorithm, as the number of subdomains is bounded to
256, the more processors is being used, the less subdomains are assigned to each one.
The order in which boundary values are exchanged between theprocessors, varies
as the assignment of the subdomains changes. This order doeshave a slight influ-
ence on the convergence speed of domain decomposition methods. Finally, we note
that asynchronous algorithms with flexible communication are more efficient than
synchronous algorithms. It turns out that the overhead generated by additional re-
laxations in the case of asynchronous algorithms is smallerthan the synchronization
overhead combined with processor idle time of parallel synchronous schemes of com-
putation. Moreover, the efficiency of synchronous algorithms decreases faster than the
efficiency of asynchronous algorithms when the number of processors increases.

7 Conclusion

In this chapter, we have studied the solution of linear and nonlinear boundary val-
ues problems via parallel Schwarz alternating method. We have shown the interest
of introducing flexible asynchronous scheme of computationfor various applications
such as linear and nonlinear convection-diffusion problems, Hamilton-Jacobi-Bellman
problem, obstacle problem, Navier-Stokes equations and coupled problems of contin-
uous electrophoresis flow problem. We have also presented how to implement such
parallel methods on a supercomputer. We have also shown thatthe use of persistent
communication request with MPI library can lead to efficientimplementation. Parallel
synchronous and asynchronous iterative schemes of computation have been also com-
pared. Computational results were displayed for test on IBM-SP series machines have
clearly shown the benefits of using parallel algorithms and particularly the efficiency
of parallel asynchronous Schwarz alternating method compared to the synchronous
one.
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[22] Miellou, J.-C.,“It érations chaotiques̀a retards,étude de la convergence dans le
cas d’espaces partiellement ordonnés”, C.R.A.S., Paris, 280, 233-236, 1975.
bibitemBau78 Baudet, G. M.,“Asynchronous iterative methods for multiproces-
sors”, J.A.C.M., 25,226-244, 1978.

[23] El Tarazi, M. N., “Some convergence results for asynchronous algorithms”,
Numerisch Mathematik, 39, 325-340, 1982.

[24] El Tarazi, M. N., “Algorithmes mixtes asynchrones,étude de la convergence
monotone”, Numerisch Mathematik, 44, 363-369, 1984.

[25] Frommer, A., Schwandt, H.,“Asynchronous parallel methods for enclosing
solutions of nonlinear equations”, J. Comp. Appl. Math., 60, 47-62, 1995.

[26] Frommer, A., Schwandt, H.,“ A Unified Representation and theory of Algebraic
Additive Schwarz and Multisplitting Methods”, SIAM J. Matrix Anal. Appl., 18,
893-912, 1997.

[27] Frommer, A., Schwandt, H., D. Szyld, D.,“ Asynchronous weighted additive
Schwarz methods, Electron. Trans. Numer. Anal., 5, 48-61, 1997.

[28] Benzi, M., Szyld, D., “Existence and uniqueness of splittings for stationary
iterative methods with application to alternating methods” , Numerische Mathe-
matik, 76, 309-321, 1997.

[29] Szyld, D., “Different models of parallel asynchronous iterations with overlap-
ping blocks”, Computational and Applied Mathematics, 17, 101–115, 1998.

[30] Frommer,A., Szyld, D.,“Weighted max norms, splittings and overlapping addi-
tive Schwarz methods””, Num. Math, 83, 259-278, 1999.

[31] Frommer, A., Szyld, D.,“On asynchronous iterations”, Journal of Computa-
tional and Applied Mathematics, 123, 201-216, 2000.

38



[32] Varga, R., “Matrix iterative analysis”, Prentice Hall, Inc., 1962.
[33] Ortega, J. M., Rheinboldt, W. C., “ Iterative Solution of Nonlinear Equations in

Several Variables”, Academic Press, New York, 1970.
[34] Evans, D.J., Deren, W.,“An asynchronous parallel algorithm for solving a class

of nonlinear simultaneous equations”, Parallel Computing, 17, 165-180, 1991.
[35] Axelson, O., Barker, V., “Finite Element Solution of Boundary Value Problems”,

Academic Press, Orlando, 1984.
[36] Spiteri, P., Miellou, J. C., El Baz, D.,“Parallel Schwarz method and multi-

splitting methods for a nonlinear diffusion problem”, Numerical Algorithms, 33,
461-474, 2003.

[37] Rheinboldt, W. C.,“On M-functions and their application to nonlinear Gauss-
Seidel iterations and to network flows”, J. Math. Anal. and Appl., 32, 274-307,
1970.
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Jacobi-Bellman”, RAIRO Analyse numérique, 14, 369-393, 1980.

[41] Lions P.L., Mercier, B.,“Approximation nuḿerique deśequations de Hamilton-
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chrones avec PVM et MPI sur IBM SP2’, Calculateurs Parallèles Réseaux et
Systèmes Répartis, 10, 431-438, 1998.

[57] Chau, M.,“Algorithmes parall̀eles asynchrones pour la simulation numérique”,
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