
A Distributed Algorithm for a Reconfigurable
Modular Surface

Didier El-Baz

CNRS - LAAS, 7 av. du colonel Roche F-31400 Toulouse

Université de Toulouse, LAAS, F-31400 Toulouse, France

Email : elbaz@laas.fr

Benoı̂t Piranda and Julien Bourgeois

Université de Franche-Comté

- FEMTO-ST Institute, UMR CNRS 6174

1 Cours Leprince-Ringuet - 25200 Montbéliard, France

Email : {julien.bourgeois,benoit.piranda}@femto-st.fr

Abstract—A distributed algorithm is proposed in order to con-
trol block motion of a reconfigurable micro-electro-mechanical
modular surface. The modular surface is designed to convey
fragile and tiny micro-parts. The distributed algorithm solves
a discrete trajectory optimization problem. In particular, the
algorithm computes the shortest path between two points of
the modular surface using a strategy based on minimum hop
count. The proposed method based on distributed asynchronous
iterative elections is scalable.

Keywords-optimization, distributed computing, self-reconfigu-
rable system, self-organizing system, MEMS, Smart Blocks,
smart conveyor.

I. INTRODUCTION

Most of the implemented solutions to sort and convey

objects in production lines rely on contact-based technologies;

this raises many questions. Fragile objects can be damaged

or even scratched during manipulations. Medicines, food or

micro-electronics parts can be contaminated (see [1]). This

finally decreases the efficiency of the production line. Con-

veyors, based on air-jet technology, which avoid contact with

conveyed parts tend to solve most of these problems (see [2]).

Conveyors are generally designed as monolithic entities well

suited to a specific task and fixed environment. As a conse-

quence, conveyors have to be replaced if their environment

changes; this occurs in particular if the input or output

point of parts changes. New trends in robotics concern self-

reconfigurable systems (see [3], [4], [5]). Some of these

systems, which consist of small Micro-Electro-Mechanical

Systems (MEMS) modules, can address dynamicity issue. In

particular, they can bring flexibility in future productions lines.

We note that MEMS-based devices with embedded intelli-

gence, also referred to as distributed intelligent MEMS [6],

[7] have great potentials on many fields and more particularly

for manipulating micro parts in many industries like semi-

conductor industry and micromechanics (see [8], [9]).

Among a limited number of projects related to distributed

reconfigurable smart conveyors, the Smart Blocks project [10]

aims at designing a self-reconfigurable MEMS-based modular

surface for safe and fast conveying of fragile micro parts. The

Smart Blocks project aims at tackling all related problems so

as to increase the efficiency of future production lines. The

advantages of smart block conveyors are multiple: they can

Fig. 1. The Smart Blocks modular conveyor.

adapt easily to tasks changes and require less modules than

a classic monolithic surface. The reader is referred to [11]

for a complete and detailed presentation of the Smart Blocks

project. The Smart Block project is a sequel to the Smart

Surface project (see [12] and [13]). The Smart Surface project

dealt with a MEMS-based monolithic conveyor that consisted

of a distributed array of sensors and air-jet actuators.

In this paper, we make a very brief presentation of aspects

related to robotics and technology. We concentrate on the

design of a scalable distributed iterative algorithm that is well

suited to shortest path problems. The algorithm deals with the

solution of a discrete trajectory optimization problem. It is

based on distributed election.

Due to technology constraints, the context considered in this

paper is far more complex than the one considered in [14]

since block motion necessitates here the presence of some

other blocks, while blocks could move freely on the surface

without any support of other blocks in our previous work.

Section II deals with technical aspects related to the modular

surface in the Smart Block project. The model of the modular

surface is presented in Section III. Section IV deals with block

motion. The distributed algorithm is presented in section V.

Section VI deals with conclusions and future work.

II. THE MODULAR SURFACE

The centimeter scale modular surface studied in the Smart

Block project is composed of few dozens of blocks.

A 2D pneumatic MEMS actuator array is embedded on the

top of each block in order to move parts (see [2] and [11]).

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.178

1591



Fig. 2. Model of the modular surface.

Electro-permanent magnet-based actuators for block motion

and sensors are also embedded on each side of a block (see

Fig. 1). These features are used to detect neighboring blocks

and to move blocks accordingly. Finally processing unit and

communications ports are embedded in each block. As a

consequence, block motion relies on contacts with other blocks

and these contacts can occur only on each lateral side of

a block, not on the top, nor the bottom of the block. The

technology studied here is different from the one considered

in [14] where only contact with the surface at the bottom of

blocks was considered and block motion was not dependent

on contact with other blocks except in the case where some

block on the surface was an obstacle.

The context considered in this paper is thus far more con-

strained than the one considered in [14], since block motion

necessitates here the presence of some blocks for support while

blocks could move freely on the surface without any support

of other blocks in our previous study. As a consequence, the

strategies for block motion proposed in this paper are more

complex than in [14].

III. THE DISCRETE MODEL

We consider a discrete representation of the modular surface

with two dimensional grid topology (see Fig. 2) where each

node of the grid corresponds to the center of the cell that

can be occupied by a block. In particular, small grey squares

represent blocks. The input and output of parts are denoted by

I and O, respectively. We consider the rectangle bounded by

I and O, and denote by Br the union of all nodes contained

in this rectangle; we denote by L the set of links between the

elements of Br that are oriented from the input I to the output

O. We obtain the oriented graph G = (Br, L) that is always

oriented from the input to the output. For example, we have a

left-up oriented graph if the output O is at left and above the

input I as in Fig. 2. We note that all shortest paths between

I and O are contained in the graph G. Small white squares

represent empty cells (free nodes) that can be occupied by

blocks.

The position of a node B on the surface is given by a two

dimensional vector. The first component of this vector denoted

by B1 is an integer such that 0 ≤ B1 < W , where W is the

maximum width of the surface. The second component B2 is

an integer such that 0 ≤ B2 < H , where H is the maximum

height of the surface.

The components of I and O are denoted by Ii, i ∈ {1, 2}, and

Oi, i ∈ {1, 2}, respectively.

The problem to solve is a discrete trajectory optimization

problem between I and O. In order to solve this problem, we

consider two metrics: the number of blocks along the shortest

path between I and O and the number of hops that blocks

must perform to build the shortest path.

Then, the problem consists in determining the strategy that

minimizes block moves and that gives a shortest path between

I and O in the oriented graph G. An optimal solution will

minimize the number of blocks necessary to build the path

between I and O, i.e., it corresponds to a shortest path with

minimum hop count so that parts can be conveyed in minimum

time. An optimal solution will also minimize block move, as a

consequence, it minimizes the time needed to build the shortest

path in order to satisfy industrial constraints.

We note that the maximum length of a shortest path on the

surface is given by: W + H − 1; this value corresponds for

example to the case where I and O are at the bottom right

and top left corners of the surface, respectively.

IV. BLOCK MOTION

Only straight moves, i.e., rectilinear block moves are al-

lowed on the surface. Motions are limited by technological

constraints, i.e., the use of electro-permanent magnet-based

actuators. As a matter of fact, a block can move only if it is

in contact with adjacent blocks. Generally speaking, a block

motion relies on the support of adjacent blocks.

Managing global motion of a set of blocks via a distributed

algorithm is not straightforward since it relies on the cooper-

ation of several entities and combination of many consecutive

elementary moves.

First, we study elementary block moves allowed by the

physical system. Then, we propose to encode the deduced mo-

tion rules as an XML file. These rules simplify the validation

process of all possible motions.

We consider the configuration of a set of blocks positioned

over a 2D grid. An elementary motion moves a block to a

neighboring position, i.e., to an adjacent cell. Nevertheless,

we note that such an an elementary motion depends greatly

on the state of adjacent cells.

In order to check if a block can move, we examine the initial

state of the cell and neighboring cells, i.e., if their positions are

initially occupied by blocks or not and the associated events

that must be performed. To this end, we use a number to

encode the state of a cell, i.e., 1 if the position is occupied by

a block and 0 otherwise. Similarly, events at a given position,

are encoded as shown in Table I, where six cases are possible:

the context of the cell remains static, i.e., cell is empty or

occupied by the same block, which correspond to codes 0

and 1, respectively; the context the cell is dynamic, i.e., an

empty cell becomes occupied by a block, an occupied cell

becomes empty or a block leaves a given cell that is occupied

immediately by an adjacent block, which correspond to codes

1592



TABLE I
CODES ASSOCIATED TO THE DIFFERENT EVENTS.

Code Context Case
0 Static The cell remains empty
1 Static The cell remains occupied by same block
2 Stat. or Dyn. Every possible event can occur at that position
3 Dynamic An empty cell becomes occupied
4 Dynamic An occupied cell becomes empty
5 Dynamic A new block occupies immediately a cell

abandoned by a previous block

TABLE II
TRUTH TABLE FOR VALIDATION BLOCK MOTION.

Motion Matrix 0 1 2 3 4 5
Presence Matrix

0 1 0 1 1 0 0

1 0 1 1 0 1 1

3, 4 and 5 respectively. Finally, the case where a cell does not

have any incidence on a given motion is encoded by 2.

We introduce two types of local square matrices, i.e.,

the Motion and Presence Matrices, respectively. The Motion

Matrix is associated to events related to a given block motion

rule. The Presence Matrix is associated to the initial state of

cells before the considered motion. More precisely, a Presence

Matrix shows the state of a cell occupied by a block that

is supposed to move (central entry of the square matrix)

and the states of adjacent cells. For facility of presentation,

we consider only 3x3 matrices in the sequel. In the general

case, the size of the Presence Matrix and Motion Matrix

can nevertheless be larger in order to take into account the

simultaneous motion of set of blocks.

We concentrate first on a basic block motion and associated

Motion Matrix. This motion corresponds to the case where

a block moves to the right direction, sliding over two other

blocks; it is called “east sliding” rule and the associated

Motion Matrix is defined as follows.

MM =

⎡
⎣
2 0 0
2 4 3
2 1 1

⎤
⎦ . (1)

We consider the following 3x3 Presence Matrix.

MP =

⎡
⎣
0 0 0
1 1 0
1 1 1

⎤
⎦ . (2)

We define the operator MM

⊗
MP . The operator

MM

⊗
MP applies Truth Table II to the corresponding entries

of the matrices MM and MP (see Figure 3). Motion is valid

if the result of the application of the Truth Table II is true for

all entries, i.e., the resulting 3x3 matrix is filled by 1. In the

particular case of the example quoted above, we obtain:

Fig. 3. “East sliding” rule: overlapping Motion Matrix and Presence Matrix.

Fig. 4. “East sliding” rule: vertical symmetry.

⎡
⎣
2 0 0
2 4 3
2 1 1

⎤
⎦⊗

⎡
⎣
0 0 0
1 1 0
1 1 1

⎤
⎦ =

⎡
⎣
1 1 1
1 1 1
1 1 1

⎤
⎦ . (3)

This confirms that the corresponding motion is valid. This

rule allows the motion of a block from the central position

(value 4) to the east position (value 3) if it exists two support

blocks in the south of initial and final position of the moving

block and free positions in the north.

Various block motion rules associated with different Motion

Matrices can be introduced in order to represent several types

of block motions that satisfy technology constraints. First of

all, block motions can be derived via symmetry or rotation of a

selected block motion, e.g., see Figure 4 for vertical symmetry.

We note that there are situations where a selected block motion

is not valid (see Figure 5).

Fig. 5. Examples of situations where a given block motion is not valid.

Fig. 6. “East carrying” rule.

1593



1 <?xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f−8” ?>
2 <c a p a b i l i t i e s>
3 <c a p a b i l i t y name=” e a s t 1 ” s i z e =” 3 ,3 ”>
4 < s t a t e s>
5 2 0 0
6 2 4 3
7 2 1 1
8 < / s t a t e s>
9 <mot ions>

10 <motion t ime =” 0 ” from=” 1 ,1 ” t o =” 2 ,1 ” />
11 < / mo t ions>
12 < / c a p a b i l i t y>
13 <c a p a b i l i t y name=” c a r r y e a s t 1 ” s i z e =” 3 ,3 ”>
14 < s t a t e s>
15 0 0 0
16 4 5 3
17 2 1 2
18 < / s t a t e s>
19 <mot ions>
20 <motion t ime =” 0 ” from=” 1 ,1 ” t o =” 2 ,1 ” />
21 <motion t ime =” 0 ” from=” 0 ,1 ” t o =” 1 ,1 ” />
22 < / mo t ions>
23 < / c a p a b i l i t y>
24 < / c a p a b i l i t i e s>

Fig. 7. Extract of the XML code for block motion description

An important family of block motions corresponds to the

case where several adjacent blocks move simultaneously, e.g.,

adjacent blocks in the same row or in the same column. As

an example, the so-called “east carrying” rule corresponds to

the following Motion Matrix (see Figure 6):

MM =

⎡
⎣
0 0 0
4 5 3
2 1 2

⎤
⎦ (4)

This type of block motion is valid with the following Presence

Matrix:

MP =

⎡
⎣
0 0 0
1 1 0
1 1 0

⎤
⎦ (5)

Similar block motion rules can also be obtained via sym-

metry or rotation of Motion Matrix given in equation (4).

We encode block motion rules in an XML file that uses a

simple vocabulary. For each rule, we give the Motion Matrix

and the list of elementary moves. Fig. 7 shows an extract of the

XML code that details the encoding of the two block motion

rules presented in this section. For facility of presentation, we

do not present here all the block motions rules and associated

Motion Matrices that are allowed by technology constraints.

Nevertheless, we note that a block motion that is not valid for

a given Motion Matrix and Presence Matrix may be valid for

the same Presence Matrix and a different Motion Matrix.

Without loss of generality, we can make the following

assumption.

Assumption 1: All blocks are initially connected and the

initial set of connected blocks has a two dimensional topol-

ogy. As a consequence, initial patterns that consist only of

horizontal or vertical series of blocks are excluded.

Remark 1: Block motion rules that disconnect one or several

blocks are prohibited since a block that is separated from

the set of blocks cannot move anymore due to technology

constraints and thus cannot participate anymore to the dis-

tributed application. Block motion rules that could build a line

or column of blocks between the input I and output O are

prohibited. since this leads to a blocking.

V. DISTRIBUTED ALGORITHM

A. Principle of the distributed algorithm

The proposed approach presents the advantage to quickly

set up a modular conveyor with minimum distance between

an input, I, and an output, O, in compliance with industrial

requirements. The proposed distributed algorithm relies on

distributed MEMS computing paradigms (see [12], [13]

and [15]).

Two discrete optimization problems are solved

simultaneously by the proposed distributed iterative algorithm:

a shortest path problem between two points of the modular

surface (the input and output of parts) and the associated

optimal moving of blocks necessary to build the shortest path

subject to technology constraints.

Our algorithm is based on distributed iterative elections.

At each iteration, a block is elected in an asynchronous

distributed manner in order to move towards the output

O. The election mechanism selects a block that is not in

the same column or row as O and whose number of hops

to reach a given position, i.e. the output, O, is minimal.

Nevertheless, due to technology constraints regarding block

motion presented in Section IV and contrarily to [14], the

elected block does not move directly to the output, O (unless

it is at one hop of O): it moves only to an adjacent cell

(one hop motion towards O). This move along horizontal

or vertical axis tends to diminish the distance between the

elected block and O.

Without loss of generality and for facility of presentation,

we consider in the sequel the following condition that is

slightly more restrictive than Assumption 1.

Assumption 2: Initially, a block that is also called the Root,

occupies position I and all blocks store in registers their

position on the surface as well as the position of the output

O. The set of blocks is connected with a two-dimensional

topology excluding situations where all blocks but the Root

occupy the same line or column between input I and output O.

We make the following additional assumption.

Assumption 3: All communications between adjacent

blocks occur in finite time.

Details of the distributed iterative algorithm are presented

in Algorithm 1, where P
(
Bk

)
denotes the position of block

Bk on the surface.

1594



Algorithm 1: Distributed iterative algorithm

k=0;

Distributed election of block Bk;

while P(Bk) �= O do
k=k+1;

Distributed election of block Bk;

Bk performs one hop towards O;

end

Fig. 8. Memory organization for data communication between blocks.

B. Memory organization of a block

The local state of a block is stored in a set of variables

and tables. For example, the Neighbor Table, denoted by NT ,

stores information regarding blocks that may be connected

to a given block. In the sequel, the iteration number is

denoted by IT. Memory organization for data communication

between blocks is displayed on Fig. 8. For a typical block

with four neighbors, data sent by neighbors are stored in a

dedicated buffer, e.g., top buffer, for neighbor that is above the

considered block and right buffer for neighbor that is situated

on the right side of the block (see Figures 8 and 9).

C. Distributed election

The method used in this paper for distributed election is

based on the distributed procedure of Dijkstra and Scholten

(see [16], see also [17]). The procedure is based on activity

graph and acknowledgment of messages. In the beginning,

only the block situated at Input I , called the Root is active. The

Root starts computation, i.e., distributed election by sending an

activation message to its neighbors. Each activation message

activates a neighboring block that becomes a Son of the Root.

The Root is also called the Father. Typically, activation

messages are of the type:

Activate [Father, Son,O, ShortestDistance, IDshortest]

Fig. 9. Block communication scheme.

where the different fields of the message are: the ID of the

sender (Father), the ID of the destination (Son), the location

of the Output O, the current shortest recorded distance from a

block to the output O, and the ID of the block with shortest

recorded distance to O, respectively. Initially, we have

ShortestDistance = |Oi − Ii|+ |Oj − Ij | , (6)

and

IDshortest = Father. (7)

Upon reception of an activation message, a son computes

its distance to the output O. The distance of a block B to O
is given by:

dBO = +∞, if Bi = Oi or Bj = Oj , (8)

dBO = +∞, if no move is possible for B, (9)

dBO = |Oi −Bi|+ |Oj −Bj | , otherwise. (10)

Equation (8) traduces the fact that the path between I and

O must be as straight as possible. As a consequence, if I and

O are on the same row of column and a block has already

joined a position on this row or column, then this position

must continue to be occupied by a block till the end of the

distributed iterative process.

If dBO is smaller than ShortestDistance, then

ShortestDistance is updated and takes value dBO.

As the computation progresses, the activity graph evolves

and more and more blocks become active. At some finite

time all blocks have been activated. If an active block

receives an activation message from a neighbor, then it

does nothing. Active blocks that cannot activate neighbors

anymore since they dont have a neighbor, but their father,

or since all their neighbors have been activated by other

blocks become inactive and send an acknowledgment

message to their father. Similarly, active blocks that have

1595



Fig. 10. Example of reconfiguration steps, beginning of the reconfiguration.

received acknowledgments from all their sons become

inactive and send an acknowledgment message to their father.

Acknowledgment messages are of the type:

Ack [Son, Father, ShortestDistance, IDshortest] ,

where the different fields of the message are, the ID of the

sender (Son), the ID of the destination (Father), the current

shortest recorded distance from a block to the output O, and

the ID of the block with shortest recorded distance to O,

respectively.

In the end, only the Root is active. This ends the first

phase of the election algorithm. The Root then selects the

block with shortest distance to the output O. If there are

several blocks with the same shortest distance to O, then the

Root selects randomly one block and sends a Select message

to the elected block. The selection message is routed to the

elected block according to the father/son path obtained in the

first phase of the election algorithm.

The Elected block sends an acknowledgment message to

the Root. Upon reception of the acknowledgment message,

the Root becomes inactive. The distributed election is then

terminated. The elected block can thus make an horizontal

or vertical hop in the direction of the output O, so that the

number of hops to reach O will be less important from the

new position of this block; this is made according to the rules

presented in Sections IV and V. We note that the local state

of a block during a distributed election is given by a variable

father, a table of sons, a table of acknowledged Activation

messages, a variable dBO and variable ShortestDistance.

Lemma 1: Under Assumptions 2 and 3, any trajectory

optimization problem between the input I and outpout O,
with shortest path length N − 1, can be solved in finite time

with at most N blocks by the proposed distributed algorithm.

Proof : The proof is in six steps.

a) It follows from Assumption 2 that one block occupies

initially the input cell I. Moreover, the set of blocks is

initially connected with a two dimensional topology excluding

situations where all blocks but the Root occupy the same line

or column between input I and output O.
b) It follows from the definition of the Distributed Algorithm

1 that positions on the shortest path that are occupied by blocks

remain occupied all along the distributed application; though

the IDs of the occupying blocks may change.

c) It follows from Remark 1 that motion rules presented

in Section IV maintain a connected two dimensional topology

for the set of blocks that excludes situations where all blocks

that are not yet on the shortest path occupy the same line or

column between input I and output O.
d) Assume now that no block can move at a given step s,

i.e., all modules are blocked, then

• either no available block has support from adjacent blocks

or all blocks that are not yet on the shortest path occupy

the same line or column between input I and output O,
which is not possible according to c);

• or a block has reached output O according to the dis-

tributed algorithm presented in Section V.

e) It follows from b), d) and Assumption 3 that the shortest

path is buildt in finite time.

f) Finally, only the construction of shortest paths with

length N − 1 can be guaranteed with N blocks due to motion

rules.

Remark 2: The computation complexity of the algorithm,

i.e., the number of distance computation, is: O
(
N3

)
, where

N denotes the number of blocks.

1596



Remark 3: The communication complexity of the algorithm,

i.e., the number of messages exchanged between blocks is:

O
(
N3

)
.

Remark 4: The maximum number of block hops necessary

to build the shortest path is: O
(
N2

)
.

D. Example

We present now an example that illustrates the global

behavior of the distributed algorithm. This example

corresponds to a case with twelve blocks and shortest

path distance between I , and O, equal to eleven. We consider

here a limited number of families of block motion rules that

have been introducted in Section IV. The shortest path is

obtained after 55 block moves. Fig. 10 and Fig. 11 display a

simulation of the modular surface and gives main steps of the

reconfiguration. Blocks are identified by a number in order to

follow their progression.

In Fig. 10, the initial state is displayed, position of input

I, that is occupied by block #2, is represented by the blue

rounded square at the bottom left of the figure and position

of the output O, in the same column, is drawned by a

magenta rounded square at the top. The first two steps display

examples of motions allowing block #9 to cross the corner of

the set of blocks, and block #1 and #5 to follow the motion.

Block #5 is essential to enable block #9 to cross the corner,

it carries block #9 beyond block #10 in order to allow it

to move to the right. Steps 6, 7 and 11 show how blocks

contribute to build the column of blocks from I to O. Fig. 11

displays some of the last steps of the reconfiguration. We

note that the block #2 does not belong to the shortest path

from I to O but it is essential to the constructuction of such

path.

E. Simulations

We have developed a software1 called VisibleSim [18] in

order to visualize and debug, in real-time, distributed programs

executed in a 3D environment with intelligent objects that

are able to sense and act. VisibleSim mixes a discrete-event

core simulator with discrete-time functionalities in the most

efficient way so that simulations can scale up in numbers. We

reported simulations with 2 millions of nodes at a rate of 650k

events/sec on a simple laptop.

VisibleSim is, therefore, used for assessing the states of

the blocks during the reconfiguration since it allows the

observation of the asynchronous execution of the code on the

different blocks. There are two options for implementing an

algorithm inside VisibleSim. The first one is to use the Meld

language [19] running on top of a virtual machine. Meld is a

declarative programming language more specifically, a logic

programming language able to be compiled on distributed

environments. The virtual machines are all linked to the

simulation cores which orchestrate the execution. The second

1VisibleSim is available for download at
http://github.com/claytronics/visiblesim

option is to develop directly the program inside VisibleSim.

A program, called a BlockCode, can be associated to each

block. As VisibleSim is written in C++, the BlockCode has to

be written in C++ too in order to inherit of the properties of

the Block class.

Given the nature of our algorithm, it was easier to im-

plement it using C++ than Meld. VisibleSim has helped

debugging the program by changing the color of the blocks

during the program or by writing debugging text, to name a

few. The positions of the blocks are displayed in real-time after

each move. A block can access the list of possible motions that

are stored in the XML code presented in Figure 7.

All the images presented in this article have been realized by

an external rendering software from 3D scene exported from

VisibleSim.

VI. CONCLUSIONS

In this paper, we have proposed a distributed iterative

algorithm that solves a discrete trajectory optimization prob-

lem which occurs on a MEMS-based reconfigurable modular

conveyor. The centimeter scale modular surface is used to

convey millimeter-scale fragile objects via MEMS devices

called blocks. Blocks cooperate to optimally build the shortest

path between the input and output of parts on the surface.

Electro-permanent magnet-based actuators for block motion

impose many constraints. The proposed distributed approach

presents the advantage to be scalable. A distributed election

is implemented in order to obtain the block that will make

the next hop on the surface. The distributed election is based

on activity graph and acknowledgment of messages. The

distributed approach studied in this paper is particularly useful

to areas like semiconductors manufacturing, micro-mechanics

and pharmaceutical industry since it is characterized by recon-

figurability, flexibility, scalability and optimality that are key

issues in the development of future production lines.

In order to complete our study, the proposed distributed

algorithm will be carried out on an experimental centimeter

scale self-reconfigurable smart blocks modular conveyor. We

plan also to deal with fault detection, e.g., block failures, and

sensor failures.

ACKNOWLEDGMENT

Part of this study has been made possible with the support of

ANR-2011-BS03-005 grant and several fundings of the Labex

ACTION (contract ANR-11-LABX-01-01) and ANR/RGC

(contracts ANR-12-IS02-0004-01 and 3-ZG1F).

REFERENCES

[1] The rules governing medicinal products in the European Union. Eu-
dralex, 2010, ch. Good manufacturing practice guidelines.

[2] S. Konishi and H. Fujita, “A conveyance system using air flow based
on the concept of distributed micro motion systems,” Journal of Micro-
electromecanical Syst., vol. 3, pp. 54–58, 1994.

[3] B. Salemi, M. Moll, and W.-M. Shen, “Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system,” in Proc.
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2006, pp. 3636–
3641.

1597



Fig. 11. Example of reconfiguration steps, end of the reconfiguration.

[4] H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, Hasuo, and S. Mu-
rata, “Distributed self-reconfiguration of M-TRAN III modular robotic
system,” Intl. J. Robotics Research, vol. 27, pp. 373–386, 2008.

[5] V. Zykov, S. Mytilinaios, M. Desnoyer, and H. Lipson, “Evolved and
designed self-reproducing modular robotics,” IEEE Transactions on
Robotics, vol. 23, no. 2, pp. 308–319, 2007.

[6] J. Bourgeois and S. C. Goldstein, “Distributed intelligent MEMS:
Progresses and perspectives,” IEEE Systems Journal, 2013, accepted
manuscript. To appear.

[7] J. Bourgeois and S. Goldstein, “Distributed intelligent MEMS: Pro-
gresses and perspectives,” in ICT Innovations 2011, ser. Advances in
Intelligent and Soft Computing, L. Kocarev, Ed. Springer Berlin /
Heidelberg, 2012, vol. 150, pp. 15–25.

[8] D. Biegelsen, A. Berlin, P. Cheung, M. Fromherts, D. Goldberg, W. Jack-
son, B. Preas, J. Reich, and L. Swartz, “Airjet paper mover,” in SPIE
Int. Symposium on Micromachining and Microfabrication, 2000.

[9] Y. Fukuta, Y.-A. Chapuis, Y. Mita, and H. Fujita, “Design, fabrication
and control of MEMS-based actuator arrays for air-flow distributed mi-
cromanipulation,” IEEE Journal of Micro-Electro-Mechanical Systems,
vol. 15, no. 4, pp. 912–926, Aug. 2006.

[10] J. Bourgeois. (2010, Jun.) smartblocks.univ-fcomte.fr. [Online].
Available: http://smartblocks.univ-fcomte.fr

[11] B. Piranda, G. J. Laurent, J. Bourgeois, C. Clévy, and N. Le Fort-Piat, “A
new concept of planar self-reconfigurable modular robot for conveying
microparts,” Mechatronics, vol. 23, no. 7, pp. 906–915.

[12] K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois, and
N. L. Fort-Piat, “Distributed control architecture for smart surfaces,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Taipei, Taiwan: IEEE, October 2010, pp. 2018–2024.

[13] D. El Baz, V. Boyer, J. Bourgeois, E. Dedu, and K. Boutoustous,
“Distributed part differentiation in a smart surface,” Mechatronics,
vol. 22, no. 5, pp. 522–530, 2012.

[14] S. Tembo and D. El-Baz, “Distributed resolution of a trajectory opti-
mization problem on a MEMS-based reconfigurable modular surface,” in
2013 IEEE International Conference on Internet of Things (iThings/CP-
SCom). Beijing, China, August 2013.

[15] A. Berlin and K. Gabriel, “Distributed MEMS: New challenges for
computation,” IEEE Computational Science and Engineering Journal,
vol. 4, no. 1, pp. 12–16, March 1997.

[16] E. W. Dijkstra and C.S.Scholten, “Termination detection for diffusing
computations,” Inf. Proc. Letters, vol. 11, no. 1, pp. 1–4, 1980.

[17] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1989.

[18] D. Dhoutaut, B. Piranda, and J. Bourgeois, “Efficient simulation of
distributed sensing and control environment,” in IEEE International
Conference on Internet of Things (iThings 2013), Beijing, China, Aug
2013, pp. 1–8.

[19] M. P. Ashley-Rollman, P. Lee, S. C. Goldstein, P. Pillai, and J. D. Camp-
bell, “A language for large ensembles of independently executing nodes,”
in Proceedings of the International Conference on Logic Programming
(ICLP ’09), July 2009.

1598


