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Abstract—P2PDC is an environment for high performance peer
to peer computing that allows direct communication between

peers. This environment is based on P2PSAP, a self adaptive
communication protocol. P2PDC is suited to the solution of large
scale numerical simulation problems via distributed iterative
methods. dPerf is a performance prediction environment for
parallel and distributed applications, with primary interest in
programs written in C, C++, Fortran for P2PDC. The dPerf
performance prediction tool makes use of static and dynamic
analyses combined with trace-based simulation. In this paper, we
present a decentralized version of P2PDC and show how dPerf
predicts performance for the P2PDC environment. We present
new features of P2PDC aimed at making it more scalable and
robust. Through experiments with P2PDC and dPerf, we show
how to properly choose a peer to peer computing system which
can match the computing power of a cluster.

Keywords-peer to peer computing, high performance comput-
ing, distributed computing, task parallel model, performance
prediction, automatic static analysis, block benchmarking, trace-

based simulation

I. INTRODUCTION

Peer-to-Peer (P2P) applications have known great develop-

ments these years. These applications were originally designed

for file sharing, e.g. Gnutella [1] or FreeNet [2] and are

now considered to a larger scope from video streaming to

system update and distributed data base. Recent advances

in microprocessors architecture and networks permit one to

consider new applications like High Performance Computing

(HPC). Therefore, we can identify a real stake at developing

new protocols and environments for HPC since this can lead

to economic and attractive solutions.

In order to obtain good efficiency of HPC P2P applications,

special transport protocols have to be designed, and proper

performance prediction tools must be employed. We note that

existing transport protocols like TCP and UDP were originally

designed to provide ordered and reliable transmission to the

application and are no longer adapted to both real-time and

distributed computing applications.

In [3], we have proposed the Peer To Peer Self Adap-

tive communication Protocol (P2PSAP) which is suited to

high performance distributed computing. P2PSAP chooses

dynamically appropriate communication mode between any

peers according to decisions taken at application level like

schemes of computation, e.g. synchronous or asynchronous

iterative schemes and elements of context like network topol-

ogy at transport level. This approach is different from MPICH

Madeleine [4] in allowing the modification of internal trans-

port protocol mechanism in addition to switch between net-

works.

In [5], we have presented centralized version of P2PDC

an environment for high performance peer to peer computing

which makes use of the P2PSAP protocol in order to allow

direct communication between peers.

Traditional prediction tools are not particularly well-suited

to large scale peer-to-peer HPC applications. For this reason,

we have developed the distributed Performance Prediction

environment (dPerf), see [6]. dPerf is inspired by previous

work [7] which uses static and semi static analysis of dis-

tributed applications that communicate using MPI [8]. Later

on, starting with [9–11], the principles of performance pre-

diction for MPI applications were oriented towards peer to

peer networks. Currently, dPerf aims at applying the ideas

from [7, 9–11] to peer to peer distributed computing, where

applications communicate using the P2PDC environment.

In this paper we present a decentralized version of P2PDC

that includes features aimed at making P2PDC more scalable

and robust, and we show how to evaluate the performance

of peer-to-peer distributed applications in order to obtain a

computing power comparable to that of a cluster. Indeed, a

hybrid topology manager manages peers efficiently and facil-

itates peers collection for a computation, and a hierarchical

task allocation mechanism accelerate task allocation to peers

and avoids connection bottleneck at submitter. We use dPerf

features that permit us to calculate the necessary resources of

a P2P computing grid that will provide the same computing

power as a cluster belonging to the Grid 5000 testbed.

This article is structured as follows. Section II introduces

related works in the field of peer to peer computing and perfor-

mance prediction for distributed applications. In section III, we

describe the features of the decentralized version of P2PDC as

well as the methodology and requirements for dPerf to evaluate

and predict the execution time of applications written for the

P2PDC decentralized computing environment. Computational

results are displayed and analyzed in Section IV, while our

conclusions and future work are presented in Section V.
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II. RELATED WORK

A. Environment for peer to peer computing

Recently, middleware like BOINC [12] or OurGrid [13]

have been developed in order to exploit the CPU cycles

of computers connected to the Internet. Those systems are

generally dedicated to data parallel applications where tasks

are independent and direct communication between machines

is not needed. MapReduce [14] is a programming model and

an associated implementation for processing and generating

large data sets. Users specify a map function that processes

a key/value pair to generate a set of intermediate key/value

pair, and a reduce function that merges all intermediate values

associated with the same intermediate key. This programming

model is not appropriate for distributed iterative algorithms

with frequent communication between peers.

B. Performance prediction

Along with application development came the performance

prediction tools. These evolved at the same time as the

applications themselves which brings the older prediction tools

in a phase where it is difficult to handle today’s hardware

evolution rate. The various existent prediction tools normally

involve little manpower, take less time than the real execu-

tion of the application subjected to evaluation, may provide

developers with an insights of the application behavior, and

may assist scientist in choosing optimal future HPC system

configuration. Up to this day, performance prediction tools

can be classified as: analytical [15–17], profile-based (based

on compilers and instrumentation tools) [7, 18], simulation-

based [19, 20], and hybrid [21–24]. The hybrid methods are a

combination of profile- and simulation- based, dPerf belonging

to this category.

The above-mentioned research address single-processor sys-

tems, or are developed for specific applications, or they are

limited to centralized systems and to communication protocols

prior to P2PSAP. To the best of our knowledge, there is no

performance prediction tool that focus on both parallel and

peer to peer distributed system, and there surely is no tool

that evaluates applications written for the P2PDC environment.

For this purpose, the dPerf prediction environment evaluates

distributed applications written in C, C++, or Fortran and

communicating via MPI or P2PSAP, in other words handling

previous and future HPC systems.

III. P2PDC ENVIRONMENT AND DPERF TOOL

In this section, we present the decentralized version of

P2PDC based on a hybrid topology manager and a hierarchical

task allocation mechanism which makes P2PDC more scalable

and efficient. Afterwards we describe dPerf, our tool for

predicting application performance in the P2PDC environment.

In the sequel, the so-called task corresponds to a computation

submitted to environment; a part of a computation assigned to

a peer is called a subtask.

Fig. 1: General topology architecture.

Fig. 2: Trackers topology.

A. Hybrid topology manager

In the centralized version of P2PDC, a topology server

manages informations regarding peers and allocates peers to

a task. This centralized architecture is not scalable since

the topology server is overloaded when the number of peer

increases. Furthermore, when a topology server failure occurs,

no task can be carried out. Thus, we have implemented a new

topology architecture which is scalable and facilitates peers

collection for computation.

1) General topology architecture: Figure 1 illustrates the

general topology architecture. It consists of a Server, Trackers

and Peers.

• Server manages informations regarding trackers connec-

tion/disconnection; it is the contact point of new nodes

joining overlay network for the first time. When trackers

or peers have no contact to join overlay network, they

contact the server in order to receive a list of closest

connected trackers, then they connect to trackers in the

received list. The server can also store statistic informa-

tion regarding connection/disconnection time, resources

donated/consumed of all nodes in the overlay network.

• A tracker manages informations regarding a set of peers,

called a zone. It collects statistic information regarding

connection/disconnection time, resources donated/con-

sumed of peers in his zone and periodically sends these

data to server.

• Peers are donors of computational resources. Peers are

grouped in zones and managed by the tracker of zone.

Trackers topology is a line, see Figure 2. Each tracker T i
maintains a set of closest trackers Ni. In order to get rid of

the case where some trackers can be isolated, there are, in

the set Ni, |Ni|/2 closest trackers having IP address greater

than IP address of owner tracker and |Ni|/2 closest trackers

having IP address smaller than IP address of owner tracker.

Moreover, each tracker maintains connection with the closest

tracker on right side and the closest tracker on left side.
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In a zone, peers publish their information regarding proces-

sor, memory, hard disk and current usage state to tracker of

zone and wait for works. Peers have to update periodically

their usage state to tracker.

2) IP-based proximity metric: In the literature, there are

several proximity metrics that can be used in order to calculate

the proximity between peers in the network such as IP path

length, AS path length, geographic distance, and measures

related to RTT, etc (see [25]). Each metric has its own

advantages and weakness. We have chosen IP-based proximity

metric because it makes use of local informations (IP address)

to calculate the proximity, hence it does not consume network

resource and is faster than other metrics.

IP-based proximity metric [26] makes use of the longest

common IP prefix length as the measure of proximity between

peers. For example, in the case of 3 peers: P1 having IP

address 145.82.1.1, P2 having IP address 145.82.1.129 and

P3 having address 145.83.56.74. The longest common prefix

between P1 and P2 is 24 bits, while the longest common prefix

between P1 and P3 is 15 bits. So P1 considers that P2 is closer

than P3.

3) Topology initialization: Initially, we suppose that the

system has a server and some trackers managed by system

administrator. These nodes are cores of the system and are

on-line permanently. When the number of peers increases,

system administrator choose some trust volunteers peers to

become trackers. Trackers are chosen based on on-line time,

i.e. volunteers peers with biggest on-line time will be chosen;

moreover, trackers are chosen spearing on the IP range in order

to ensure that the number of peer in a zone is balanced between

zones. When P2PDC environment is downloaded and installed

on a node, IP address of server and a list of trackers are set

and stored in local memory. This tracker list will be updated

when node joins to overlay network.

4) Tracker joins: When a new tracker connects to overlay

network, it sends a join message to closest tracker in trackers

list stored in local memory. If this tracker does not answer,

then it sends join message to next closest trackers in trackers

list. In the case where all trackers in the trackers list don’t

answer, new tracker will contact the server; then the server

sends to it a new trackers list. The tracker, when receiving a

join message, calculates and compares the proximity between

itself and new tracker with proximity between trackers in its

closest trackers set N and new tracker. If contacted tracker

found in its set N a tracker that is closer to new tracker,

then it transfers join message to this tracker. This step repeats

until the closest tracker to new tracker is found in the overlay

network. The closest tracker firstly informs all trackers in set

N about new tracker. Secondly, it removes the farthest tracker

along the same side as new tracker in the set N and adds

new tracker to the set N . Others trackers in the set N of

closest trackers must adjust their set N along the same way.

The closest tracker sends also its set N to new tracker so

that new tracker can build its own set N . Finally, new tracker

establishes connections with two closest trackers along the two

sides in his set N . Figure 3 shows state of trackers topology

after new tracker T 8 has joined overlay network.

Fig. 3: Trackers topology after a new tracker has joined.

Fig. 4: Trackers topology after a tracker has disconnected.

5) Tracker leaves: As a tracker maintains connections with

two closest trackers along the two sides in the set N , a

tracker disconnection can be detected by direct neighbors

when connection is broken. Suppose that tracker T4 in Figure

2 crashes, its direct neighbors T3 and T5 detect disconnection

of T4. T3 informs trackers along left side of his set N and the

server about T4 disconnection. In order that trackers on left

side of T3 can rebuild their set N, T3 sends also trackers list

on right side of its set N; then these trackers replace T4 by

a closest tracker received. Similarly, T5 informs trackers on

right side of its set N and the server about T4 disconnection

and sends to them trackers on left side of its set N. Afterwards,

T3 establishes a connection with T5 and the two trackers send

to each other the farthest trackers so that they can rebuild their

set N. Figure 4 presents trackers topology after tracker T4 has

disconnected.

6) Peer joins: When a new peer joins overlay network, it

sends a join message to closest tracker in tracker list stored in

local memory; the join message is transferred to tracker which

is closest to new peer. The closest tracker adds this peer to

its peers list and sends an accept message to new peer along

with its neighbors set N. New peer updates its tracker list and

sends their information regarding resources such as processor,

memory, hard disk and current usage state to tracker of zone.

After joining a zone, peers have to update periodically their

resources usage state to tracker. When tracker receives state

update from a peer, it sends an answer message to this peer.

7) Peer leaves: When a peer disconnects, tracker does not

receive resources usage state update from this peer. If tracker

does not receive state update of a peer after a time T, then

tracker considers that this peer is disconnected. On the other

hand, when a tracker disconnects, peers of this zone don’t

receive answer message in response to state update message.

If peers don’t receive answer message from tracker after a time

T, then peers consider that this tracker is disconnected; then

peers will send join message to closest tracker in their tracker

list, i.e. they will join to neighbors zone.

We note that when the server disconnects, the system con-

tinues working; topology of trackers and peers are maintained;

new trackers and new peers can join to overlay network
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Fig. 5: Allocation graph.

through their tracker list in local memory; Trackers store

statistics information in local memory and send them to the

server when the server comes back.

B. Peers collection for a task

When a node, the so-called submitter, wants to submit a

task, it has to join the overlay network firstly; i.e. it finds

a closest tracker and joins this zone. Then the submitter

sends peer request message to its tracker; this message con-

tains information regarding computation like task’s descrip-

tion, number of peers needed initially, peers requirements;

the tracker filters connected peers in its zone which satisfy

requirements of the request and send these peers back to

submitter. If number of peers collected by this trackers is

not enough, then submitter requests peer from trackers in its

local tracker list. If number of collected peers is not enough

after having sent requests to all trackers in its local tracker

list, then submitter requests more trackers address from the

two farthest trackers on the two sides in its local tracker

list. These two farthest trackers send to submitter trackers in

their tracker list in other side with submitter. Then, submitter

requests peers from news received trackers. This step repeats

until enough peers have been collected. Peers reserved for a

computation are considered busy and cannot be reserved for

another computation.

C. Hierarchical task allocation

When submitter has collected enough peers, it divides peers

into groups based on proximity; in each group, a peer is chosen

by submitter to become coordinator which will manage others

peers in group. The number of peers in a group cannot exceed

Cmax in order to ensure efficient management of coordinator.

We have chosen Cmax = 32. Submitter sends peers list of a

group to coordinator. Then, the coordinator connects to all peer

in its group and sends a ”reverse” message to peers. When

a peer is reserved for a computation, it sends a message to

its tracker to inform that it is not free any more. Figure 5

illustrates created peers graph.

Submitter decomposes task into subtasks and send subtasks

to groups coordinators. Subtasks are then sent by coordinators

to peers. Subtasks results are sent in inverse direction, i.e.

peers send their subtask result to coordinator, then coordinator

transfers them to submitter.

We note that hierarchical task allocation has many advan-

tages as compared with the case where there are not coor-

dinator. Firstly, hierarchical task allocation is faster because

submitter does not has to connect in succession to all peer

in order to reserve peers and send subtasks; submitter has

only connect to coordinators and peer reservation and subtask

sending are carried out in parallel by coordinators; moreover,

peers grouping is based on proximity, hence communication

between coordinator and peers is faster than directed commu-

nication between submitter and peers. Secondly, sending result

to submitter via coordinators avoids bottleneck at submitter

because if all peers send results directly to submitter, submitter

may become a bottleneck.

D. Performance prediction with dPerf - methodology and

requirements

Source Code

Static Analysis

Language:

C/C++/Fortran

Communication:

MPI / P2PSAP*

Execution 

of

instrumented

code

Time for 

each 

block of 

instructions

data

dependency

dPerf using ROSE

Representations:

AST,

DDG, CDG,

SDG

Decomposition

by

blocks

Automatically

instrumented

code

* P2PSAP is a self-adaptive communication protocol developed by the LAAS-CNRS team, 

for P2P computing systems

Trace 

for 

SimGrid

Trace-based 

Network

Simulation

Performance 

prediction of 

parallel 

applications

Fig. 6: dPerf prediction environment

The dPerf prediction environment is depicted in Fig. 6 and

has previously been presented in [6]. We will briefly enumerate

several requirements that must be met so that application

performance prediction can be done, and then we quickly

remind the most important aspects of dPerf.

1) Requirements: The prerequisites presented in the follow-

ing ensure that the analysis of the input code, the execution

of the transformed code and the simulation of trace files take

place under best conditions.

Hardware counters: for obtaining very accurate information

about user and system time based on performance counter

registers. Accuracy was demonstrated in [27].

GNU/Linux and the Performance Counters kernel module:

to the best of our knowledge, only Linux provides developers

with a module and interfaces for reading the hardware coun-

ters. Ways of enabling the performance counters module in the

Linux kernel together with available interfaces are presented

in [27].

PAPI: the Performance Application Programing Interface

(PAPI) [28, 29] provides developers with simple interfaces for

reading all information available in the hardware counters. The

retrieval of information from registers is done with a minimum

noise introduced into the measured system, and thus, any tool

that uses PAPI has increased accuracy from measurement point

of view.

ROSE compiler: dPerf predictions are based on static anal-

ysis of an input source code. The static code analyzer in

dPerf is in fact a custom translator built using Rose Compiler

framework [30]. Rose is a compiler infrastructure offering

developers the necessary methods for building custom source-

to-source program transformation and analysis tools (see Fig.
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7). It can analyze large scale applications. Since the custom

tools based on Rose accept C, C++, Fortran, OpenMP and

UPC programs, it means that these tools cover the most part

of applications running on parallel and distributed systems.

The Abstract Syntax Tree (AST) is the fundamental syntactic

Custom translator

built using Rose

Transformed

source code

Source 

code

Rose front-end

C, C++

(EDG)

Fortran

(Open64)

Generated

IR-s

AST

DDG CDG
AST, CFG, SDG Analysis

CFG

SDG
AST Transformation

Rose Unparser

Fig. 7: Diagram of a custom tool built using the Rose compiler
framework

representation of a single file source code. It can be eas-

ily analyzed and based on its traversal, any transformation

can be performed. dPerf uses the AST built by Rose to

identify key elements such as statements, basic blocks and

calls for communication. For this reason, our tool gains a

second advantage compared to other program analyzers, that

is making use of the methods available within Rose for

analyzing not only the AST, but also the data and control

dependence graphs of an input code. Trace-based simulation

using Simgrid: for building custom network simulators or per-

form fast trace-based simulations with the default simulation

kernel available in Simgrid. From Simgrid [19] framework,

we use the MSG module for replaying trace files based on a

deployment platform defined by us. dPerf passes the output

of our static analysis to SimGrid’s MSG module. Using this

module, the communication time can be calculated for any

network topology, this solving the communication time aspect

of our application performance prediction.
2) Methodology: dPerf methodology has previously been

described in [6], therefore, in this article, we briefly go through

the most important aspects of our performance prediction

approach. The dPerf approach for doing performance pre-

diction for distributed applications running with the P2PDC

decentralized environment is presented in the following.

Choosing the input source code: due to the fact that dPerf

is built over Rose and Simgrid frameworks, any C, C++ or

Fortran application can be passed as input.

Automatic static analysis: by calling methods available

through Rose framework, dPerf parses the input source code

and obtains an abstract syntax tree (AST) which will be

analyzed automatically. Upon analysis, the AST is modified

so that lines of code will be injected into the source code

for instrumentation purposes. The AST representation allows

dPerf to analyze the most basic instruction blocks in search for

communication calls. The instructions representing calls for

communication can be of any type, meaning that dPerf is cus-

tomizable for recognizing multiple communication methods

such as MPI or P2PSAP. This point in the analysis process

is responsible for inserting into the studied AST of calls to

the PAPI library for obtaining accurate measurement of time

duration. Two ways of performing the automatic static analysis

are implemented in dPerf, as explained in [6], but in this paper

we only employ the simple block benchmarking technique.

The use of benchmarking by block makes it possible for

dPerf results to be scaled-up while maintaining accuracy in

predicting the performance.

Unparsing the AST transformations: once all transforma-

tions at AST level are made, dPerf unparses the modified AST

into a source code of the same programming language as the

input one.

Build the transformed code using several compiler opti-

mization levels: in order to provide performance estimation

with respect to various optimizations of the compiler, the

transformed source code is compiled, in turn, using GCC

optimization levels 0, 1, 2, 3 and s.

Obtaining trace files: by running the compiled transformed

source code, the result consists in a set of trace files for each

execution and per participating process or node. Traces con-

tain computation time measured using hardware counters and

expressed in nanoseconds, followed by relevant parameters for

communication calls.

Using Simgrid to calculate prediction result: the trace

files obtained earlier are given at input to Simgrid, but not

before configuring the distributed network to be simulated.

The platform description file being ready and the trace files

available, with Simgrid we calculate the necessary time for

communicating over the network. To this time, Simgrid adds

the computation time already present in the trace file. The

output is the total predicted time (tpredicted) for the input

application.

An important feature of dPerf is the reduced slowdown due

to the use of block benchmarking techniques [6].

IV. EXPERIMENTS WITH DPERF ON P2PDC

The experimental setup for predicting application perfor-

mance with dPerf for applications running in a decentralized

P2PDC environment consists of two parts. First, we prove the

accuracy of a dPerf performance prediction on a homogeneous

cluster. Then we propose a case study for testing several

possible network topologies on a peer-to-peer computing grid

consisting of identical machines as those used in a cluster.

For simplicity, we will refer to these two stages of the

experiment as Stage-1 and Stage-2. We want to show that using

dPerf we can find the best peer-to-peer system configuration

which would match the computing power of the homogeneous

cluster.

A. Experimental setup

1) Input source code - the obstacle problem: the experi-

ments are performed on a source code for the obstacle prob-

lem. This code written in C was developed in the framework of

the ANR CIP project [31] (see also [32]). In [5], the code for

the obstacle problem was adapted to the P2PDC environment.

Communications between peers are made via the P2PSAP

protocol.

2) Compiler options: the GCC compiler is used for com-

piling the source code. The code of the obstacle problem is

compiled in turn with the option corresponding to each of the

following optimization levels: 0, 1, 2, 3, s.
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3) Computing system nodes: for achieving experimental

results, we are using some of the available resources of

Grid’5000 [33], an experimental testbed composed of around

5000 CPUs distributed over 9 sites throughout France. In

Stage-1 we employ 2
n nodes of the Bordeplage cluster [34],

with n ∈ {1, 2, 3, 4, 5}. In Stage-2 we use the same 2
n

nodes with n ∈ {1, 2, 3, 4, 5}, but the network topologies

are different from the one in Stage-1. On each working node,

only one core is employed, regardless of the total number of

available cores per node. The nodes are Intel Xeon EM64T

3GHz, 1 MB L2 cache, 2 GB Memory.

4) Computing system network infrastructure: in Stage-1,

the cluster network topology is the following:

• all network interface cards (NIC) are 1 Gbps Gigabit

Ethernet with a latency of 100 microseconds;

• cluster backbone bandwidth is of 10 Gbps with a latency

of 100 microseconds.

In Stage-2 of the experiment, the same node types as the

ones in Stage-1 are used, but connected, in turn, by two

different network topologies (Stage-2A and Stage-2B). Both

networks enumerated below connect a number of 2
10 nodes,

out of which we use, in turn, 2
1..25 nodes, in order to

be directly comparable to Stage-1. All connections are full-

duplex.

1) Stage-2A: a Daisy Topology, as described in [10, 35, 36].

• 5 central routers;

• 5 petals, each with 10 routers on it;

• 4 DSLAM units connected to each router on the

petals;

• 5 nodes connected to each DSLAM, except the

central ones;

• all links between routers are of 10Gbps, except the

central ring which is at 100Gbps;

• all links from DSLAM to routers are of 10Gpbs;

• all links from nodes to DSLAM are of 5 to 10 Mbps,

value randomly assigned;

This configuration (see Fig. 8) is used by most Internet

providers in Europe for xDSL lines in particular. xDSL

refers to any type of Digital Subscriber Line, includ-

ing asymmetric DSL (ADSL), symmetric DSL (SDSL),

very-high-bitrate DSL (VDSL), etc.

2) Stage-2B: a regular Local Area Network

• backbone of 1 Gbps

• each node is connected to the backbone at 100 Mbps

By using these network configurations we want to calculate

the number of distributed nodes that need to be connected over

xDSL or LAN in order to provide the equivalent computation

power of a cluster.

B. Results obtained with dPerf

The experiments detailed below are a comparison between

a reference time (CPU + communication) and a prediction for

a peer-to-peer system using identical machines but different

network topologies. All this is done for finding at what

point the cluster computing power is equivalent to the power

supplied by a desktop grid over xDSL lines or LAN.
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Fig. 8: Stage-2A Daisy topology to describe a xDSL network.

1) Reference time: the reference time tnormal execution is

obtained during Stage-1 by compiling and running the code on

the Bordeplage cluster. The distributed environment is P2PDC

and the end of each execution displays an overall execution

time measured using hardware counters and expressed in

nanoseconds. Fig. 9 depicts the reference time for 2, 4, 8,

16 and 32 nodes using each compiler optimization level.
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Fig. 9: Stage-1 reference execution time for all optimization levels.

2) Predicted time: the prediction obtained during Stage-

1 is based on simulating identical cluster configuration, that

is nodes and network topology. For this, all files from the

obstacle problem source which contain calls to P2PSAP com-

munication are passed as input to dPerf. dPerf automatically

analyzes them and prepares them for instrumentation, as de-

scribed in section III-D. The output is then compiled, ran and

trace files are obtained. A platform description file is necessary

for performing trace-based simulation. In Stage-1, the platform

file defines a network topology identical to the real one used

in the Grid5000 cluster. In Stage-2A, the platform description

file defines a Daisy Topology xDSL network infrastructure,

the most widely solution for domestic Internet access lines.

In Stage-2B, the network used for trace-based simulations is

a typical LAN, used by most university campuses, corporates,
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TABLE I: Comparing equivalent predictions and the corresponding
computing power in Grid5000.

Processes Performance Processes

number topology (than) number topology

4 xDSL slightly lower 2 Grid5000
2 LAN slightly lower 2 Grid5000
4 LAN slightly lower 4 Grid5000
8 LAN same as 4 Grid5000
32 LAN slightly lower 8 Grid5000

and other research facilities. Simgrid uses the trace files and

the platform description files, the result being the predicted

time tpredicted.

3) Comparison of reference and predicted time for Stage-1:

Fig. 10 depicts the comparison between tnormal execution and

tpredicted during Stage-1. It can be noticed that the reference

time and the prediction calculated with dPerf are very close,

meaning that dPerf yields an accurate prediction. Due to the

fact that prediction is accurate at all optimization levels, only

level 3 of GCC optimization is presented in Fig. 10.
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Fig. 10: Stage-1 reference time compared to predicted time. GCC
optimization level 3.

4) Finding equivalent computing power in a peer-to-peer

desktop grid over xDSL or LAN: Stage-2 of the experimental

part consists in finding the equivalent computing power of the

Bordeplage cluster in a peer-to-peer desktop grid. Due to the

precision in predicting execution time shown for Stage-1, we

will present the results for scenarios that are closer to real-life

situations. The reference time obtained by running the code

with P2PDC is compared to the situation where a desktop grid

of computers are connected to a xDSL and afterwards over

LAN and communicate in P2PDC. A four-way comparison is

presented in Fig. 11. We remind that the prediction process

is accurate and the results presented in the following are the

prediction of performance if we would replace the computing

power of Grid5000 by an xDSL or a LAN. In Stage-2A, our

attempt to find an equivalent xDSL desktop grid gives unsat-

isfactory results due to the computation- and communication-

intensive type of the numerical simulation code. Although

the communication size is reduced, the necessary time to

exchange data tends to increase exponentially with the number

of peers, while the computation load per peer decreases. We

do notice that four processes in xDSL are slightly slower than

two processes in Grid5000. In Stage-2B, we estimate better

performances in peer-to-peer if we use LAN for solving the

obstacle problem. Fig. 11 and table I show the comparison

results when the code is compiled with optimization level 0.

We see that, for example, we may choose to deploy the parallel

code in P2PDC using eight peers on LAN instead of waiting

for four available nodes on Grid5000.
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V. CONCLUSION AND FUTURE WORK

This paper introduced the decentralized version of the peer-

to-peer HPC environment P2PDC along with a set of experi-

ments to show the accuracy of dPerf in predicting performance

for applications running with P2PDC.

The features presented for P2PDC are meant to provide our

decentralized environment with scalability and robustness. By

introducing the hybrid topology manager, peers are handled

more efficiently, and peer collection in view of a computation

is facilitated. We presented how task allocation to peers is

accelerated and bottlenecks at submitter are avoided by intro-

ducing a hierarchical task allocation mechanism. As shown

in through experiments, dPerf accurately predicts application

performance based on a set of trace files obtained on a

reference platform. The novelty of this paper from a prediction

point of view is the possibility to use dPerf for finding an

equivalent computing power of a homogeneous cluster in

a peer-to-peer computing platform connected over a xDSL

network or over LAN, thus placing P2PDC and dPerf in a

real-life situation.

Currently we are carrying out computation tests with

P2PDC on several testbeds like PlanetLab and Grid5000 and

from a prediction point of view we mention ongoing research

on multi-core architectures so that dPerf would efficiently

calculate the equivalent computing power of a homogeneous

cluster in a completely heterogeneous peer-to-peer grid con-

nected over a heterogeneous network. Another near-future goal

is to be able to supply application prediction with P2PDC for

a few hundreds up to a few thousand machines by scaling-up

static analysis obtained with dPerf.
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