
Communication Study and Implementation Analysis of Parallel Asynchronous
Iterative Algorithms on Message Passing Architectures

D. El Baz
LAAS-CNRS, 7, avenue du Colonel Roche, 31077 Toulouse CEDEX 4, France,

E-mail: elbaz@laas.fr

Abstract

The implementation of parallel asynchronous iterative
algorithms on message passing architectures is considered.
Several issues related to communication via message pass-
ing interfaces or libraries such as MPI-1, MPI-2, PVM or
SHMEM are discussed in this survey paper. Practical im-
plementations are proposed.

1 Introduction

In the recent years, the concept of asynchronism has
gained a considerable amount of attention in many domains
related to computer science e. g.: circuits, processes and
algorithms. In particular, parallel asynchronous iterative
methods have been studied extensively (see for example
[2], [3], [7], [9], [11], [13], [14], [18] and [20]). Asyn-
chronous iterative algorithms were shown to be more effi-
cient then their synchronous counterpart for many applica-
tions including optimization (see [9] and [13]) and numeri-
cal simulation (see for example: [18]). Today, the features
of asynchronous algorithms such as: lack of synchroniza-
tion, tolerance to problem data changes, fault tolerance, and
flexibility make them very attractive for Grid computing,
global computing and peer to peer computing. Neverthe-
less, asynchronous iterative algorithms remain difficult to
apprehend by a large number of computer scientists mainly
because several points related to the implementation of this
class of methods have not yet been totally clarified. Authors
who have contributed to this field generally present specific
implementations of these algorithms without drawing gen-
eral lessons on the implementation issue. As a result, there
is no global view on the implementation topic and parallel
asynchronous iterative algorithms are often considered as
not easy to understand and not easy to implement methods.
This issue seems particularly complex for message passing
architectures, since message passing interfaces such as MPI
have functionalities that may be implementation dependant.

This paper deals with the implementation of parallel

asynchronous iterative algorithms on message passing ar-
chitectures. We concentrate on communication aspects.
The main goal of this paper is to clarify the implemen-
tation issue. We show in particular that asynchronous it-
erations can be implemented easily by decoupling merely
computation processes. We show also that it is not manda-
tory to carry out specific types of communication, such as
asynchronous communications or nonblocking communi-
cations, in order to implement an asynchronous iterative
algorithm. We consider message passing interfaces or li-
braries such as MPI-1 and MPI-2 and illustrate our topic by
presenting, in each case, efficient ways to implement asyn-
chronous iterations.

Section 2 deals with parallel asynchronous iterations;
various models such as classical asynchronous schemes and
extensions e.g. flexible asynchronous iterations are dis-
played. The fundamental principles relevant to the imple-
mentation of asynchronous iterations and communication
issues are discussed in Section 3. Section 4 proposes sev-
eral implementations using MPI1 and MPI2.

2 Asynchronous iterative algorithms

In this section, we propose a presentation of parallel
asynchronous iterative algorithms which concentrates on
the basic properties and eludes cumbersome mathematical
models. Classical asynchronous iterations (AI) (see [12],
[1], [3] and [17]) are first considered, then, the section deals
with a recent extension: flexible asynchronous iterations
(FAI) (see [13] and [18]).

��� ��������� ��	
���

�� �������

AI algorithms are generally used in order to compute an
approximate solution to fixed point problems that can be
written as follows.

�� � � ����� (1)

where �� is a vector in �� and � is a given fixed point
mapping from �� into ��� The space �� is partitioned

1

into � subspaces, where � is the number of processors; the
fixed point mapping and iterate vector are partitioned ac-
cordingly, i.e. � � ������ ���� ������ where ���� is the so-
called �-th block-component of the iterate vector �� Block-
component ���� is assigned for example to the �-th proces-
sor. AI generate successive approximations of the block-
components of �� These approximations are obtained by ap-
plying in parallel and repetitively the block-components of
the fixed point mapping � ���� � � �� ���� �� to a given ini-
tial approximation ��� AI, which have also been called to-
tally asynchronous iterations (see [3]) or chaotic iterations
in the bounded delay context (see [4]) have been designed
for a large number of applications including solution of dis-
cretized partial differential equations, optimization and op-
timal control, (see for example [8], [16] and [17]); their
convergence has been studied in different contexts such as
contraction and partial ordering (see [2], [7], [9], [14] and
[17]). A simple definition of AI can be given as follows.

Definition 1 AI are successive approximation algorithms
whereby components or block-components of the iterate
vector are updated in parallel without any order nor syn-
chronization.

The restrictions imposed to AI are very weak: no block-
component (or component) of the iterate vector is aban-
doned forever and more and more recent updates of the
components have to be used as the computation progresses.
The advantages of AI are computation flexibility, tolerance
to problem data changes (the algorithm adapts itself to a
modified environment) and fault tolerance (the algorithm
can work well even if some data are lost or some proces-
sors fail). Since there is no synchronization overhead or idle
time due to synchronization, one may also hope that AI will
be more efficient than their synchronous counterpart. This
last remark is particularly true in the partial ordering context
where monotone sequences of updates are generated. We

1 2 3 4 5

1 3

P

P

0

1
2

Figure 1. Asynchronous iterative algorithm

present now some simple illustrations of parallel iterative
algorithms. Figure 1 displays the behavior of a typical AI
in the simple case where two processors denoted by �� and
�� cooperate to the same application, i.e. the solution of
a given fixed point problem. Processors’s updating phases
are represented by boxes (the number in each box denotes
the update number) and communications of updates by bold

arrows. More precisely, an arrow delimits two events occur-
ing during a communication between two processors. The
first event, which corresponds to the beginning of the arrow,
is relevant to posted data (update) send at the source. The
second event, which corresponds to the end of the arrow, is
related to data arrival at the receiver. We note that the actual
completion of a communication may occur long after the
time when the new data is actually available at the receiver.
We have chosen to illustrate here an important feature of AI,
i.e. the possibility to overlap communication by computa-
tion. Figure 1 shows also clearly that there is no idle time
in AI.

By way of comparison, Figure 2 displays a typical
synchronous iterative algorithm, i.e. the parallel Jacobi
scheme, ���� � � ����� in the simple case where two pro-
cessors cooperate to the solution of the same fixed point
problem. A dashed box delineates here the combination of
a communication phase and a synchronisation phase. More
precisely, a dashed box delimits the interval of time between
the beginning of a communication and the completion of a
synchronisation barrier. The completion of the communica-
tion occurs clearly during this interval of time.

1

1 2

P

P

0

1

2 3

3

Figure 2. Synchronous iterative algorithm

��� �������� ��	
���

�� �������

�

We present now an extension of AI i.e. flexible asyn-
chronous iterations (FAI). For more details on FAI, the
reader is referred to [11] to [13], see also [18].

Definition 2 FAI are iterative algorithms whereby compo-
nents or block-components of the iterate vector are updated
in parallel without any order nor synchronization using the
current value (which is not necessarily labelled by an up-
date number) of each component of the iterate vector.

Thus, FAI are algorithms whereby iterations are also carried
out in parallel in arbitrary order and without any synchro-
nization. Aside from lack of synchronization and flexibility
in the order of steering components, we have also flexibility
in the use of data produced by the algorithm. Indeed, the
value of any component of the iterate vector used during an
updating phase can correspond to the curent value of this
component which is not necessarily labelled by an update

number. This is typically the case in the inner/outer con-
text (see [14] and [12]) where the global iteration function
is such that an inner iteration has to be performed in or-
der to approximate the value of the outer iteration function
at some point. This iterative scheme allows intermediate re-
sults from the inner iteration to be used in the computations.
Updating phases can also use values of components of the
same block-component which are relevant to different up-
date numbers, i.e. some components have been already up-
dated while others not, like in the solution of a subsystem of
equations with a triangular matrix; this case corresponds to
the so-called partial update situation. This feature permits
one to take into account data coming out from computa-
tions which are in progress; it is particularly interesting in
the partial ordering context where monotonically increas-
ing or decreasing sequences of vectors are generated itera-
tively. So, we may expect better performance. We note that
numerical simulation have confirmed this expectation (see
[13] and [18]). FAI have also been called asynchronous it-
erative algorihms with order intervals and asynchronous it-
erations with flexible communication. Convergence results
for FAI have been established in different contexts: partial
ordering (see [13] and [18]) and contraction (see [12]).

Figure 3 shows the behavior of a typical FAI in the sim-
ple case where two processors cooperate to the same ap-
plication. Communication of updates and partial updates,
respectively, are represented by bold arrows and normal ar-
rows, respectively. Finally, we note that FAI do not neces-
sarilly lead to an important augmentation in the number of
data exchanges, as Figure 3 may suggest, but rather, gives
the possibility to obtain the current value of any component
of the iterate vector when needed. Basically, the number
of data exchanges will depend on the data exchange policy
which is actually implemented.

1 2 3 4 5

1 2 3

P

P

0

1

Figure 3. Flexible asynchronous iteration

3 Principles of implementation

In this Section, we bring forward the general lessons that
permit one to implement AI and FAI on a message passing
architecture. In particular, we point out that the implemen-
tation of parallel algorithms is not specifically related to the
use of a given type of communication such as nonblocking
or asynchronous communications. Merely, we bring into

evidence that the type of communication chosen must not
be an obstacle to computation progress, i.e. it must allow
each processor to go at his own pace. Thus, the key point of
any efficient implementation will be the preservation of this
important feature.

��� ��	
���

�� ��������� ���
������

We state now the main principle relevant to AI imple-
mentation. In the sequel, all implementations will be de-
rived from this basic statement. For the sake of simplic-
ity, we will assume in what follows that updating phases
are implemented according to the Single Process Multiple
Data (SPMD) model using processes called computation
processes and that there is only one computation process
per processor.
Principle 1 In order to implement AI, one has merely to in-
sure that the beginning of each updating phase of any pro-
cessor must not be subordinated to a data exchange and that
updating phases must be chained on each processor.

Remark 1 It follows that processors will perform updating
phases, i.e. iterations, at their own pace using the available
updates (since no data exchange is mandatory in order to
execute a new computation).

Remark 2 It is very important to make a clear distinction
between parallel iterative schemes of computation on the
one hand and available types of communication that can be
used in order to implement them on the other hand. For
example, one must not make a confusion between asyn-
chronous iterative algorithms and asynchronous communi-
cations in MPI-1 as we shall see in Section 4. One must
simply choose a type of communication which is in agree-
ment with the chosen implementation of the parallel algo-
rithm. For example, one must organize computations and
communications so that the latter do not block the former.
As a consequence, all direct communication operations be-
tween two computation processes based on rendez-vous se-
mantics must be banished a priori. It is also clear that all
computation processes must not wait here for the comple-
tion of any communication; so that, computation processes
will not be synchronized by any means. It is also important
to note that there are simple ways to desynchronize compu-
tation processes Several mechanisms can be implemented
in order to carry out AI from the mere dire use of nonblock-
ing communications between computation processes to the
design of specific processes that handle communications or
computations on each processor (see [8]). In the later case,
only communication processes communicate thus, compu-
tation processes running on the distributed memory archi-
tecture are naturally desynchronized; as a consequence, we
can make use of any type of communication between com-
munication processes; even rendez-vous techniques can be
used.

��� �������� ��	
���

�� �������

�

Principle 2 In order to implement FAI, one has on the one
hand to insure that the beginning of any updating phase of a
given processor must not be subordinated to a data exchange
and on the other hand to insure that all processors can have
access, when needed, to the current value of the components
of the iterate vector which are updated by other processors.

Remark 3 It follows that each processor performs updat-
ing phases at his own pace, using the current value of each
component of the iterate vector which is not necessarily la-
belled by a given iteration number.

Remark 4 Very few things are supposed on the way data
exchanges are performed in the flexible asynchronous con-
text. It is only assumed that the current value of the compo-
nents of the iterate vector can be obtained when needed.

It follows from Principle 2 and the above remark that there
are several ways to implement flexible asynchronous itera-
tive algorithms. One can, on the one hand, perform a data
acquisition of the current value of the components of the it-
erate vector. We will see in detail, in the sequel, that we can
use for this purpose Remote Memory Access (RMA) func-
tions such as, for example, the MPI-2 function MPI GET().
On the other hand, one can also decide that each process
will send the current value of its assigned components of
the iterate vector according to a given policy; this is typi-
cally the case in the inner/outer context (see [13]). Flexi-
ble asynchronous iterations allow intermediate results from
the inner iteration in a given processor to be used by other
processors. This case can be found typically in twostage it-
erative methods i.e. iterative methods with two embedded
loops (see [13]); for example, intermediate values can be
sent every � steps of the interior loop. This case is rele-
vant to the situation illustrated by Figure 3. We will see, in
the sequel, that we can use for this purpose RMA functions
such as the MPI-2 function MPI PUT(). If we implement
an inner/outer iterative methods (see [13]), then, data aqui-
sition or request for new data, can be made directly in the
inner iteration loop when an accuracy very close to the re-
quested accuracy is reached. This anticipation mechanism
permits one to get new data available just before the very
beginning of a new updating phase.

4 Examples of implementation

��� ����� �������
����

We illustrate now the basic principles of implementa-
tion of parallel algorithms via the Message Passing Inter-
face (MPI-1) library (see [19]). The MPI-1 interface per-
mits one to use a network of processors of a given parallel

architecture as a unique resource of calculus. MPI-1 and
the new MPI-2 are available on all main machines such as
IBM SP series and various clusters. MPI-1 is well suited to
massive parallelism. In this situation, it is expected to be
faster than Parallel Virtual Machine (PVM). We note also
that MPI-1 has more communication options than PVM.
This last point is particularly important for the implemen-
tation of asynchronous iterative algorithms.
Asynchronous iterative algorithms

An elegant way to implement AI is to use point to point
communications between computation processes. More
precisely, on the one hand, nonblocking send can be used,
namely the MPI ISEND() posting send operation; the ar-
guments of MPI ISEND() being the address of data and
their size. On the other hand, messages can be received
by using persistent communication request since communi-
cation with the same argument list is repeatedly executed.
Persistent communication request can be thought of as a
communication port or a half-channel; the construct al-
lows reduction of the communication overhead between the
process and communication controller. We note that each
call of a MPI RECV() operation implies an additional la-
tency time. When there are several occurences of mes-
sages in the receive buffer, it is more efficient to use per-
sistent communication since the receive process is then per-
formed only once using MPI RECV INIT(). Initialisation
and activation, respectively, of the reception are made with
MPI RECV INIT() and MPI START(), respectively. Mes-
sage detection in the buffer is made with the MPI TEST()
test function. The following parts of Fortran code show
how nonblocking send and persistent communications can
be implemented.

C Initialisation of the reception
CALL MPI_RECV_INIT(DATA,...)
CALL MPI_START(REQ_P(SOURCE),...)

C In the COMPUTATION() process:
SUBROUTINE COMPUTATION()

C Variables
......

10 CONTINUE
C Reception test of data

CALL MPI_TEST(REQ_P(SOURCE),...)
WHILE (LOG_P)
CALL MPI_START(REQ_P(SOURCE),.)
CALL MPI_TEST(REQ_P(SOURCE),..)

C Computation of a new update
CALL UPDATING()

C Send the data to other processes
CALL MPI_ISEND(DATA,...)

C Stopping test - > test
IF(test.GT.EPSILON) GOTO 10
RETURN
END

We note that neither the computation process which trans-
mits, nor the computation process which receives are wait-
ing.

Remark 5 If no reception loop was implemented, then
messages could be received long after their emission and
the implementation might be inefficient. The reception loop
using MPI TEST() and MPI START() permits the proces-
sor to take into account new messages which have been re-
ceived before beginning a new updating phase. This im-
plementation is more performant, particularly in the case
where some computation processes are updating compo-
nents more rapidly than others.

Persistant communication can also be implemented with the
MPI IPROBE() function which is a nonblocking operation
that returns flag = true if there is a message that can be
received and that matches the message envelope specified
by source, tag and com. The receive process is activated
only one time with the MPI INIT RECV() function and the
buffer is read via the MPI START() function. Message de-
tection in the buffer is made with the MPI IPROBE() func-
tion. The Implementation is as follows.

MPI_INIT_RECV(list->buf_recv,...)
MPI_DOUBLE, list->num,...)
MPI_IPROBE(list->num,...)
WHILE(flag1)
MPI_START(&request)
MPI_IPROBE(list->num,...)

This solution is very attactive because if no message can
be received, then no reception is performed and the process
does not wait. Reception is also performed while messages
can be received. So, processes have always access to recent
updates, since MPI preserves the order of emission.

Remark 6 The above solutions are better than the one
which consists in using the simple nonblocking posting send
and receive operations MPI ISEND() and MPI IRECV(),
respectively, of the MPI-1 library since data may then be
received and used long after they have been sent.

Remark 7 The program may write in the space mem-
ory buffer just after a send. Thus, we could also use
MPI IBSEND(), which is a bufferized nonblocking post-
ing send in order to respect MPI safe programming rules.
However, we point out that the use of MPI ISEND() or
MPI IBSEND() operations without using completion of
communications goes against the same safe programming
rules of MPI. In fact, it is not false to say that the implemen-
tation of asynchronous iterative algorithms does not corre-
spond exactly to the spirit of MPI. Another solution could
consist in testing if all the send operations have been per-
formed and then cancel via a CANCEL() those operations
who have not been made; however, the use CANCEL() is
not recommended since its overhead is nonnegligeable.

Flexible asynchronous iterative algorithms
Flexible asynchronous iterations can be implemented in

a way quite similar to the one presented in the very be-
ginning of this subsection. The only difference is that the
MPI ISEND() posting send operation is now used to send
intermediate values or partial updates. For example, these
data can correspond to values of the iterate vector delivered
in the inner loop of a inner/outer iterative algorithm. Thus,
the MPI ISEND() posting send operation must be placed
now in the inner loop. An example of implementation in
Fortran is shown below.

SUBROUTINE COMPUTATION(...)
C Variables

......
10 CONTINUE

C Reception test of data
CALL MPI_TEST(REQ_P(SOURCE),...)
WHILE (LOG_P)
CALL MPI_START(REQ_P(SOURCE),..)
CALL MPI_TEST(REQ_P(SOURCE),...)

C Updating
...

C Beginning of the inner loop
WHILE condition not satisfied
update the iterate vector

C Send current value to processes
CALL MPI_ISEND(CURRENT,...)

C Send update to processes
CALL MPI_ISEND(DATA,...)

C Stopping test - > test
IF(test.GT.EPSILON) GOTO 10
RETURN
END

In [15] and [16], we have proposed an extension of the
above approach for carrying out flexible asynchronous it-
erative algorithms on clusters of symetric multiprocessors
(clusters of SMP). This extension combines the library
MPICH-gmm (Myrinet) with multithreading aspects. For
details on the implementation reference is made to [15].
The above implementation can also be extended to meta-
computing or grid computing via MPICH-G an MPI version
adapted to Globus.

��� ����� �������
����

We illustrate now the basic principles of AI and FAI
implementation in the MPI-2 context. An important feature
of MPI-2 is remote memory access (RMA) via one sided
communications (OSC). This feature is a major extension
of the communication model of MPI. This type of commu-
nication is particularly well suited to distributed memory
programming model and permits one to write with the

MPI PUT() function or read via the MPI GET() function
directly in the memory of a distant target processor. The
arguments of the functions are: the identity of the target,
the addresses of the data in the source and in the target, the
size of the data. In this case, the target processor does not
interfere in data transmission. OSC are nonblocking and
permit the programmer to uncouple, i.e. desynchronize,
naturally computation processes. Moreover, this type of
communication may be more performant on machines
which have material support for shared memory operations.
Among major features of MPI-2, we can quote also the
dynamic control of processes, i.e. the possibility to create
or suppress processes during the application. We note
that a call to the MPI GET() nonblocking function does
not guarantee that the data will be actually available for
upcoming computations. In fact, with OSC, we don’t know
exactly when a data reception is complete and when data
are really available. Completion of data exchange could be
obtained via a synchronization phase which is not really de-
sirable in the general context of our study. Synchronization
could be done, for example, via an active target operation,
whereby all processes communicating throughout the same
memory window participate to the synchronization with
a MPI WIN FENCE() operation. Another possibility, is
passive target synchronization, whereby the process which
is at the origin of data exchange calls the functions of the
synchronization subprogram via MPI WIN LOCK() and
MPI WIN UNLOCK(). This approach is one of the most
interesting feature of MPI-2. All the necessary calls for data
transfer: transmission, initialization and synchronization
need only the origin process, this is the feature of an actual
OSC. We note that the implementation of asynchronous
iterations departs in some sense to the RMA rules of good
use since we can ignore the synchronization phase.

Asynchronous iterative algorithms
Asynchronous iterations can simply be implemented via

the MPI PUT() function. The following algorithm, where
the variable 	
��
���� represents the number of target
processors for processor �� and � ��� �� the identity of the
�th-target processor for ��� gives an illustration of a simple
implementation.

Do in parallel i = 1, ..., p
Until convergence

compute a new update of x(i)
Do in parallel j = 1, ..., nbtarp(i)
MPI_PUT(x(i),P(i,j),size)

End do
End do

Here data are transferred via RMA, thus, each processor
reads directly in his local memory the data required for its

computations. This straightforward phase is skipped in the
above algorithm. This solution is simple and permits one to
overlap naturally communication by computation.

Flexible asynchronous iterative algorithms
Flexible asynchronous iterations can be implemented

easily with the MPI GET() function that reads the current
value of a block-component of the iterate vector. The fol-
lowing algorithm displays how easily flexible asynchronous
iterations can be implemented using MPI GET().

Do in parallel i = 1, ..., p
Until convergence

Do in parallel j = 1, ..., nbtarp(i)
MPI_GET(DATA(j),P(i,j),size)

End do
compute a new update of x(i)

End do

This solution presents the advantage to require less data ex-
changes than the one using the MPI PUT() function, which
consists in writing directly in the memory of a distant tar-
get processor from time to time the curent value of the
block-components of the iterate vector, as in the inner loop
of a inner/outer iterative algorithm; it is also more nat-
ural and performant (see [11] and [13]). We note that
the afore-mentioned two solutions are typical of the emis-
sion/reception duality.

5 Conclusions

In this paper, we have tried to clarify issues related to
the implementation of parallel asynchronous iterative al-
gorithms in message passing architectures. In particular,
we have presented the main principles upon which must be
based implementations of parallel aynchronous iterative al-
gorithms and flexible parallel aynchronous iterative algo-
rithms. We have also dealt with the important role of com-
munications in the implementation issue. Finally, we have
presented several implementations in the case of MPI-1,
MPI-2.

We have seen that it is always possible to implement
easily asynchronous iterative algorithms and flexible asyn-
chronous iterative algorithms with the above quoted li-
braries. However, it is important to note that efficient im-
plementation of asynchronous iterative algorithm relies on
important features of the libraries such as the possibility to
superpose new data on old one or the existence of a wide va-
riety of communication protocols such as nonblocking data
transfer or RMA.

One important question remains, when one studies the

performance of a parallel algorithm: what part of efficiency
is due to the algorithm on the one hand and what part is due
to the communication library, its implementation and finally
to the system, on the other hand. In future work, we plan to
deal with these points.

References

[1] G. M. Baudet, Asynchronous iterative methods for
multiprocessors, J. Assoc. Comput. Mach., 2 (1978),
226-244.

[2] D. P. Bertsekas and D. El Baz, Distributed asyn-
chronous relaxation methods for convex network flow
problems, SIAM J. on Control and Optimization, 25
(1987), 74-85.

[3] D. P. Bertsekas and J. Tsitsiklis, Parallel and Dis-
tributed Computation, Numerical Methods, Prentice
Hall, Englewood Cliffs, N.J., 1989.

[4] D. Chazan and W. Miranker, Chaotic relaxation, Lin-
ear Algebra Appl., 2 (1969), 199-222.

[5] D. Conforti, L. Grandinetti, R. Musmano, M. Can-
nataro, G. Spezzano and D. Talia, A model of efficient
asynchronous parallel algorithms on multicomputer
systems, Parallel Computing, 18 (1992), 31-45.

[6] D. El Baz, Mise en œuvre d’algorithmes itératifs dis-
tribués asynchrones sur un réseau de transputers, Cal-
culateurs Parallèles, Réseaux et Systèmes Répartis, 3
(1989), 31-40.

[7] D. El Baz, M-functions and parallel asynchronous al-
gorithms, SIAM Journal on Numerical Analysis, 27
(1990), 136-140.

[8] D. El Baz, Asynchronous implementation of relaxation
and gradient algorithms for convex network flow prob-
lems, Parallel Computing, 19 (1993), 1019-1028.

[9] D. El Baz, Asynchronous gradient algorithms for
a class of convex separable network flow prob-
lems, Computational Optimization and Applications,
5 (1996), 187-205.

[10] D. El Baz, A method of terminating asynchronous iter-
ative algorithms on message passing systems, Parallel
Algorithms and Applications, 9, (1996), 153-158.

[11] D. El Baz, Contribution à l’algorithmique parallèle
le concept d’asynchronisme : étude théorique, mise
en œuvre, et application, Habilitation à Diriger des
Recherches de l’Institut National Polytechnique de
Toulouse, 6 Octobre 1998, LAAS report 98428.

[12] D. El Baz, A. Frommer and P. Spiteri, Asynchronous
iterations with flexible communication: contracting
operators, Journal of Computational and Applied
Mathematics, Vol. 176, Issue 1, April 2005, p. 91-103.

[13] D. El Baz, P. Spiteri, J.C. Miellou and D. Gazen, Asyn-
chronous iterative algorithms with flexible communi-
cation for nonlinear network flow problems, Journal
of Parallel and Distributed Computing, 38, (1996), 1-
15.

[14] A. Frommer and D. Szyld, On asynchronous itera-
tions, Journal of Computational and Applied Mathe-
matics, (2000), 777-783.

[15] M. Jarraya and El Baz, D., A new implementation of
asynchronous iterations with flexible communication
on a network of symmetric multiprocessors, Proceed-
ings of the International Conference on Parallel and
Distributed Processing Techniques and Applications,
Las Vegas, USA, 2, (2000), 777-783.

[16] M. Jarraya and El Baz, D, Implementation of dis-
tributed iterative algorithm for optimal control prob-
lems on several parallel architectures, Journal of Sys-
tems and Software, 60, (2002), 141-148.

[17] J. C. Miellou, Algorithmes de relaxation chaotique à
retards, RAIRO, R1 (1975), 55-82.

[18] J.C. Miellou, D. El Baz, P. Spiteri, A new class of
asynchronous iterative algorithms with order inter-
vals, Mathematics of Computation, 67, 221, (1998),
237-255.

[19] M. Snir et al. MPI: the Complete Reference, The MIT
Press, Cambridge, Mass. (1996).

[20] P. Spiteri, J.C. Miellou et D. El Baz, Perturbation
of parallel asynchronous linear iterations by float-
ing point errors, Electronic transactions on Numerical
Analysis, 13, (2002), 38-55

