
On-line trajectory planning of robot manipulator’s end
effector in Cartesian Space using quaternions

Ignacio Herrera Aguilar†♠ and Daniel Sidobre†‡

(iherrera, daniel)@laas.fr
† LAAS-CNRS ‡ Université Paul Sabatier ♠ Inst. Tec. de Orizaba

7, avenue du Colonel Roche 118, route de Narbonne Av. Inst. Tecnológico No. 852

31077 Toulouse, France 31062 Toulouse, France 94320 Orizaba, Ver. México

Abstract

This paper presents a Soft motion trajectory planner for service robotic. The planner pro-
duce a minimal time solution in point to point problem and a quasi minimal along a specified
path. The path is defined by a set of points in the space and the trajectory is subject to jerk, ac-
celeration and velocity constrains in the Cartesian space. Based on a quaternion representation
of the robot manipulator’s end effector orientation, we proposed a method for the trajectory
planning in a seven dimension space. The problem is divided in two phases. Firstly, the method
solves for each dimension by decomposing the trajectory in different cubic segments. Secondly
to guarantee the tracking, the motion between successive points is considered monotonic, a time
adjust is done.

1 Introduction

Arm manipulator control has been standardized little by little, industrial applications have
been developed using different techniques, several restrictions have been satisfied by using
robot-like arms with specific application for a limited number of tasks. However, it is in the
same applications that robots are confined at structured and safe spaces, free of man interaction.

User’s comfort and safety in robot presence is an important topic to service robotic. Service
task like water glass transport or grasping a cup of coffee needs particular precautions. Smooth
trajectory planning has been used in different works by conditioning the jerk to limit mechanical
stress and to obtain optimal trajectory. We consider Soft Motion to limit jerk, acceleration
and velocity. Soft motion is defined by a soft start and a soft stop with limited condition
in acceleration and jerk. And the motion realized between these events is soft too, including
direction changes and rotations.

The trajectory planner presented in this paper generate the necessary references to produce
soft motion for robot manipulator’s end effector. We propopose a control loop that guarantees
the soft motion characteristics of the end effector in the Cartesian space, by using quaternion
feedback. The objective is to provide a soft motion while the robot performs a service task.

In this work only internal feedback is used for control, although we consider to extend our
work to trajectory generation for sensor-driven tasks using vision and force feedback.

This papers presents in the next section the related work in Cartesian space trajectory
planning. In section III, we continue with the description of the soft motion trajectory planner.
In section IV, the control loop with quaternion feedback is presented. Finally, in sections V
and VI, experimental results and conclusions are presented respectively.



2 Related Work

According to Brady [1], Trajectory Planning converts a description of a desired motion to a
trajectory defining the time sequence of intermediate configurations of the arm between the
origin and the final destination. Literature shows two different approaches. The first one
considers working in joint space and the second one it task space. We have chose the last one.

We can separate the trajectory in two: the path that defines the curve followed by the end
effector tip and the rotation curve defined as the orientation evolution of the end effector.

The first works in the area refers to Paul [2] and Taylor [3]. Paul use homogeneous co-
ordinates, presents a matrix equation that relates the representation of a configuration as a
sequence of frames, local to arm joints to a representation that is external to the arm and is de-
termined by the application. Paul considers constant acceleration. Taylor presents a technique
for achieving straight lines, by choosing midpoints between two desired configurations. Taylor
propose the use of quaternions for rotation. Andersson [4] use a single quintic polynomial for
representing the entire trajectory, while Macfarlane [5] extend Andersson’s work and uses seven
quintic polynomials.

3 Soft Motion Trajectory Planner

We consider the trajectory planning of points generated by a motion planning technique. The
motion planner calculate the trajectory which the end effector must follow in space. However,
the temporal characteristics of this movement are independent.

3.1 Monodimensional Case

Firstly, we consider the canonical case of the figure 1 without lost of generality.

Figure 1: Jerk, Acceleration, Speed and Position curves

The motion can be separated in seven segments, defined by the time period. We have:
Tjpa Jerk positive time Tjnb Jerk negative time (b for differencing from a)
Taca Acceleration constant time Tacb Acceleration constant time
Tjna Jerk negative time Tjpb Jerk positive time
Tvc Velocity constant time

Considering one dimension motion and limit condition, we can find three different type
sections by integration:



• The motion with a maximum jerk (Jmax):
J(t) = Jmax

A(t) = A0 + Jmaxt
V (t) = V0 + A0t + 1

2
Jmaxt

2

X(t) = X0 + V0t + 1
2
A0t

2 + 1
6
Jmaxt

3

• The motion with a maximum acceleration (Amax):
J(t) = 0
A(t) = Amax

V (t) = V0 + Amaxt
X(t) = X0 + V0t + 1

2
Amaxt

2

• Finally, the equations for the motion with a maximum velocity (Vmax):
J(t) = 0
A(t) = 0
V (t) = Vmax

X(t) = X0 + Vmaxt

where J(t), A(t), V (t), X(t) represents jerk, acceleration, velocity and position functions re-
spectively. A0, V0 and X0 are the initial conditions.

In the object to guarantee soft motion, we define the intervals:

J(t) ∈ [−Jmax, Jmax] A(t) ∈ [−Amax, Amax] V (t) ∈ [−Vmax, Vmax]

3.1.1 Point to point motion

According to figure 1, the motion is realized at limit conditions. To achieve Amax from initial
condition A(0) = 0, we have a jerk time (Tj) that is equal to the time for going from Amax to
0. During Tj, the acceleration increase or decrease linearly according to the jerk. At this point,
it is important to observe a symmetry in acceleration and an anti-symmetry in jerk. Now, we
consider velocity, the symmetry effect is present too, but this time according to acceleration.
During the constant acceleration time (Ta), the velocity increase or decrease linearly according
to the acceleration. Finally, Tv is define as the constant velocity time. We have then

Tj = Tjpa = Tjna = Tjnb = Tjpb Ta = Taca = Tacb Tv = Tvc

Our system calculates times Tj, Ta and Tv, whose make possible to obtain the desired displace-
ment between an origin position and a final position. As the end effector moves under maximum
motion conditions (Jmax,Amax or Vmax), we obtain a minimal time motion. The complexity of
the equations system depends on the distance between the positions and the maximal limits.
Figure 2 presents different particular cases according to whether or not maximum acceleration
or maximum speed are reached.

The point to point motion requires to reach the destination. Physical limitations are not
considered, and in order to guarantee the emergency soft stop on desired path, null final con-
ditions in acceleration and velocity are fixed (A(tf ) = 0 and V (tf ) = 0). Using this conditions
we can find the necessary times Tjmax to achieve Amax and Tamax to achieve Vmax.

Tjmax =
Amax

Jmax

Tamax =
Vmax

Amax

− Amax

Jmax

(1)

According to Figure 2 we can build the Figure 3. Where can see maximal possible displace-
ment in case 2, Tv = 0, Ta = Tamax and Tj = Tjmax, and in case 3, Tv = 0 and Ta = 0 while
Tj = Tjmax.



Figure 2: Case 1: Vmax is reached and Tv > 0. Case 2: Vmax is reached and Tv = 0. Case 3:
Amax is reached and Ta = Tv = 0

Figure 3: Velocities and Positions

We define the distance (D) as the difference between the origin (Po) and destination (Pf )
positions.

D = Pf − Po (2)

We have two limit conditions:

• Condition 1: Case 2, where Vmax is reached. It means, Amax is reached too. Then we have
to find the traversed distance(Dthr1). Using the limit times

Tj = Tjmax Ta = Tamax Tv = 0

we find

Dthr1 =
AmaxVmax

Jmax

+
V 2

max

Amax

(3)

• Condition 2: Case 3, where only Amax is reached. Using

Tj = Tjmax Ta = 0 Tv = 0

we can find a distance (Dthr2)

Dthr2 = 2
A3

max

J2
max

(4)

Considering the conditions (Eqs. 3 and 4) we can formulate the algorithm 1
Since, the acceleration and speed curves are symmetrical. The optimal time for the trajec-

tory in considering the constraints is given by:

Tf = 4 ∗ Tj + 2 ∗ Ta + Tv (5)



Algorithm 1 Maximum Jerk Algorithm

Calculate distance D (Eq 2)
if D ≥ Dthr1 then

Tj = Tjmax Ta = Tamax Tv =
D −Dthr1

Vmax

else
if D ≥ Dthr2 then

Tv = 0 Tj = Tjmax Ta =

√
A2

max

4Jmax

+
D

Amax

− 3Amax

2Jmax

else

Tv = 0 Ta = 0 Tj = 3

√
D

2Jmax

end if
end if

3.1.2 Multipoint Trajectory Planner

The strategy presented in previous section is extended for the multipoint case to go from P0

to Pn. We define the current position Pc as a position in the interval Pi and Pi+1 where
i = 0..n − 1. The trajectory is computed by successive application of seven cubic equations.
For each segment, we consider initial conditions defined by previous segment at (Pc), and zero
final conditions at (Pi+1) for acceleration and velocity.

Considering the trajectory generation knowing only the destination position (Pi+1), we
compute the stop position (Ps) from the current motion conditions. Considering the stop
position and the destination, we can find four possibilities.

• Start Motion
The ”easy” case, we applied previous algorithm. Because the current conditions are nulls.

• Same Direction Motion (Ps > Pi+1)
The motion is in the same direction, the new destination is after the stop position. We
applied the set of equations presented on section 3.1 with the current motion conditions.

• Halt Motion (Ps = Pi+1)
The stop position and the new destination are equal. We consider to stop from current
motion conditions.

• Change Direction Motion (Ps < Pi+1)
This case is found when the final position Pi+1 is before the stop position Ps. If we consider
a natural evolution of the system of equations, some conditions have multiple solutions. For
guarantee real-time applications, we have separate the Change Direction Motion in two,
losing the optimal time. Firstly, a halt motion. Secondly, a start motion in the other
direction.

We consider switch position Pc at the moment when the motion begin to slow down. This
position defines the current position Pc as initial position for the next segment at time Tc

defined by:
Tc = Tjpa + Taca + Tjna + Tvc (6)



The figure 4 shows the evolution for two destinations from the origin position (P0 = X(0) =
0) to P1 = 0.5 and P2 = 1.5. Limits paramenters are Jmax = 8, Amax = 2, Vmax = 1 and
sampling time is Ts = 0.01. According to figure, the motion going through P1 in a non null
velocity without losing the soft motion condition.

Figure 4: Trajectory planned for two positions

3.2 Multidimensional Case

For the multidimensional case, we keeps this strategy. Each dimension is independent each
other. To guarantee trajectory tracking, we consider the motion between two points as a
straight-line motion in n dimensional space. The only way for assuring straight-line tracking
is assuring that each dimension motion has the same duration. Then, we compute the final
time for each dimension. Considering the largest motion time, we readjust the other dimension
motion to this time. Time adjusting is doing by decreasing limit conditions. In other words, the
motion is minimum time for one direction. In the other directions, the motions are conditioned
by the minimum one.

Figure 5 shows a two dimensional example with limit parameters Jmax = 8, Amax = 2 and
Vmax = 1 for X direction and Jmax = 4, Amax = 1 and Vmax = 0.5 for Y direction. The origin is
defined by the pair (0,0), the first destination point by (1,0.5) and the final destination point
is (1.2,1.5).

In the case of robot’s end effector we use seven motion dimensions. Three dimensions for
translation and four for rotation modelized by quaternion. Linear velocities V obtained can
be applied directly as velocity references. On another hand, the evolution of the quaternion Q̇
must be transformed into angular velocities. We use the transformation function proposed in
[12].



Figure 5: Trajectory planned for two positions in 2D. The last graph shows Y vs X curve

[
Ω
0

]
= 2Q>

r Q̇ where Qr =


n k −j i
−k n i j
j −i n k
−i −j −k n


4 Resolved Motion Rate Control Loop

The configuration of six joints arm manipulator is defined by a vector θ of six independent joint
coordinates which correspond to the angle of the articulations.

θ =
[
q1 q2 q3 q4 q5 q6

]T

The Pose of the manipulator’s end effector then is defined by Mb independent coordinates
said Operational Coordinates which gives the position and the orientation of the final body
in the reference frame. We use quaternions to represent the orientation of the end effector.
The advantages of using quaternions are largely exposed in [6]. The conversion of the rotation
matrix (Rot) into quaternion is detailed in [7].

We define P for the position and Q for the orientation

P =

x
y
z

 Q = n + q where q =

 i
j
k


Resolved motion rate control means that the movements generated by the servo-motors

of the articulations of the manipulator combine to produce a uniform displacement. In other
words, the servo-motors evolve at different speeds with an aim of obtaining the desired total
movement. Whitney [10] has shown that the speed of the axis is given by

θ̇ = J−1

[
V
Ω

]
(7)

where V and Ω represents the linear and angular velocities of the robot’s end effector. And J
is the Jacobian matrix.



In a closed loop control [11], the control law is replaced by

θ̇ = J−1

[
V −Kpep

Ω−Koeo

]
(8)

where Kp and Ko are diagonal gain matrices, and ep and eo respectively represent the position
and orientation error vectors. Yuan [8] uses quaternion feedback in a close loop resolved rate
control. The position and orientation tracking error are defined by

ep = P−Pd eo = ndq− nqd + qd × q (9)

where the index d indicates that they are set points.
Yuan showed global asymptotic convergence of the closed loop system (Eq. 8) for a gain

matrix Ko > 0. The figure 6 shows the control loop.

Figure 6: Modified Resolved Motion Rate
Control Loop Figure 7: Jido-Arm

To improve the accuracy in the position and orientation loop, the controller for each di-
mension has been modified. Yuan use a Proportional controller and shows global asymptotic
convergence for K > 0. In our application we change the controller by a PI digital controller.

5 Experimental Results

5.1 Experimental Platform

We have tested the control loop in a PA10-6CE Mitsubishi manipulator, called Jido-Arm (Figure
7). Jido-Arm is controlled by a PCI Motion Control CPU Board in a Pentium IV Personal
Computer. Three lengths define the manipulator using Denavit-Hartemberg parameters: a2 =
0.480 m, r4 = 0.480 m and r6 = 0.30 cm.

The software control is developed using OpenRobots tools (LAAS Open Software for Au-
tonomous Systems). The sampling time is fixed to 10 ms. The limits of joint velocities and
robot’s end effector are define by

Joint Velocity limit (rad/seg)
q1 0.5
q2 0.5
q3 0.5
q4 1.0
q4 1.0
q6 1.0

Linear Limit (Angular limit)
Jmax 0.900m/seg3 0.600rad/seg3

Amax 0.300m/seg2 0.200rad/seg2

Vmax 0.150m/seg 0.100rad/seg



5.2 Tracking trajectory

This test is realized for a set of one hundred positions pre-calculated using a grasp planner [16].
The time needed for computing the soft motion is less than 30 ms. Figure 8 shows the results.
We have separate the curves in acceleration, velocity and position. And a third image shows
the manipulator evolution during the trajectory tracking. It is important to observe that initial
position is singular.

Figure 8: Soft Trajectory Planning. Left: Position trajectories. Center: Orientation Trajecto-
ries (Quaternion). Right: Manipulator evolution during trajectory tracking.

6 Conclusions

Soft motion conditions can be reached using the soft motion trajectory planner and the control
loop presented in this paper. We presents a minimal time solution for point to point task and
a non minimal for path tracking task. This paper shows that soft motion is possible by using
seven cubic equations.

The soft motion trajectory planner is designed for on line operations. In the experimental
case of trajectory tracking, we can compute all the set of references off line, but experimental
results have done a good computational time for the set of positions (less than 30 ms). The
sensor-driven trajectory planner has not been yet tested with sensor data point obtained by
vision or force sensors. But simulation times for the Jido-platform have done times less than 10
ms for each position that guarantee the on line application. The soft motion trajectory planner
is based on this equations and the systems of equations presented are analytically solved for
guaranteed the on line execution. The maximal order of the polynomial equations founded is
sixth, and to avoid numerical solution we have made some linearizations.

7 Acknowledgement

The work described in this paper was partially conducted within the EU Integrated Project
COGNIRON (”The Cognitive Companion”) and funded by the European Commission Divi-
sion FP6-IST Future and Emerging Technologies under Contract FP6-002020. The authors
acknowledge the support of the COSNET-DGEST-SFERE program.



References

[1] T. J. M. Brady, J. Hollerbach and T. Lozano-Perez, Robot Motion, Planning and Control.
Cambridge, Massachusetts: The MIT Press, 1982.

[2] R. P. C. Paul, “Manipulator cartesian path control,” IEEE Trans. Syst., Man Cybern.,
vol. 9, pp. 702–711, May 1979.

[3] R. H. Taylor, “Planning and execution of straight line manipulator trajectories,” IBM
Joournal of Research and Development, vol. 23, pp. 424–436, 1979.

[4] R. L. Andersson, “Aggressive trajectory generator for a robot ping-pong player,” IEEE
Control Systems Magazine, vol. 9, pp. 15–20, February 1989.

[5] S. Macfarlane and E. Croft, “Jerk-bounded manipulator trajectory planning: Design for
real-time applications,” IEEE Transactions on Robotics and Automation, vol. 19, pp. 42–
52, February 2003.

[6] J. Funda, R. H. Taylor, and R. P. Paul, “On homogeneous transforms, quaternions and
computational efficiency,” IEEE Trans. on Robotics and Automation, vol. 6, pp. 382–388,
Juin 1991.

[7] K. Shoemake, “Animating rotation with quaternion curves,” Proc. on Computer graphics
and interactive techniques, vol. 19, pp. 245–254, July 1985.

[8] J. S. C. Yuan, “Closed-loop manipulator control using quaternion feedback,” IEEE J.
Robotics and Automotion, vol. 4, pp. 434–440, August 1988.

[9] D. E. Whitney, “The mathematics of coordinated control of prosthetic arms and manipu-
lators,” ASME Trans. J. Dynamic, Systems, Meas., Cont., pp. 303–309, December 1972.

[10] D. Whitney, “Resolved motion rate control of manipulators and human prostheses,” IEEE
Trans. Man-Machine Syst., vol. 10, pp. 47–53, Juin 1969.

[11] C. H. Wu and R. P. Paul, “Resolved motion force control of robot manipulator,” IEEE
Trans. Syst., Man Cybern., pp. 266–275, May 1982.

[12] H. Bruyninckx and J. Shutter, “Introduction to intelligent robotics,” Katholieke Univer-
siteit de Leuven, http://www.mech.kuluveb.ac.be/ bruyninc/hb46/, Tech. Rep., 2001.

[13] M. S. Mahmoud, Computer Operated Systems Control. Marcel Dekker, Inc, 1991.

[14] D. E. Orin and W. W.Schrader, “Efficient jacobien determination for robot manipulators,”
in Proc. First Int. Symp. on Robotics Research, Bretton Woods, 1983, pp. 727–734.

[15] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose,
pseudoinverse and damped least squares methods,” University of California,
http://www.math.ucsd.edu/ sbuss/ResearchWeb/ikmethods/iksurvey.pdf, Tech. Rep.,
April 2004.

[16] E. Lopez-Damian, D. Sidobre, and R. Alami, “A grasp planner based on inertial prop-
erties,” in Proc. IEEE International Conference on Robotics and Automation, Barcelona,
Spain, April 2005, pp. 766–771.


