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ABSTRACT

BitTorrent revolutionized the technique of distributing a
very large file to a very large number of recipients. The file
is chopped into small chunks that the recipients can immedi-
ately upload further. In the original design, a “tracker” keeps
certain centralized control over the chunk transfer process.
This paper studies a BitTorrent-like “information diffusion”
system that has a fully distributed and symmetric architec-
ture. The peers join a Distributed Hash Table -based over-
lay network and contact each other randomly. This kind
of designs have been implemented and analysed recently.
A trackerless BitTorrent system has been introduced which
can be regarded as one based on random encounters — the
participating nodes contact each other at random and down-
load missing chunks. On the analytical front, Massoulie and
Vojnovic showed that a random encounter based system has
surprisingly good performance without any chunk prefer-
ence strategies, with the condition that each peer gets its
first chunk from a sufficiently uniform distribution. In this
paper, we focus on a scenario where this condition cannot
be guaranteed, and show that a “rare chunk phenomenon”
easily occurs, if both the encounters and the chunk selection
are random. Classic urn models give some mathematical
understanding of this phenomenon. We then discuss vari-
ous techniques for alleviating the rare chunk problem and
propose a simple distributed chunk selection policy that re-
duces the imbalance in the distribution of chunks within the
network.

Categories and Subject Descriptors

C.4 [Computer Systems Organization|: Performance
attributes; C.2.4 [Distributed Systems]|: Distributed ap-
plications

General Terms

Algorithms, Performance
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1. INTRODUCTION

Peer-to-Peer (P2P) file sharing systems such as BitTorrent
[1] have gained in popularity by making content distribution
accessible to virtually every Internet user. A node which
wants to distribute a file (also called a seed node) fragments
the file into chunks and uploads these chunks to interested
peers. The peers interested in downloading the file also help
in distributing this file by uploading the chunks to other
peers. Thus, nodes participating in such systems act as
both clients and servers, thereby contributing to the service
capacity of the system. A salient feature of such networks is
the scalability of the service capacity with offered load [2],
resulting in efficient utilization of network resources. Thus,
even a seed node with a relatively small available upload
bandwidth is able to distribute a file to a large number of
nodes in a reasonable amount of time.

The original BitTorrent relies on a web-server called tracker
to facilitate the exchange of chunks. The tracker maintains
the IP addresses of the nodes currently downloading a par-
ticular file, and the chunks that each of these nodes has.
A new node interested in downloading a file contacts the
tracker, and obtains a list of potential servers (these can
be seeds, who possess the whole file, but mostly they are
peer downloaders). The first few chunks to be downloaded
by a new node are selected at random. However, the latter
chunks are downloaded using a rarest first chunk selection
policy in order to maintain a roughly uniform distribution of
the number of copies of each chunk in the system. Several
simulation studies have shown that the rarest first policy
outperforms other policies such as random selection [3], [4],
and hence could be one of the main reasons for the good
performance of BitTorrent.

One of the various topics of the Finnish research project
PAN-NET (2004-2005) was to design an experimental proto-
type of a BitTorrent-counterpart with completely distributed
architecture. This system is based on random encounters
and uses Chord as the underlying structure where random
contacts can be realised. The problems studied in this pa-
per were largely prompted by the PAN-NET architecture,
described in Section 2.1 below.

Massoulie and Vojnovic [5] had studied a quite similar sys-
tem as an abstract model and obtained remarkable results by
considering a limiting differential system in a linear scaling
of the initial state of the system. In particular, they could
conclude that a random encounter based file sharing system
can be essentially insensitive to load balancing strategies like
the “rarest first” principle implemented in BitTorrent.



This paper is motivated by the following question: what
is the performance of this system in a flash crowd scenario,
if the first chunk cannot be given by the seed? We argue
that the initial state in a system without load balancing
may not be as well behaved as previously assumed. This
discrepancy in the initial state can lead to situations where a
large proportion of the initial population is searching for one
particular chunk, and is forced to download it from the seed
node. The imbalance in the system arises due to random
selection of the peers — a chunk with larger number of copies
in the system will be sampled at a higher rate, and thus
replicates much faster.

We assume that a seed node is interested in distributing
a file using a BitTorrent like algorithm, and that a certain
number of users enter the system simultaneously at time
zero. Upon completing the file download, the node leaves the
system promptly. We shall be interested in the time taken
to empty the system, i.e., the time till every node from the
initial population has a copy of the file. Intuitively, the faster
an algorithm is able to distribute the file, the more efficient
it is in utilizing the available bandwidth in the network. It
will also be seen that a more balanced chunk distribution
in the system leads to a faster replication of the file. A
balanced chunk distribution also adds to the robustness of
the file distribution system in case of a failure of the seed
node.

The main contributions in this paper are the following

e Through simulations, we show that the random chunk
selection policy can result in at least one chunk be-
coming rare in the system. Thus, a failure of the seed
node can result in a large number of unfinished down-
loaders. We also relate the replication of chunks to the
growth of the number of balls in a Pélya’s urn model.
Through this analogy, we show that the state of the
system (i.e., number of copies of each chunk in the sys-
tem) can have a large variance. Hence, the state of the
system may not be as well behaved as was assumed to
show insensitivity to load balancing strategies.

e We provide a simple and distributed load balancing al-
gorithm which requires no state information, and yet
outperforms the random selection policy. Using sim-
ulations we show that a large proportion of the ini-
tial population finishes downloading the file around the
same time. Thus, the use of this particular strategy
reduces the imbalance in the number of copies of the
chunks in the system at any given time.

1.1 Related Work

Performance of file sharing systems has been studied using
both simulations and mathematical models. The large num-
ber of parameters and complicated algorithms (e.g., chunk
selection policies, upload and download bandwidths, etc.)
make accurate mathematical models intractable. Hence, ar-
ticles such as [5], [6] and [7] have modelled the system in
limiting regimes. Our system model is mainly based on the
model in [5]. As in [5], we are primarily interested in the
evolution of the number of replicas of the chunks in the sys-
tem. However, unlike their closed system model in which
they study the leftovers in the system starting from certain
initial conditions, we study the system starting from time
zero. We model the initial growth in the number of replicas
of the chunks in the system using Pélya’s urn model. The
models in [6] and [7] mainly deal with systems in which the
entire file is considered as a single chunk, and the steady
state performance measures (e.g., time to download the file)
are then studied through fluid models. In this work, we do
not consider the effect of upload/ download bandwidth and

assume as in [5] that chunk are downloaded instantaneously.
A recent article [8] gives the optimal number of rounds re-
quired to distribute M chunks to N nodes. They also give
a centralized algorithm to optimally distribute the chunks.
Unlike [8] which focuses on the optimal time to distribute
a file, the present article studies the chunk population dy-
namics in the system.

Simulation studies such as [3] and [4] allow to study the
effect of various parameters (e.g., the chunk selection pol-
icy, the peer selection policy, and heterogenous upload and
download bandwidths) on the performance of the system.
Although the system that we simulate is not as compre-
hensive as the the systems in [3] and [4], and is based on
simulating the model in [5], we note that our observation
regarding the existence of rare chunks in random chunk se-
lection policy is consistent with that in [3].

1.2 Organisation of the paper

In section 2 we first describe the PAN-NET file distribu-
tion system. We then give the system model (based on the
PAN-NET system) and the various performance measures
of interest. In section 3, we relate the replication of chunks
with the growth of balls in Pélya’s urn model, and show
how the rare chunk problem occurs. In section 4 we pro-
pose distributed chunk selection policy and evaluate the its
performance. Finally, in section 5 we give the conclusions.

2. SYSTEM DEFINITION

2.1 The PAN-NET file distribution system

The scenario of the PAN-NET system is the following.
One peer, called the seed, has the complete file, chopped
into chunks, and stays in the system as long as it wants
to distribute the file. All peers, including the seed, run the
same software. A peer interested in the file contacts the seed
(or another known member of the distribution process), who
gives it access to a Chord [9] network, initiated by the seed
specially for this purpose. The new peer obtains the possibil-
ity to contact randomly selected peers, but remains invisible
for searches (remains a “parasite”) until it has downloaded
at least one chunk.

The procedure of each random encounter between two
peers A and B runs as follows. Peer A, the initiator, sends
its chunk-bitmap (0 for missing, 1 for present chunks) and an
optional list of specially wanted chunks. A transfer rate (in-
terpreted as upper bound) can be specified as well. Peer B
answers with its own bitmap and, optionally, its list of “rec-
ommended” chunks and its opinion on the maximal transfer
rate. Peer A then sends its decision on the chunk to be down-
loaded, and B starts to upload that chunk. The scheme was
made this complicated to allow experimentation with vari-
ous decision algorithms.

After a successful download, peer A can either repeat the
above procedure to get the next chunk, or select another
random peer. The PAN-NET client can run several inde-
pendent downloading processes in parallel.

Selecting a random peer

Finding a random (in the sense of uniform distribution) peer
from a network is a non-trivial problem that has not been
considered much in literature (see, however, [10]). In Chord,
for example, it is not sufficient to issue find_successor(z)
with a random argument x, because the nodes are not equidis-
tant on the Chord ring. We propose the following algorithm,
which is based on the assumption that all peers perform ran-
dom peer look-ups uniformly. (This is not strictly true even
in the PAN-NET scenario, since a peer’s access rate affects



the frequency of its look-ups). Each peer, say A, maintains
a storage for one address, say 4. Initially it stores its own
address. Now, if B wants to find a random peer, it issues
find_successor(z) with random z and gets the address of,
say, C. Peer B then contacts C and receives the content of
r¢ as the desired “roughly random peer address”, whereas C
stores the address of B in r¢ to wait for the next request.

2.2 The abstract system considered in this
paper

Consider a node (henceforth, called the seed node) on the
Internet which wants to distribute a file. The seed node frag-
ments this file into C' chunks. At time zero, N nodes, who
wish to download this file, enter the system. This setting is
motivated by the flash crowd phenomenon wherein a large
number of nodes get interested in a particular file within a
relatively short period of time and try to download it. We
further assume:

(i) some mechanism for contacting a random node is im-
plemented;

(i) the seed node is present throughout the lifetime of the
system as (just) one of the peers;

(iii) a node with no chunks to upload is “invisible”, i.e., no
nodes (except the seed node) can contact it; it becomes
a member of randomly selectable nodes once it has
downloaded one chunk;

(iv) every node in the system maintains a timer which ex-
pires after exponentially distributed time intervals; on
the expiry of its timer, the node initiates a random
encounter;

(v) within each encounter, the initiator downloads at most
one chunk from its counterpart;

(vi) chunk selection policy: we consider several algorithms
for selecting the chunk that is transferred in an en-
counter;

(vii) the download time is zero;

(viii) ezit policy: the nodes (other than seed) leave the sys-
tem as soon as they obtain all the chunks.

The modelling assumptions (iv) and (vii) are adopted
from [5]. The scenario of [5] differs from ours in two re-
spects:

(i) their seed gives each node one chunk (or more) when
it enters the system, but remains invisible for further
encounters;

(ii) in each subsequent encounter, the chunk is randomly
selected among those are missing from the initiator.

The exit policy assumption (viii) is a worst case scenario
for the seed node.

Upload policy of the seed node: We assume that the seed
node uploads the chunks in a round robin manner. This
policy leads to more a uniform chunk distribution in the
system as compared to the purely random chunk uploading
policy.

2.3 Performance measures

In order to distribute C' chunks to IV nodes, there need to
be at least C'- N encounters. This would be the case if every
node knew where to download its missing chunks from, i.e.,
if every node possessed the global state information. In our
system, the nodes have knowledge of only their own state.

400

350 + 1
12}

3 300 B
o
Q

2 250 | 4
o
]

2 200 E
=3
c

o 150 | B
2
|53

S 100 | 1
w

50 B

[ S S N S SR 3

0 2 4 6 8 10

Chunk index

Figure 1: Expected number uploads of chunks by the
seed node. Random chunk policy. N =1000. C = 10.
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Figure 2: Expected number uploads of chunks by the
seed node. Random chunk policy. N = 1000. C = 100.

Hence, there will be encounters which will not result in a
downloading of a chunk. The first performance measure we
study is the expected number of encounters until the last
node finishes downloading the file and leaves the system.
This measure gives us the expected time to empty the system
and quantifies, in some sense, the inefficiency due to the lack
of global information.

The second performance measure we study is the ezpected
number of uploads of each chunk by the seed node. A high
variance in the number of uploads (i.e., some chunks are
uploaded very few times compared to others) would indi-
cate some sort of imbalance in the chunk distribution in the
system. If some chunks are uploaded a significantly higher
number of times by the seed node than others, then we could
conclude that some chunks are rare in the system — see Sec-
tion 3.

3. THE RARE CHUNK PHENOMENON

3.1 An empirical look at the phenomenon

Having defined the system and its performance measures,
we begin by simulating the system for a particular set of
parameters. Let N = 1000 be the number of nodes that
enter the system at time zero. In figures 1 and 2, we plot
the expected number of uploads of a chunk by the seed node
in ascending order of the number of uploads for C' = 10 and
C = 100, respectively.
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N =1000. C =10
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Figure 4: Expected number of copies of the chunks
as seen by departing nodes. Random chunk policy.
N =1000. C =100.

From these plots, we can observe that there exists one
chunk which the seed node has to upload a disproportion-
ate number of times compared to the other chunks. This
suggests that there exists an imbalance in the number of
replicas of the chunks in the system. This phenomenon be-
comes critical towards the end of the system lifetime when
the nodes would need to download this rare chunk from the
seed node. For C' = 10 and C' = 100, in figures 3 and 4,
we plot the expected (ordered) number of replicas of chunks
in the system as seen by the nth departing node. We ob-
serve that the number of replicas of the chunks which are
distributed first tend to grow faster than those which are
enter the system later. Moreover, we see that, after a while,
the very last chunk becomes more and more rare, whereas
the others tend to good balance with each other. A similar
observation was also made in [3]. In order to gain a bet-
ter understanding of the reasons behind this imbalance, we
relate our system to Polya’s urn models.

3.2 Mathematical discussion: Pélya’s urn
models
Here we analyse some simplified models that clarify our
point. Assume that the total size of the flash crowd is IV
and that each node, including the seed, have download and
upload capacity ¢ chunks per time unit. Each node that
has downloaded at least one chunk is called visible. At time

0, the seed alone is visible. Assume that the whole flash
crowd is connected such that each node is able to request
downloads from a randomly selected visible node.

As long as no node leaves the system, the number V; of
visible nodes grows roughly according to the logistic model

av; :c<1— %) Vi— dt,
interpreted in the sense of point process dynamics, i.e., the
right hand side presents the stochastic intensity of a point
process [11]. Thus, at the beginning the overwhelming ma-
jority of uploads are directed to so far invisible nodes, and
the visible nodes have typically a single chunk in possession.

A crude model for the start of chunk replication in a big
flash crowd event is thus that each visible node that is not
the seed has exactly one chunk. It turns out that it is im-
portant to understand these very first moments, since the
proportions of chunks numbers fluctuates remarkably only
for a short while after the start. This is a consequence of
the analogy with Pélya’s classic urn models.

The formation of this “initial population” can be stud-
ied as a discrete vector process (My,(1),...,Mn(C)), where
My () is the number of non-seed nodes whose only chunk
is chunk ¢, at the time when the n’th upload has just hap-
pened. Denote the n’th uploaded chunk by I,, and

Fn=0{Mi(): k<mn,i€{0,...,C—1}}.

Assuming that the seed selects each uploadable chunk ran-
domly, we have that

E[Mn(2) | Fr1]

My_1(3) + P In =t | Frn-1]

. 1 Mnfl
= M'n,f —_
1(9) + en T T

n+1 . 1

= 7’"‘ n,l(’l,) + a-
It follows that for each i, the sequence

M,()+1/C

n+1

is an (Fn)-martingale. Bounded martingales converge with
probability one, and at each phase the conditional expecta-
tion is that the chunk distribution, where the seed’s chunks
are “devalued” as 1/C each, stays at its present proportions.
Thus, the early, random history of the copying process has
a lasting effect.

Polya’s simplest urn model starts with two balls, one black
and one white. At each step, a ball is picked at random, and
a new ball is added that has the same color as the just picked
one. With C = 2, the only difference with our setting is the
seed. In the above Pélya model, the proportion of black balls
is a martingale whose limit value is uniformly distributed
over [0,1]. To show how sensitive this models are to slight
differences in early history, we note that when the seed is
added, the uniform distribution gets replaced by the Arcsin
law:

ProrosITION 3.1. Let C = 2.

ll“(ml +1/2)T'(n —mq +1/2)
m D(mi+1) T'(n—mi+1)
1 1

T vmi(n — ml).

PROOF. The conditional probability that chunk 1 is copied
at time n+ 1 given that there have been m; such encounters
so far is

P(M,(1) =m1) =

l. 1 + mia _2m1+1
2 n4+1 n—i—l_2(n—|—1)7




where the first term at left corresponds to encountering the
seed and obtaining 1 from it and the next corresponds to en-
countering a node holding chunk 1. This probability has the
form of a Pélya urn model, in the sense that the probability
of encountering m; times 1 in n > m; encounters does not
depend on which order 1 and 0 is encountered. Therefore,
the probability of such an event is the probability of encoun-
tering first chunk 1 m; times in row and then mo = n — ms
times chunk 0, multiplied by number of ways m1 elements
can be selected out of n. The last factor is the binomial
coefficient C*' and the first one is

(2-0+1)(2-1+1)“.(2(m1—1)+1).
2-1 2.2 2my

(2-0+1) (2-1+1) ”_(2(m0—1)+1)

2(mq1 4+ 1) 2(m1 + 2) 2(m1 + mo)

1-3---(2mg —1)-1-3---(2mo — 1)

2.4---(2n)
N (2n)! ’

Using the formulas (2k—1)!! = m%/z) and (2k)!! = 2%k,

where T, is Euler’s I'-function, we find that the probability

of uploading chunk 1 m; times out of n encounters is

o™ (2my, — DHN(2n — 2m; — 1N

" (2n)!!

nI2™ATMID (1 4+ 1/2)T(n — my + 1/2)
m1!l(n — mq)!r27n!

1T(m1 +1/2)I'(n —m1 +1/2)

7 T(mi+1DI(n—mi+1) °

which is the claimed result. The asymptotic comes from
Stirling’s formula. [

REMARK 3.2. The importance of the early history can
be quantified in terms of information. Consider the sim-
ple Pdlya model starting with two balls, and denote by X,
the proportion of 1-balls after step n. We noted that, X, —
Xoo ~ UJ0,1] as n — oco. However, the outcome of random
variable X o is “determined” by the few first encounters with
good precision. The distribution of My, = My (1) has entropy
H(M,) = log(n+1) and tends to infinity as n — co. Fiz
some integer 0 < f < 0o and consider the mutual informa-
tion

I(My; My) = H(Mn) — H(My | My),

where n > f and the conditional entropy is defined as

H(My | M) = =Y P(My =my) -

mf

> (M, =mn | My =my)logP(M, = m,, | My = my),

mq

and the summations are over all possible outcomes of My
and My, respectively. The limit I(My,; My) as n — oo is fi-
nite and tells the amount of information about X contained
in observing the first f encounters. Since the outcome of
Moo is a real number between 0 and 1, x bits of information
fizes roughly = binary digits of the outcome. Notably these
digits are the most significant, first x digits. This can be
verified by dividing the interval (0,1) into equal subsequent
intervals of finite length = 1/f and looking on events of
Xoo belonging in these segments, denoted as XZ,. Obviously
H(MC{O) =log f, since M%, has f outcomes that have equal

probabilities. Now our claim, so far verified only by simu-
lations, is that I(XL;M;) ~ H(XL). This result relates
our simplified models to more realistic scenarios, since the
crucial start of chunk propagation from the seed, would be
similar in both cases, provided the number of peers is large.
This result indicates a qualitative scenario: the last missing
two chunks exist in very different in size populations and fi-
nally in the end game mode there is a large number of peers
missing the same chunk.

Let us continue with the case C = 2, and assume that no
new nodes join any more, and, neglecting the seed in this
phase, the population now consists of M; nodes possessing
chunk 4, 4 = 0,1. Assume that each node makes random
encounters with unit frequency. Encounters with the same
chunk are useless, so a good balance is clearly beneficial.
The dynamics of the “end game” are roughly governed by
the deterministic system

x':—y:::
Tty
y = —— 2
a:—}—y7

where z and y are the current sizes of the populations of
0-nodes and 1-nodes, respectively. When the variables are
changed to m = z +y, r = z/(z + y), it turns out that
m’/m can be eliminated from the system, yielding for r the
equation

= 2r—1r(l—7r).

The qualitative behavior of r(t) is obvious: 1/2 is an unsta-
ble equilibrium, outside which r(t) converges to 0 or 1. We
also have explicit solution

B i _ @r(@-1p

The total population m(t) is then obtained as
t
m(t) = m(0)exp <—2/ r(s)(1—r(s)) ds)
0

4e”t + ¢ 1/2
m(0) <74+CO 0) .

Thus, with r(0) = 1/2 the population vanishes exponen-
tially as m(t) = m(0) exp(—t/2), whereas a deviation from
equilibrium results in slower decay. In fact, this mode is
qualitatively unavoidable because the equilibrium in unsta-
ble. Moreover, there remains a homogeneous left-over pop-
ulation of size m(0)|2r(0) — 1|. In the discrete reality, a
left-over homogeneous population has to download the re-
maining chunk from the seed. (The mathematical analysis
above is in fact a special case of Theorem 5 in [5].)

The above discussion suggests that entirely randomised
chunk selection results in an unpredictable disbalance in
chunk propagation. However, in the case of only two chunks,
consider another randomised policy: every time step a chunk
holder is encountered randomly and uniformly, if 1 (resp. 0)
is encountered, the new node gets chunk 0 (resp. 1) is added.
Is such a policy implementable? In principle, yes: an invis-
ible node encounters a random visible one, but, instead of
downloading that node’s chunk, proceeds random encoun-
ters until it finds a node having the complementary chunk.
This process results in a well balanced chunk propagation,
with both chunk populations growing with the same pace.
We have the following result:



ProrosITION 3.3. Let C = 2. With the inverted chunk
selection described above, denote by M,, = M, (1) the amount
of nodes possessing chunk 1 after the n’th upload. Then,
M, /n — 1/2 almost everywhere and in L1-norm.

ProoF. We use the following martingale argument of Mucci,

[12]. Write
IE[Mn|-7:n—1] = Mn—1+P[In:1|]:n—1]
= Mp_1+ (1 _ Mno1 1172 1/2>
n
n—1 1/2

— M, ,+2—/=
n n

Now, Y, = My /n is bounded and satisfies E [Yy, | Fn_1] —
Y,-1 — 0 a.s. as n — co. This means that Y, is a so called
martingale in the limit and uniformly integrable. According
to Theorem 2 in [12], there exists a random variable M, €
L1 such that M,, - M. almost everywhere and in £;-norm.

Take any n € (0,1/2) and assume for the contrary that
P(Ye < 1) > 0. Then there exists no such that

P(Yn < (n+1/2)/2 Yn > ng) > 0.

Denote by v the stopping time v = inf {n > ng : Y, > 1/2}.
Now
nAv
EYnny = EY E[Yi—Yi1|Fn1]+EYo

k=1

n/\u2k_1
= E) 5 (1/2 = Yeor) + Eo.
k=1

The starting expression is bounded, but the last is con-
verges to infinity, and we obtain a contradiction. The case
{Yo > 1/2} is symmetric. []

4. DISTRIBUTED CHUNK SELECTION
POLICIES

We can summarize the observations from the previous sec-
tions as follows.

(i) The imbalance in the number of replicas of chunks in
the system can be traced to the first few moments
which determine which chunks replicate faster than the
others. It would be desirable to have a more balanced
number of replicas of chunks at the start of the system
as this would lead to a more predicatable number of
replicas of chunks in the system at later instants.

(ii) It would be very desirable to have high diversity in last
missing chunk, say, for each node it is independent of
all other nodes and is uniformly random. This would
make the seed node less critical to the downloading
process.

Can this be achieved in some decentralized and probabilis-
tic way? We now describe a chunk selection policy which
attempts to address the above mentioned concerns, i.e., to
ensure a better balance in the number of replicas of chunks
during the first few moments and to ensure a high diversity
in last missing chunk.

Deterministic last K chunks policy. Every node selects
K < C chunk indices at random. These chunks are down-
loaded only after the remaining C — K chunks have been
downloaded.

Each node selects only the indices of the K chunks it will

download towards the end. The order in which these K
chunks will be downloaded is arbitrary and is not decided
beforehand.
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Figure 5: Expected number uploads of chunks by the
seed node. Deterministic last chunk policy. N = 1000.
C=10. K =1.
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Figure 6: Expected number uploads of chunks by the
seed node. Deterministic last chunk policy. N = 1000.
C =100. K =1.

REMARK 4.1. This policy can also be thought of as deter-
ministic first C — K chunks policy.

For K = 1,2, we compare the performance measures of
this policy with those of the random selection policy. The
initial number of nodes in the system is same as before (i.e.,
N = 1000). Figures 5, 6, 7, and 8 show the number of ex-
pected (ordered) number of uploads by the seed node for
different values of C' and K. On comparing these with fig-
ures 1 and 2 we see that the maximum uploads by the seed
node has reduced compared with the random selection pol-
icy. Compared with K = 1, the policy with K = 2 reduces
further the load on the seed node. By rejecting some chunks
that may be on offer in the initial stages of downloading, the
policy delays the departure of the first few nodes from the
system. Thus, there are more uploaders in the system are
present in the system for longer duration, thereby reducing
the load on the seed.

The expected departure instants (in number of encoun-
ters) for the nodes is shown in figures 9 and 10. Using this
policy, the first few nodes leave the system later compared
to the random selection policy. However, this initial delay
proves beneficial at later instants as more nodes are able to
exit the system earlier than in the the random selection pol-
icy. Compared with K = 1, although the policy with K = 2
decreases the expected number of uploads by the seed node,



o

12 F e
)
el
o
o
S 10 ) ]
ks
5
g 8| E 4
=3
< a
2
5 6r ° 1
2 a
] o

4+ ° E

o
@
> L L L L L
0 2 4 6 8 10
Chunk index

Figure 7: Expected number uploads of chunks by
the seed node. Deterministic last two chunks policy.
N =1000. C =10. K =2.
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Figure 8: Expected number uploads of chunks by

the seed node. Deterministic last two chunks policy.
N =1000. C =100. K =2.
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Figure 9: Expected departing instant of the ith de-
parting node. N = 1000. C = 10.

125000

rand selec
last fixed
120000 last two fixed --------

115000
110000 IS

105000

Expected departure instant

100000 |-

95000 | 1

90000 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Index of departing node

Figure 10: Expected departing instant of the ith
departing node. N =1000. C = 100.
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Figure 11: Expected number of copies of the chunks
as seen by departing nodes. Deterministic last chunk
policy. N =1000. C =10. K =1.

it has the drawback of increasing the expected exit times
of the nodes from the system as is shown. Since the last
two chunks are now fixed, a node will be forced to reject
them even if they have been offered for downloading. This
increases the number of unproductive encounters, and adds
to the time to exit from the system. There appears to be a
trade-off between the load on the seed node and the time to
empty the system.

For C = 10, figures 11 and 12 show the expected (or-
dered) number of copies of chunks as seen by the ith de-
parting node. The total variation in the expected number
of copies has reduced compared with the random selection
policy. Less variation in the number of copies of different
chunks would mean that more nodes will be able to finish
downloading a file if the seed node were to leave the system
for some reason. The corresponding values for C = 100 are
shown in figures 13 and 14.

In order to get an approximate idea of what a desirable
policy would be like, we now simulate two policies which re-
quire more resources (in terms of exchange of information or
the uploading bandwidth of the server) compared with the
policies that we just described. The first policy we consider
is the rarest first policy. In the simulations, we assume that
each node has global information of the number of copies
of each chunk in the system. This is a best-case scenario
for this policy. In practice, nodes may not have accurate
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Figure 13: Expected number of copies of the chunks Figure 16: Expected number uploads of chunks by
as seen by departing nodes. Deterministic last chunk the seed node. Rarest first policy. N =1000. C = 100.
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Figure 18: Expected number of copies of the chunks
as seen by departing nodes. Rarest first policy. N =
1000. C = 100.
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Figure 19: Expected departing instant of the ith
departing node. N =1000. C = 10.

information of the rarity of chunks, and the performance
measures would depend on the algorithm used for estimat-
ing the rarity. In figures 15 and 16 we show the expected
(ordered) number of uploads by the seed, and in figures 17
and 18 we plot the expected (ordered) number of copies of
chunks as seen by the ith departing node. For C' = 100, the
number of copies seen of each chunk as seen by a departing
nodes has very small total variation as compared to that in
the deterministic last K chunks policy suggesting that all
the chunks are very well distributed throughout the lifetime
of the system. In figures 19 and 20 we compare the ex-
pected departure instants of nodes in various policies. From
these figures we can infer that the rarest first policy indeed
performs better the random selection and the deterministic
last K chunks policy. The second policy is inspired
by the one used in [5]. In this policy, we assume that each
node has a random chunk at the start of the system. From
the analysis in [5], this policy can be expected to perform
quite well. In figures 21 and 22, we plot the expected (or-
dered) number of upload of each chunk by the seed node.
The performance for C = 10 is better than the rarest first
policy. However, for C = 100 the two policies have com-
parable performance. In figures 23 and 24, we plot the we
plot the expected (ordered) number of copies of chunks as
seen by the ith departing node. For C' = 10, the maximum
total variation in the expected number of copies seen by de-
parting nodes is lesser compared to the deterministic last K
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Figure 20: Expected departing instant of the ith
departing node. N =1000. C = 100.
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Figure 21: Expected number uploads of chunks by
the seed node. Initial piece from server policy. N =
1000. C = 10.
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Figure 22: Expected number uploads of chunks by
the seed node. Initial piece from server policy. N =
1000. C = 100.
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Figure 23: Expected number of copies of the chunks
as seen by departing nodes. Initial piece from server
policy. N =1000. C =10

chunks policy and the rarest first policy. This implies that
the chunks are quite evenly distributed in the system at all
time instants and that many nodes can be expected to finish
downloading the file even if the seed node leaves the system
towards the end. However, this kind of policy may be im-
practical in a flash crowd scenario as all the peers will query
the seed simultaneously and overload it.

5. CONCLUSIONS

In this paper, we studied the behaviour of random chunk
selection policy for a random encounter based file distribu-
tion system during flash crowds. The random chunk policy
leads to at least one chunk becoming rare in the system.
These rare chunks need to be downloaded from the seed
node thereby making the presence of the seed node critical
to the completion of file downloads by peers. An insight
into the origins of the rare pieces was gained by an analogy
with Pélya urn models. Learning from these insights, we
proposed the deterministic last K chunks policy to alleviate
the rare chunk phenomenon. This is a completely distributed
chunk selection algorithm which uses the same information
as the random chunk selection policy. Unlike the rarest first
policy, the proposed algorithm does not require global infor-
mation on the number of copies of each chunk in the system.
Through simulations we observed that the proposed policy
performs well for up to a hundred chunks. The policy re-
duces the load on the seed node by reducing the rarity of the
rare chunk, and it also increases the efficiency of the system
by reducing the overall time to empty the seed.
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