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Duality

- Versatile notion

- Theoritical results and numerical methods

- Certificates of infeasibility

Lagrangian duality has many applications and

interpretations (price or tax, game, geome-

try...)

Applications of SDP duality:

• numerical solvers design

• problems reduction

• new theoretical insights into control problems

In the sequel we will recall some basic facts

about Lagrangian duality and SDP duality



Lagrangian duality

Let the primal problem

p? = min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, · · · , m
hi(x) = 0 i = 1, · · · , p

Define Lagrangian L(., ., .) Rn × Rm × Rp → R

L(x, λ, µ) = f0(x) +
m∑

i=1

λifi(x) +
p∑

i=1

µihi(x)

where λ, µ are Lagrange multipliers vectors or

dual variables

Let the Lagrange dual function

g(λ, µ) = inf
x∈D

L(x, λ, µ)

- g is always concave

- g(λ, µ) = −∞ if there is no finite infimum



Lagrangian duality (2)

A pair (λ, µ) s.t. λ � 0 and g(λ, µ) > −∞ is
dual feasible

For any primal feasible x and dual feasible pair
(λ, µ)

g(λ, µ) ≤ p∗ ≤ f0(x)

min
x

x4 − 3x2 − x

under x(x + 1) ≤ 0



Lagrangian duality (3)

Lagrange dual problem

d? = max
λ,µ

g(λ, µ)

s.t. λ � 0

The Lagrange dual problem is a convex opti-

mization problem

Primal Dual

inf
x∈Rn

sup
λ,µ

L(x, λ, µ)

s.t. λ � 0

sup
λ,µ

inf
x∈Rn

L(x, λ, µ)

s.t. λ � 0

A Lagrangian relaxation consists in solving the

dual problem instead of the primal problem



Weak and strong duality

Weak duality (max-min inequality):

p? ≥ d?

because

g(λ, µ) ≤ f0(x)+
m∑

i=1

λi fi(x)︸ ︷︷ ︸
≤0

+
p∑

i=1

µi hi(x)︸ ︷︷ ︸
=0

≤ f0(x)

for any primal feasible x and dual feasible λ, µ

The difference p?− d? ≥ 0 is called duality gap

Strong duality (saddle-point property):

p? = d?

Sometimes, constraint qualifications ensure that
strong duality holds
Example: Slater’s condition = strictly feasible
convex primal problem

fi(x) < 0, i = 1, · · · , m hi(x) = 0, i = 1, · · · , p



Geometric interpretation of duality (1)

Consider the primal optimization problem

p? = min
x∈R

f0(x)

s.t. f1(x) ≤ 0

with Lagrangian and dual function

L(x, λ) = f0(x) + λf1(x) g(λ) = inf
x

L(x, λ)

The dual problem is given by:

d? = max
λ

g(λ)

s.t. λ � 0



Geometric interpretation of duality (2)

Set of values G = (f1(x), f0(x)), ∀ x ∈ D

L(x, λ) = f0(x) + λf1(x) =
[

λ 1
] [

f1(x)
f0(x)

]

g(λ) = inf
x∈D

L(λ, x) = inf
x∈D

{[
λ 1

] [
u
v

]
(u, v) ∈ G

}
Supporting hyperplane with slope −λ[

λ 1
] [

u
v

]
≥ g(λ) (u, v) ∈ G



Geometric interpretation of duality (3)

Three supporting hyperplanes, including the

optimum λ? yielding d? < p?

No strong duality here

p∗ − d∗ > 0

Duality gap 6= 0



Geometric interpretation of duality (4)

B = {(0, s) ∈ R× R : s < p∗}

- Separating hyperplane theorem for G and B
- The separating hyperplane is a supporting
hyperplane to G in (0, p∗)
- Slater’s condition ensures the hyperplane is
non vertical



Optimality conditions

Suppose that strong duality holds, let x? be

primal optimal and (λ?, µ?) be dual optimal,

f0(x
?) = g(λ?, µ?)

= inf
x

f0(x) +
m∑

i=1

λ?
i fi(x) +

p∑
i=1

µ?
i hi(x)


≤ f0(x

?) +
m∑

i=1

λ?
i fi(x

?) +
p∑

i=1

µ?
i hi(x

?)

< f0(x
?)

λ?
i fi(x

?) = 0 i = 1, · · · , m

This is complementary slackness condition

λ?
i > 0 ⇒ fi(x

?) = 0 or fi(x
?) < 0 ⇒ λ?

i = 0

In words, the ith optimal Lagrange multiplier

is zero unless the ith constraint is active at the

optimum



LP duality (1)

Primal LP (standard form):

p? = min
x∈Rn

c′x

s.t. Ax = b b ∈ Rp

x � 0

Lagrange dual function:

g(λ, µ) = inf
x∈D

(c′x + µ′(b−Ax)− λ′x)

=

{
b′µ if c−A′µ− λ = 0
−∞ otherwise

Lagrange dual problem:

max
λ∈Rn

g(λ, µ) =

{
b′µ if c−A′µ− λ = 0
−∞ otherwise

s.t. λ � 0



LP duality (2)

Dual LP:

d? = max
µ∈Rp

b′µ

s.t. λ = c−A′µ � 0

Complementary slackness:

(x?)′λ? = 0

Weaker form of Slater’s condition:

If primal (dual) is feasible then strong duality

holds

Strong duality fails for LPs when both dual and

primal are infeasible



LP duality (3): Example

d∗ = min
x

x

s.t. [
0
1

]
x �

[
−1
1

]

p∗ = max
µ

[
1− 1

]
µ

s.t. [
0 −1

]
µ = 1

µ � 0

then

p∗ = −∞ d∗ = ∞



KKT optimality conditions

fi, hi are differentiable and strong duality holds

hi(x
?) = 0, i = 1, · · · , p, (primal feasible)

fi(x
?) ≤ 0, i = 1, · · · , m, (primal feasible)

λ?
i � 0, i = 1, · · · , m, (dual feasible)

λ?
i fi(x

?) = 0, i = 1, · · · , m, (complementary)

∇f0(x
?) +

p∑
i=1

λ?
i∇fi(x

?) +
p∑

i=1

µ?
i∇hi(x

?) = 0

Necessary Karush-Kuhn-Tucker conditions

satisfied by any primal and dual optimal pair

x? and (λ?, µ?)

For convex problems, KKT conditions are also

sufficient



History of KKT conditions

“Nonlinear programming” paper written jointly by
Albert W. Tucker and Harold W. Kuhn (Princeton Univ)
launched the theory of NLP in 1950

Later on, it turned out that this theorem had been
proved already:

• First in 1939 in a MSc thesis by William Karush
supervised by Lawrence M. Graves (Univ Chicago)

• Second in 1948 by Fritz John in a paper rejected by
the Duke Math J, later on published in a collection of
essays for Richard Courant’s 60th birthday



Feasibility of inequalities (1)

∃ x ∈ Rn :

{
fi(x) ≤ 0 i = 1, · · · , m
hi(x) = 0 i = 1, · · · , p

Dual function: g(., .) : Rm × Rp → R

g(λ, µ) = inf
x∈D

m∑
i=1

λifi(x) +
p∑

i=1

µihi(x)

The dual feasibility problem is

∃ (λ, µ) ∈ Rm × Rp :

{
g(λ, µ) > 0
λ � 0

Theorem of weak alternatives

At most, one of the two (primal and dual) is

feasible

If the dual problem is feasible then the primal

problem is infeasible



Feasibility of inequalities (2)

Proof of the theorem of alternatives

Suppose x ∈ D is a feasible point for the primal

problem

g(λ, µ) = inf
x∈D

m∑
i=1

λifi(x) +
p∑

i=1

µihi(x)

≤
m∑

i=1

λi fi(x)︸ ︷︷ ︸
≤0

+
p∑

i=1

µi hi(x)︸ ︷︷ ︸
=0

∀ (λ, µ) ∈ Rm × Rp

and so g(λ, µ) ≤ 0 for all λ � 0

If fi are convex functions, hi are affine func-

tions and some type of constraint qualification

holds:

Theorem of strong alternatives

Exactly one of the two alternative holds

A dual feasible pair (λ, µ) gives a certificate

(proof) of infeasibility of the primal



Feasibility of inequalities (3)

Example of Farkas’lemma

∃ x ∈ Rn :

{
Ax � b
c′x < 0

∃ λ ∈ Rm :


A′λ + c = 0
b′λ < 0
λ � 0

Given the infeasible set of linear inequalities −1 0
0 1
−1 −1

 x �

 2
0
−1

 [
1 0

]
x < 0

A certificate of infeasibility is given by

λ =
[
0 1 1

]′
solution of the alternative[

−1 0 −1
0 1 −1

]
λ +

[
1
0

]
= 0

[
2 0 −1

]
λ < 0

λ � 0



Feasibility of inequalities (4)
Geometric interpretation

2f (x) = v

f (x) = u1

−λ

G

H λ

P

P =

{
(u, v) ∈ R2 :

[
u
v

]
� 0

}

Hλ =

{
(u, v) ∈ R2 : λ′

[
u
v

]
= g(λ)

}
If g(λ) > 0 and λ � 0 then Hλ is a separating
hyperplane for P from

G =
{[

f1(x) f2(x)
]

: x ∈ Rn
}



Conic duality (1)

Let the primal:

p? = min
x∈Rn

f0(x)

s.t. fi(x) �Ki
0 i = 1, · · ·m

Lagrange dual function: g(.) : Rm → R

g(λ) = inf
x∈D

f0(x) +
m∑

i=1

λ′ifi(x)

Lagrange dual problem:

d? = max
λ∈Rm

g(λ)

s.t. λi �K∗i 0, i = 1, · · · , m



Conic duality (2)

• Weak duality
• Strong duality:
- if primal is s.f. with finite p? then d? is reached
by dual
- if dual is s.f. with finite d? then p? is reached
by primal
- if primal and dual are s.f. then p? = d?

• Complementary slackness:

λ?′
i fi(x

?) = 0

λ?
i �K?

i
0 ⇒ fi(x

?) = 0

fi(x
?) ≺Ki

0 ⇒ λ?
i = 0

• KKT conditions:

fi(x
?) �Ki

0

λ?
i �K?

i
0

∇f0(x
?) +

m∑
i=1

∇fi(x
?)′λ?

i = 0



Example of conic duality

Consider the primal conic program

min x1

s.t.

 x1 − x2

1
x1 + x2

 �L3 0 ⇔ x1 + x2 > 0
4x1x2 ≥ 1

with dual

max −λ2

s.t.

 λ1 + λ3 = 1
−λ1 + λ3 = 0
λ ∈ L3

⇔ λ1 = λ3 = 1/2

1/2 ≥
√

1/4 + λ2
2

The primal is strictly feasible and bounded below with
p? = 0 which is not reached since dual problem is infea-
sible d? = −∞



SDP duality (1)

Primal SDP:

p? = min
x∈Rn

c′x

s.t. F0 +
n∑

i=1

xiFi � 0

Lagrange dual function:

g(Z) = inf
x∈D

(
c′x + tr ZF (x)

)
=

{
tr F0Z if tr FiZ + ci = 0 i = 1, · · · , n
−∞ otherwise

Dual SDP:

d? = max
Z∈Sm

tr F0Z

s.t. tr FiZ + ci = 0 i = 1, · · · , n
Z � 0

Complementary slackness:

tr F (x?)Z? = 0 ⇐⇒ F (x?)Z? = Z?F (x?) = 0



SDP duality (2)

KKT optimality conditions

F0 +
n∑

i=1

xiFi + Y = 0 Y � 0

∀ i trace FiZ + ci = 0 Z � 0

Z?F (x?) = Z?Y ? = 0

Nota:

Since Y ? � 0 and Z∗ � 0 then

trace F (x?)Z? = 0 ⇐⇒ F (x?)Z? = Z?F (x?) = 0

Theorem:

Under the assumption of strict feasibility for

the primal and the dual, the above conditions

form a system of necessary and sufficient op-

timality conditions for the primal and the dual



Example of SDP duality gap

Consider the primal semidefinite program

min x1

s.t.

 0 x1 0
x1 −x2 0
0 0 −1− x1

 � 0

with dual

max −z6

s.t.

 z1 (1− z6)/2 z4
(1− z6)/2 0 z5

z4 z5 z6

 � 0

In the primal x1 = 0 (x1 appears in a row with
zero diagonal entry) so the primal optimum is
x?
1 = 0

Similarly, in the dual necessarily (1− z6)/2 = 0
so the dual optimum is z?

6 = 1

There is a nonzero duality gap here (p? = 0) >

(d? = −1)



Conic theorem of alternatives

fi(x) �Ki
0 Ki ⊆ Rki

Lagrange dual function

g(λ) = inf
x∈D

m∑
i=1

λ′ifi(x) λi ∈ Rki

Weak alternatives:

1− fi(x) �Ki
0 i = 1, · · · , m

2− λi �K?
i
0 g(λ) > 0

Strong alternatives:

fi Ki-convex and ∃ x ∈ relintD

1− fi(x) ≺Ki
0 i = 1, · · · , m

2− λi �K?
i
0 g(λ) ≥ 0



Theorem of alternatives for LMIs

For the LMI feasible set

F (x) = F0 +
∑
i

xiFi ≺ 0

Exactly one statement is true
1- ∃ x s.t. F (x) ≺ 0
2- ∃ 0 6= Z � 0 s.t.
trace F0Z ≥ 0 and trace FiZ = 0 for i = 1, · · · , n

Useful for giving certificate of infeasibility of

LMIs

Rich literature on theorems of alternatives for

generalized inequalities, e.g. nonpolyhedral con-

vex cones

Elegant proofs of standard results (Lyapunov,

ARE) in linear systems control, see later...



S-procedure (1)

S-procedure: also frequently useful in robust

and nonlinear control, also an outcome of the

theorem of alternatives

1- if x′A1x ≥ 0, · · · , x′Amx ≥ 0

then x′A0x ≥ 0 ∀ x ∈ Rn

2- ∃ τj ≥ 0 s.t. x′A0x−
m∑

j=1

τjx
′Ajx ≥ 0

The S-procedure consists in replacing 1 by 2

The converse also holds (no duality gap)

• when m = 1 for real quadratic forms and

∃ x | x′A1x > 0 (from the theorem of alterna-

tives)

• when m = 2 for complex quadratic forms



S-procedure (2)
Sketch of the proof for m = 1

Dines theorem:
For (A0, A1) ∈ Sn then

K =
{
(u, v) = (x′A0x, x′A1x) : x ∈ Rn

}
is a closed convex cone of R2

K

u

v

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � �

Q

Suppose

if x′A0x ≥ 0 then x′A1x ≥ 0 (1)

It means that K∩Q = ∅ where Q = {v ≥ 0, u < 0}

τ1u− τ2v < 0 (u, v) ∈ Q τ2 ≥ 0 τ1 > 0
∀ (u, v) ∈ K ∃ τ = τ2/τ1 ≥ 0 u− τv ≥ 0



Finsler’s (Debreu) lemma (1)

The following statements are equivalent

1− x′A0x > 0 ∀ x 6= 0 ∈ Rn, n ≥ 3, s.t. x′A1x = 0

2− A0 + τA1 � 0 for some τ ∈ R

Theorem of alternatives

1− ∃ τ ∈ R | τA1 + A0 � 0

2− ∃ Z ∈ Sn
+ : tr(AZ1) = 0 and tr(A0Z) ≤ 0

Paul Finsler
(1894 Heilbronn - 1970 Zurich)



Finsler’s (Debreu) lemma (2)

Counter-examples

Counter-example 1:

f0(x) = x2
1 − 2x2

2 − x2
3 f1(x) = x1 − x2

f0(x) ≤ 0 if f1(x) = 0

But, no τ exists s.t. f0(x) + τf1(x) ≤ 0

x′

 1 0 0
0 −2 0
0 0 −1

 x + τ
[
1 −1 0

]
x ≤ 0

Counter-example 2:

f0(x) = 2x1x2 f1(x) = x2
1 − x2

2

f0(x) > 0 for x | f1(x) = 0 but no τ ∈ R exists

s.t.

f0(x) + τf1(x) = x′
[

τ 1
1 −τ

]
x > 0



Elimination lemma

The following statements are equivalent

1− H⊥AH⊥∗ � 0 or HH∗ � 0

2− ∃ X | A + XH + H?X? � 0

Theorem of alternatives

1− ∃ X ∈ Cm×n | HX + (XH)∗ + A � 0

2− ∃ Z ∈ Sn
+ : ZH = 0 and tr(AZ) ≥ 0

Nota: For H ∈ Cn×m with rank r, H⊥ ∈ C(n−r)×n

s.t.

H⊥H = 0 H⊥H⊥∗ � 0



Reformulations
Linear LMI constraint = projection in subspace

Using explicit subspace basis, more efficient
formulations (less decision variables) can be obtained

Example: original problem

max 2x1 + 2x2

s.t.

[
1 + x1 x2

x2 1− x1

]
� 0

with dual

min trace

[
1 0
0 1

]
Z

s.t. trace

[
−1 0
0 1

]
Z = 2

trace

[
0 −1
−1 0

]
Z = 2

Z � 0



Reformulations (2)

Denoting

Z =

[
z11 z21

z21 z22

]
the linear trace constraints on Z can be written[

−1 0 1
0 −2 0

]  z11

z21

z22

 =

[
2
2

]
Particular solution and explicit null-space basis z11

z21

z22

 =

 −1
−1
1

 +

 1
0
1

 z̄

so we obtain the equivalent dual problem
with less variables

min 2z̄

s.t.

[
z̄ − 1 −1
−1 z̄ + 1

]
� 0

and primal

min trace

[
1 1
1 −1

]
X̄

s.t. trace

[
1 0
0 1

]
X̄ = 2

X̄ � 0




