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H» space

H- is the Hardy space with matrix functions
f(s), se C — C" analytic in Re(s) >0
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R'Ho- is a subspace of 'Ho with all strictly proper
and real rational stable transfer matrices
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Ho norm

The H> norm of the strictly proper stable LTI system

Ax + Bw
Cx

is the energy (I, norm) of its impulse response g(t)
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e For MIMO systems, H> norm is impulse-to-energy gain
or steady-state variance of z in response to white noise
e For MISO systems, Ho norm is energy-to-peak gain



Computing the H> norm

Let G(s) ~ [%]

Defining the controllability Grammian and the
observability Grammian

©.@) 0. @)
P. = /O eAtBB’eA/tdt P, = /O eA/tC"CeAtdt
solutions to the Lyapunov equations

A,P0+P0A+C,C:O
APC_I_PcA,_I_BB,:O
and hence

|G||5 = tr [CP.C'] = tr [B'P,B]

(A, C) observable iff P, = 0
(A, B) controllable iff P. = 0



LMI computation of the H, norm
Dual Lyapunov equations formulated as dual LMIs

The following statements are equivalent

- IGI5 <~?
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H~o space

H~o is the Hardy space with matrix functions
f(s), se C — C™™ gnalytic in Re(s) >0

[flloc = sup @(f(s)) =supa(f(jw)) < oo
Re(s)>0 weR

RHso IS @ real rational subset of Hoo with all
proper and real rational stable transfer matri-
ces
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Godfrey Harold Hardy
(1877 Cranleigh - 1947 Cambridge)



Hso NOrm

Let the proper stable LTI system G(s) = C(sI—
A~ 1B+ D

T Ax + Bw

z Cx + Dw
The Hx norm is the induced energy-to-energy
gain (52 to ZQ)

IGlloo = sup [[Gul2= sup [[z]2=supa(G(jw))

Jw[l2=1 Jwll2=1
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It is the worst-case gain



Computing the Hy NnOrm
In contrast with the H, norm, computation of

the Hoo NOrm requires a search over w Or an
iterative algorithm

A- Set up a fine grid of frequency points {w1, -+ ,w;}

[Glloc ~ max 7(Gjwp)

B- |G(s)||co < v iff R=~%1 —D'D > 0 and the
Hamiltonian matrix

A+ BR1D'C BR™ 1P
—~C'1+DRIDHYC —(A4+ BR1D'C)

has no eigenvalues on the imaginary axis



Bisection algorithm - ~-iterations

We can design a bisection algorithm

with guaranteed quadratic convergence

to find the minimum value of v such that

the Hamiltonian has no imaginary eigenvalues

1- Select [v; ] with v > &(D)

2- If (yu — ) /v < € stop;

1Gloo ~ (yu +71)/2

otherwise go to the next step;

2- Set v =1/2(y; 4+ vu) and compute H

3- Compute the eigenvalues of Hy

If A(H,)NCY set [y; 7] and go back to step 2

else set [y ~maz] and and go back to step 2



Refer to the part of the course on norm-bounded

uncertainty
—1
sup |lw|l = ||A]l <~
|z]l2=1

The following statements are equivalent

— |Gllec <
— 3 peSTT

A'P+ PA+C'C PB4+ C'D e
B'P+ D'C D'D — ~21
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B'P —~1 D' | <0
C D —~1




State-feedback stabilization

Open-loop continuous-time LTI system
r = Ax + Bu
with state-feedback controller
u= Kx

produces closed-loop system
r = (A+ BK)x

Applying Lyapunov LMI stability condition

(A4+ BK)P4+ P(A4+BK)<0 P=0

we get bilinear terms...

Bilinear Matrix Inequalities (BMIs) are
non-convex in general !



State-feedback design:
linearizing change of variables

Project BMI onto P~1 =0

(A+ BK) P+ P(A+ BK) <0
<
P~1[(A4+ BK)P+ P(A+BK)| P 1 <0
<
PlA'4+ PlK'B + AP~ 14+ BKP1 <0

Denoting
Q=P ! y=Kkp1
we derive a state-feedback design LMI

AQ+ QA +BY +Y'B' <0 Q=0

We obtained an LMI thanks to a one-to-one
linearizing change of variables



Finsler’'s theorem

Recall Finsler's theorem, already seen in the
first chapter of this course...

The following statements are equivalent

1.2’Az >0 forallz %0 s.t. B =0
2. BPAB >0 where BB=0
3.A+ MB'B >0 forsomescalar \

4. A+ XB+ B’X' =0 forsome matrix X

Paul Finsler
(1894 Heilbronn - 1970 Zurich)



State-feedback design: Riccati inequality

We can also use item 3 of Finsler’'s theorem to
convert BMI

AP+ PA+ K'B'P+ PBK <0
into
A'P+4+ PA—-)\XPBB'P <0

where A > 0 is an unknown scalar

Now replacing P with AP we get
A'P+PA—-PBB'P<0

which is related to the Riccati equation
AP+ PA—-PBB'P4+Q =0
for some matrix Q > 0
Shows equivalence between state-feedback LMI

stabilizability and the linear quadratic regulator
(LQR) problem



Robust state-feedback design
for polytopic uncertainty

LTI system x = Ax + Bu affected by polytopic
uncertainty

(A,B) € CO {(Al,Bl), Ceey (AN,BN)}

and search for a robust state-feedback law v =
Kax

Start with analysis conditions

(A, + B,K)P+ P(A;,+B,K)<0Vi Q>0
and we obtain the quadratic stabilizability LMI

AQ+ QA+ BY+Y'B,<0Vi Q>0
with the linearizing change of variables

Q=P ! y=Kp1



State-feedback H, control

Let the continuous-time LTI system

Ax + Byw + Byu
Crx + Dyww + Dayyu

with state-feedback controller

x
z

u= Kzx
Closed-loop system is given by

(A 4+ BuK)z + Byw
(Cz + DzuK)ZE —|— Dzww

with transfer function

x
z

G(8) = Dow+ (Co+ Doy K)(sI — A— ByK) 1By

between performance signals w and z

H-> performance specification

1G(s)ll2 <~

We must have D, = 0 (finite gain)



As usual, start with analysis condition:

3 K such that ||G(s)]||» < ~ iff
tr (Cz 4+ D K)Q(Cy + Doy K) < v

(A+ BuK)Q+ Q(A+ BuK) + BB’ <0
Remember equivalent statements about H» anal-

ysis and obtain the overall LMI formulation

tr 7 < 42

Z C:X + DR |
XC., 4+ R'D.,, X

AX + XA+ ByR+ R'B,,+ ByB,, <0
with resulting Ho suboptimal state-feedback
K=Rx1

Optimal Ho control: minimize ~2



Let the polytopic uncertain LTI system

A By Bu

eco{Mq,---, M
Cy Dzy Dy M N}

|

2
;= miny

tr Z < ’yz
Z C'X + D! R
./ /i >~ 0
| X, + RD, Q

[ A'X 4+ XAV 4+ BiR+ R'BY BY ] ~0
B,

with resulting robust H, suboptimal state-feedback

K=Rx1

1Gll2w.e. <4/



State-feedback H, control

Similarly, with Hyo performance specification

|G (8)]loo <

on transfer function between w and z we obtain

Q>0

" AQ + QA'+ B,Y +Y'B!,

CZQ + DZ’U,Y
By,

*
_721
1l

*

*
—1

<0

with resulting Hoy suboptimal state-feedback

K=YQ!

Optimal Hso control: minimize ~



Mixed Ho/H~ control

' A | Bw Bu
P(s) :== | Cx | Doow Doou
i Co 0 Dy, i

w ’
» Z
P L 22
u y
K -

H>/H~ problem
For a given admissible Hy performance level
~, find an admissible feedback, K € I, s.t.:

*= inf Go(K
o= Inf [|G2(5)]l2

st. [|Goo(K)leo < v



Mixed Ho/H~o control (2)

- K5 =ar [ inf ||G = *]
2 g | inf. llGall2 = a3
=72 = [|Goo(K3)][oo

- K3, =ar [ inf ||G = ~* ]
00 g Kek || OOHOO Yoo
Note that

- For v < ~%,, the mixed problem has no solu-
tion

- For v» < ~, the solution of the mixed problem
is given by (a3, K3) and the Hy constraint is
redundant

- For ~%, < v < 72, the pure mixed problem
IS @ non trivial infinite dimension optimization
problem



Mixed Ho/Hx~, control (3)

- Open problem without analytical solution nor
general numerical one

- Trade-off between nominal performance and
stability constraint

2
min J(k):\/—2+3k
k 2k

under
k<O
2

k) = <
f(k) \/k2(4_k2) <~

(k) . I(k)




Mixed Ho/Hso control via LMIs

Formulation of Hy constraint

[ AQoo + QuoA' + BuYoo + Yo/B;,  * %
C2Qo0 + DoouYoo —721 *
| B{U D{)ow —1
Qoo =0
and formulation of H, constraint
tr Z < «
Z CoXo+ Doyln |,
XQC’é —+ RQID/QU X5

AXo> 4 XoA' 4+ BuRo + Ro'B!, + BywB!, < 0

Problem:

We cannot linearize simultaneously !
K = YooQ5) = RpX5*

<0



Mixed Ho/Hso control via LMIs (2)
Remedy: Lyapunov Shaping Paradigm
Enforce Xo = Qoo = Q !
Trade-off: Conservatism/tractability

Resulting mixed Hp/Hx design LMI

7= min «
tr 7 < «
z C2Q+DaY |
| QCL +Y Dy, Q

AQ + QA"+ ByY +Y'Bl, + BuBj, <0

| AQ + QA/ + B,Y + Y’BQ/L * *
CzQ + DoouY —’721 * <0
B’{U Déow -1 i

Q>0

Guaranteed cost mixed Ho/Heo:

a*g\/Ff



Mixed Ho/Hso control: example

Active suspension system (Weiland)

Mo a-a;;L'qf

m2g2 + b2(g2 — 1) + k2(q2 —q1) + FF =0 iz l k. 1F J

mi1g1 + b2(q1 — ¢2) + k2(q1 — q2) 2 2
+k1(q1 —qo) +b1(¢g1 —go) + F =0

Q1—QO] . e
Y w=qo u z
q2 q2 — q1
g2 — q1 l!-r}l
Gx(s) from g to [g1—qo F]
G2(s) from qo to [¢2 ¢2—qi]

"""""" e

ne o

Pareto optimal performance levels

3.5

gamma2

0.5 | | 1 1 1 1 | | 1
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
gammart

Trade-off between [|Gueolloo < 71 and ||Ga|l2 < 2



Dynamic output-feedback

Continuous-time LTI open-loop system

r = Ax+ Byw + Byu

with dynamic output-feedback controller

Aczc + ch
Cexe + Dcy

Tc
u

Denote closed-loop system as

x
z

I
PN
81
+
Sy
S
z

|
Q
8
+
-
g

B.C, A.

[ CZ + DZUDCCy DZUCC i|

By + BuDcDyu
B.Dyu

A B =
é D = D,u + DzchDyw

Affine expressions on controller matrices



H-> output feedback design

H- design conditions

tr Z <«

z CQ
ks
AQ+ QA B
AOLOT B <o

linearized with a specific change of variables

Denote

QIO

=[47] el 8

so that P and @ can be obtained from P and
() via relation

PQ+ PQ =1

Always possible when controller has same order
than the open-loop plant



Linearizing change of variables
for Ho output-feedback design

Then define

XU| P PB,| | A. B. Q 0 P

[Y V] = [0 1 ] [Cc Dc] [CyQ 1] + [0] A[QO]
which is a one-to-one affine relation with converse

A.B.| _|P1—PPB,| |X - PAQU QY 0
C.D.|] — | 0 1 Y Vi |-C,QQ711

We derive the following H> design LMI

trZ <«
D,w + DquDyw =0
Z CzQ + DY C,+ DquCy

* Q 1 >~ 0
* * P
AQ+ BYY + () A+ B, VCy + X" By + BV Dy,
* PA—I—UCy—|—(*) PBy + UDyy <0
* * —1

in decision variables @, P,W (Lyapunov) and X,Y U,V
(controller)

Controller matrices are obtained via the relation
PQ + PQ =1

(tedious but straightforward linear algebra)



Similarly two-step procedure for full-order H~o
output-feedback design:

e solve LMI for Lyapunov variables ), P, W and
controller variables X,Y, U,V

e retrieve controller matrices via linear algebra

Alternative LMI formulation via projection onto
null-spaces (recall elimination lemma)

AQ + QA" QC, By
N’ * —v1 D.,, | N<0
* * —v1
AP+ PA PB, C.
M’ * —~1 D., | M <0
* * —~v1
Q 1
[ 1 P =

where N and M are null-space basis

B, D%, 0| N=0 |Cy Dyw 0|M=0



Reduced-order controller

For reduced-order controller of order n <n
there exists a solution P, to the equation

PQ+ PQ =1
i

rank (PQ — 1) = n¢
=

rank [Cf }_l)] =n—+ nc

Static output feedback iff PQQ =1

Difficult rank constrained LMI problem or BMI
problem |



