
COURSE ON LMI OPTIMIZATION
WITH APPLICATIONS IN CONTROL

PART I.5

SOLVING LMIs

Denis Arzelier

www.laas.fr/∼arzelier

arzelier@laas.fr

January 2005

http://www.laas.fr/~arzelier
mailto:arzelier@laas.fr

History

Convex programming

• Logarithmic barrier function [Frisch 1955)]
• Method of centers ([Huard 1967]

Interior-point (IP) methods for LP

• Ellipsoid algorithm [Khachiyan 1979]
polynomial bound on worst-case iteration count
• IP methods for LP [Karmarkar 1984]
improved complexity bound and efficiency - About
50% of commercial LP solvers

IP methods for SDP

• Self-concordant barrier functions [Nesterov,
Nemirovski 1988], [Alizadeh 1991]
• IP methods for general convex programs
(SDP and LMI)
Academic and commercial solvers (MATLAB)

Interior point methods (1)

For the optimization problem

min
x∈Rn

f0(x)

s.t. fi(x) ≥ 0 i = 1, · · · ,m
where the fi(x) are twice continuously differ-

entiable convex functions

Sequential minimization techniques: Reduction

of the initial problem into a sequence of uncon-

straint optimization problems

[Fiacco - Mc Cormick 68]

min
x∈Rn

f0(x) + µφ(x)

where µ > 0 is a parameter sequentially de-

creased to 0 and the term φ(x) is a barrier

function

Barrier functions go to infinity as the boundary

of the feasible set is approached

Interior point methods (2)
Descent methods

To solve an unconstrained optimization problem

min
x∈Rn

f(x)

we produce a minimizing sequence

xk+1 = xk + tk∆xk

where ∆xk ∈ Rn is the step or search direction and t(k) ≥
0 is the step size or step length

A descent method consists in finding a sequence {xk}
such that

f(x?) ≤ · · · f(xk+1) < f(xk)

where x? is the optimum

General descent method

0. k = 0; given starting point xk
1. determine descent direction ∆xk
2. line search: choose step size tk > 0
3. update: k = k+ 1; xk = xk−1 + tk−1∆xk−1
4. go to step 1 until a stopping criterion

is satisfied

Interior point methods (3)

Newton’s method

A particular choice of search direction is the

Newton step

∆x = −∇2f(x)−1∇f(x)

where

- ∇f(x) is the gradient

- ∇2f(x) is the Hessian

This step y = ∆x minimizes the second-order

Taylor approximation

f̂(x+ y) = f(x) +∇f(x)′y+ y′∇2f(x)y/2

and it is the steepest descent direction for the

quadratic norm defined by the Hessian

Quadratic convergence near the optimum

Interior point methods (4)
Conic optimization

For the conic optimization problem

min
x∈Rn

f0(x)

s.t. fi(x) �K 0 i = 1, · · · ,m
suitable barrier functions are called self-concordant

Smooth convex 3-differentiable functions f with

second derivative Lipschitz continuous w.r. to

the local metric induced by the Hessian

|f ′′′(x)| ≤ 2f
′′
(x)3/2

- goes to infinity as the boundary of the cone

is approached

- can be efficiently minimized by Newton’s method

- Each convex cone K possesses a self-concordant

barrier

- Such barriers are only computable for some

special cones

Barrier function for LP (1)

For LP and positive orthant Rn+, the logarith-

mic barrier function

φ(y) = −
n∑
i=1

log(yi) = log
n∏
i=1

y−1
i

is convex in the interior y � 0 of the feasible

set and is instrumental to design IP algorithms

max
µ∈Rp

b′y

s.t. ci − aiy � 0, i = 1, · · · ,m, (y ∈ P)

φ(y) = −log
m∏
i=1

(ci − aiy) = −
m∑
i=1

log(ci − aiy)

The optimum

yc = arg
[
min
y
φ(y)

]
is called the analytic center of the polytope

Barrier function for LP (2)

Example

J∗1 = max
x,y

2x+ y

s.t. x ≥ 0 y ≥ 0 x ≤ 2

y ≤ 2 x+ y ≤ 3

φ(x, y) = − log(xy)− log(2− x)− log(2− y)− log(3− x− y)

(xc, yc) = (
6−

√
6

5
,
6−

√
6

5
)

(x ,y)cc

Barrier function for an LMI (1)

Given an LMI constraint F (x) � 0

Self-concordant barriers are smooth convex 3-

differentiable functions φ : Sn+ → R s.t. for

φ(α) = φ(X + αH) for X � 0 and H ∈ Sn

|φ
′′′
(0)| ≤ 2φ

′′
(0)3/2

Logarithmic barrier function

φ(x) = − log detF (x) = logdetF (x)−1

This function is analytic, convex and self-concordant

on {x : F (x) � 0}

The optimum

xc = arg
[
min
x
φ(x)

]
is called the analytic center of the LMI

Barrier function for an LMI (2)
Example (1)

F (x1, x2) =

 1− x1 x1 + x2 x1
x1 + x2 2− x2 0
x1 0 1 + x2

 � 0

Computation of analytic center:

∇x1 log detF (x) = 2 + 3x2 + 6x1 + x22 = 0

∇x2 log detF (x) = 1− 3x1 − 4x2 − 3x22 − 2x1x2 = 0

x1c = −0.7989 x2c = 0.7458

Barrier function for an LMI (3)

Example (2)

The barrier function φ(x) is flat in the interior

of the feasible set and sharply increases toward

the boundary

IP methods for SDP (1)

Primal / dual SDP

min
Z

−trace(F0Z)

s.t. −trace(FiZ) = ci

Z � 0

min
x, Y

c′x

s.t. Y + F0 +
m∑
i=1

xiFi = 0

Y � 0

Remember KKT optimality conditions

F0 +
m∑
i=1

xiFi + Y = 0 Y � 0

∀ i trace FiZ + ci = 0 Z � 0

Z?F (x?) = Z?Y ? = 0

IP methods for SDP (2)
The central path

Perturbed KKT optimality conditions = Cen-
trality conditions

F0 +
m∑
i=1

xiFi + Y = 0 Y � 0

∀ i trace FiZ + ci = 0 Z � 0

ZY = µ1

where µ > 0 is the centering parameter or bar-
rier parameter

For any µ > 0, centrality conditions have a
unique solution Z(µ), x(µ), Y (µ) which can be
seen as the parametric representation of an an-
alytic curve: The central path

The central path exists if the primal and dual
are strictly feasible and converges to the ana-
lytic center when µ→ 0

IP methods for SDP (3)

Primal methods

min
Z

−trace(F0Z)− µ log detZ

s.t. trace(FiZ) = −ci

where parameter µ is sequentially decreased to

zero

Follow the primal central path approximately:

Primal path-following methods

The function f
µ
p (Z)

f
µ
p (Z) = −

1

µ
trace(F0Z)− log det Z

is the primal barrier function and the primal

central path corresponds to the minimizers Z(µ)

of fµp (Z)

- The projected Newton direction ∆Z

- Updating of the centering parameter µ

IP methods for SDP (4)

Dual methods (1)

min
x,Y

c′x− µ log detY

s.t. Y + F0 +
m∑
i=1

xiFi = 0

where parameter µ is sequentially decreased to

zero

The function f
µ
d (x, Y)

f
µ
d (x, Y) =

1

µ
c′x− log det Y

is the dual barrier function and the dual central

path corresponds to the minimizers (x(µ), Y (µ))

of fµd (x, Y)

Yk � 0 ensured via Newton process:

- Large decreases of µ require damped Newton

steps

- Small updates allow full (deep) Newton steps

Dual methods (2)
Newton step for LMI

The centering problem is

minφ(x) =
1

µ
c′x− log det(−F (x))

and at each iteration Newton step ∆x satisfies
the linear system of equations (LSE)

H∆x = −g

where gradient g and Hessian H are given by

Hij = trace F (x)−1FiF (x)−1Fj
gi = ci/µ− trace F (x)−1Fi

LSE typically solved via Cholesky factorization
or QR decomposition (near the optimum)
Nota: Expressions for derivatives of φ(x) = − log detF (x)
Gradient:

(∇φ(x))i = −trace F (x)−1Fi
= −trace F (x)−1/2FiF (x)−1/2

Hessian:

(∇2φ(x))ij = trace F (x)−1FiF (x)−1Fj
= µtrace

(
F (x)−1/2FiF (x)−1/2

) (
F (x)−1/2FjF (x)−1/2

)

Complexity of dual methods

For the n-by-n LMI F (x) � 0 with m variables
the flops count of IP methods for SDP is as follows:

For each iteration:
(a) O(n2m) to form F (x)
(b) O(n3m) to form F (x)−1FiF (x)−1Fj
(c) O(n2m2) to form F (x)−1Fi
(d) O(m3) to solve Newton LSE with Cholesky

Dominating terms are (b) and (c) so the complexity for
solving one Newton step is:

O(n3m+ n2m2)

..but structure can be exploited in these steps !

Number of iterations with Newton’s method:

O(
√
n log ε−1)

where ε is the desired accuracy

In general, it is assumed that m = O(n2) otherwise
redundant constraints can be removed, so the global
worst-case complexity for a dense SDP is

O(n6.5 log ε−1)

Much less in practice !

IP methods for SDP (4)

Primal-dual methods (1)

min
x,Y ,Z

trace Y Z − µ log detY Z

s.t. −trace FiZ = ci

Y + F0 +
m∑
i=1

xiFi = 0

Minimizers (x(µ), Y (µ), Z(µ)) satisfy optimality

conditions

trace FiZ = −ci
m∑
i=1

xiFi + Y = −F0

Y Z = µI
Y , Z � 0

The duality gap:

−trace(F0Z)− c′x = trace(Y Z) ≥ 0

is minimized along the central path

IP methods for SDP (5)

Primal-dual methods (2)

For primal-dual IP methods, primal and dual

directions ∆Z, ∆x and ∆Y must satisfy non-

linear and over determined system of condi-

tions

trace(Fi∆Z) = 0
m∑
i=1

∆xiFi + ∆Y = 0

(Z + ∆Z)(Y + ∆Y) = µI
Z + ∆Z � 0

∆Z = ∆Z′

Y + ∆Y � 0

These centrality conditions are solved approx-

imately for a given µ > 0, after which µ is

reduced and the process is repeated

Key point is in linearizing and symmetrizing the

latter equation

IP methods for SDP (6)
Primal-dual methods (3)

The non linear equation in the centrality con-
ditions is replaced by

HP (∆ZY + Z∆Y) = µ1−HP (ZY)

where HP is the linear transformation

HP (M) =
1

2

[
PMP−1 + P−1′M ′P ′

]
for any matrix M and the scaling matrix P gives
the symmetrization strategy.

Following the choice of P , long list of primal-
dual search directions, (AHO, HRVW, KSH,
M, NT...), the most known of which is Nesterov-
Todd’s

Algorithms differ in how the symmetrized equa-
tions are solved and how µ is updated (long
step methods, dynamic updates of for predictor-
corrector methods)

Other IP methods for SDP (1)

Affine-scaling methods

Solve the non linear system of optimality con-

ditions via some iterative scheme

A family of directions is formed as solutions of

the system

∀ i = 1, · · · ,m trace(Fi∆Z) = 0
m∑
i=1

∆xiFi + ∆Y = 0

HP (∆ZY + Z∆Y) = −HP (ZY)
Z + ∆Z � 0

∆Z = ∆Z′

Y + ∆Y � 0

- Primal affine-scaling algorithms are extension

to SDP of Karmarkar’s work for LP: No poly-

nomial complexity and search direction may

converge to non optimal point

- Primal-dual affine-scaling algorithms: Mini-

mize the duality gap over some prescribed el-

lipsoid in the primal dual space

Other IP methods for SDP (2)

Primal-dual potential reduction methods

Defining the Tanabe-Todd-Ye potential func-
tion

Φ(Z, Y) = (n+ ν
√
n) log traceZY − log detZY − logn

where ν ≥ 1

Polynomial complexity of primal-dual IP algo-

rithms is ensured by the decay of Φ by at least

a fixed constant at each iteration

- Compute feasible descent directions (∆Z,∆Y)

for Φ at (Z, Y) strictly feasible

- Plane search: Find

(α, β) = arg min
0 ≤ α ≤ αmax
0 ≤ β ≤ βmax

Φ(Z + α∆Z, Y + β∆Y)

- First methods to be extended from LP to

SDP ([Nesterov-Nemirovsky], [Alizadeh])

IP methods in general

Generally for LP, QP or SDP primal-dual
methods outperform primal or dual methods
General characteristics of IP methods:

• Efficiency: About 5 to 50 iterations, almost
independent of input data (problem), each
iteration is a least-squares problem (well
established linear algebra)
• Theory: Worst-case analysis of IP methods
yields polynomial computational time
• Structure: Tailored SDP solvers can exploit
problem structure

For more information see the Linear, Cone and
SDP section at

www.optimization-online.org

and the Optimization and Control section at

fr.arXiv.org/archive/math

http://www.optimization-online.org
http://fr.arXiv.org/archive/math

Other algorithms for SDP (1)

Bundle methods

Tackle directly the non differentiable convex

optimization problem

minx ∈ Rm λmax(F (x)) + c′x

Use convex analysis tools (subdifferential, sub-

gradients, cutting planes...)

A subgradient of the function g(x) = λmax(F (x))+

c′x at x is a vector z ∈ Rm s.t.

z ∈ ∂g(x) =
{
z ∈ Rm | g(x1) ≥ g(x) + z′(x1 − x) ∀ x1

}
and it is given by

z =
[
trace(Fivv

′)
]m
i=1 F (x)v = λv

Generalization of descent methods: ε-subgradients,

spectral bundle methods [Helmberg-Rendl 2000],

second order scheme [Oustry 2000]

- Good global convergence properties

- No iterations bound known

Other algorithms for SDP (2)
Penalty/augmented Lagrangian methods (1)

Use similar ideas, but cannot be considered as
an interior-point method

When applied to LMI problem

min c′x s.t. F (x) = F0 +
∑
i

xiFi � 0

• penalty method - some eigenvalues of F (x)
can be positive
• barrier method - no eigenvalue of F (x) can
be positive (use of log(−F (x)))

Augmented Lagrangian

L(x, Z, p) = c′x+ trace ZΦ(x, p)

with dual variable Z and suitable penalty func-
tion, for example

Φ(x, p) = p2(−F (x) + pI)−1 − pI

with penalty parameter p

Penalty/augmented Lagrangian methods (2)

General algorithm

1. find xk+1 such that ‖∇xL(x, Zk, pk)‖ ≤ εk
2. update dual variables: Zk+1 = f(xk+1, Zk)
3. update penalty parameter: pk+1 < pk
4. go to step 1 until a stopping criterion

is satisfied

Can be considered as a primal-dual method,

but dual variables are obtained in closed-form

at step 2

Complexity for the n-by-n LMI F (x) � 0 with

m variables depends mostly on Newton step 1

in O(n3m+ n2m2), same as IP methods

Can be improved to O(m2K2) where K is the

max number of non-zero terms in the Fi

SDP solvers

Available under the Matlab environment

Primal-dual path-following predictor-corrector
algorithms:
• SeDuMi (Sturm)
• SDPT3 (Toh, Tütüncü, Todd)
• CSDP (Borchers)
• SDPA (Kojima and colleagues)
parallel version available

Primal-dual potential reduction:
• MAXDET (Wu, Vandenberghe, Boyd)
explicit max det terms in objective function

Dual-scaling path-following algorithms:
• DSDP (Benson, Ye, Zhang)
exploits structure for combinatorics

Barrier method and augmented Lagrangian:
• PENSDP (Kočvara, Stingl)

Matrices as variables

Generally, in control problems we do not
encounter the LMI in canonical or semidefinite
form but rather with matrix variables

Lyapunov’s inequality

A′P + PA < 0 P = P ′ > 0

can be written in canonical form

F (x) = F0 +
m∑
i=1

Fixi < 0

with the notations

F0 = 0 Fi = A′Bi +BiA

where Bi, i = 1, . . . , n(n+1)/2 are matrix bases
for symmetric matrices of size n

Most software packages for solving LMIs
however work with canonical or semidefinite
forms, so that a (sometimes time-consuming)
pre-processing step is required

LMI solvers

Available under the Matlab environment

Projective method: project iterate on ellipsoid
within PSD cone = least squares problem
• LMI Control Toolbox (Gahinet, Nemirovski)
exploits structure with rank-one linear algebra
warm-start + generalized eigenvalues
originally developed for INRIA’s Scilab

LMI interface to SDP solvers
• LMITOOL (Nikoukah, Delebecque, El Ghaoui)
for both Scilab and Matlab
• SeDuMi Interface (Peaucelle)
• YALMIP (Löfberg)

See Helmberg’s page on SDP
www-user.tu-chemnitz.de/∼helmberg/semidef.html

and Mittelmann’s page on optimization
software with benchmarks
plato.la.asu.edu/guide.html

http://www-user.tu-chemnitz.de/~helmberg/semidef.html
http://plato.la.asu.edu/guide.html

Numerical example

 W

Z

X

Pc

G

Vr V x

θ

i

ψ

β

Control of an aerospace launcher

Linearized model of a rigid launcher

ψ̈(t) = A6

(
ψ(t) +

ż(t)−W (t)

V

)
+K1β(t)

z̈(t) = a1ψ(t) + a2 (ż(t)−W (t)) + a3β(t)

i(t) = ψ(t) +
ż(t)−W (t)

V

Uncertainty: aerodynamic and thruster efficiency

A6 ≤ A6 ≤ A6 K1 ≤ K1 ≤ K1

Numerical example (2)

State-space model:

ẋ(t) =

 0 1 0

A6 0
A6

V
a1 0 a2

x(t) +

 0

−
A6

V
−a2

W +

 0
K1

a3

u(t)
z(t) = i(t) =

[
1 0

1

V

]
x(t)−

1

V
W

Robust state-feedback synthesis: uk = Kxk[
xk+1

zk

]
= M

 xk
wk
uk

 =

[
A B1 B
C1 D1 D1u

] xk
wk
uk

M ∈ co

{
M [1], · · · ,M [N]

}
Impulse-to-peak norm minimization:

min
K∈K

γi2p

under ||Σ ?K||2i2p ≤ γi2p

Nota:
||Σ ?K||i2p = ||z||∞ when w is an impulse

Numerical example (3)

Convex relaxation via LMIs:

γ∗G = min
G, X [i], γG

γ[
−P [i] A[i]G+B[i]

1 S
? X [i] −G−G′

]
≺ 0

[
−X [i] B[i]

1
? −1

]
≺ 0

[
−γ1 C[i]

1 X
[i] +D[i]

1uS
? X [i] −G−G′

]
≺ 0

[
−γ1 D[i]

1
? −1

]
≺ 0

Stabilizing state-feedback:

KG = SG−1 ||z||∞ <
√
γ∗G

20 40 60 80 100 120
−4

−3

−2

−1

0

1

2

3

4

mini

imax

Time

A
ng

le
 o

f a
tt

ac
k

Numerical example (4)

>> yalmip(’clear’);
>> for i=1:N

Xv{i}=sdpvar(n,n,’symmetric’,’real’);
end
>> Gv=sdpvar(n,n,’full’,’real’);
>> Sv=sdpvar(m,n,’full’,’real’);
>> gv=sdpvar(1,1,’full’,’real’);
>> L=set;
>> for i=1:N

L=L+set([-Xv{i} sys.A{i}*Gv+sys.B{i}*Sv;...
Gv’*sys.A{i}’+Sv’*sys.B{i}’ Xv{i}-Gv-Gv’]<0,’Lyapunov’);

L=L+set(sys.B1{i}*sys.B1{i}’-Xv{i}<0,’B’);

L=L+set([-gv*eye(r) sys.C1{i}*Gv+sys.D1u{i}*Sv;...
Gv’*sys.C1{i}’+Sv’*sys.D1u{i}’ Xv{i}-Gv-Gv’]<0,’C’);

L=L+set(sys.D1{i}*sys.D1{i}’-gv*eye(r)<0,’D’);end
>> sol=solvesdp(L,[],gv,ops);
>> for i=1:N

X{i}=double(Xv{i});
end
>> G=double(Gv); S=double(Sv);

LMI relaxation software

GloptiPoly is written as an open-source, gen-

eral purpose and user-friendly Matlab software

Optionally, problem definition made easier with

Matlab Symbolic Math Toolbox, gateway to

Maple kernel

Gloptipoly solves small to medium non-convex

global optimization problems with multivariate

real-valued polynomial objective functions and

constraints

Software and documentation available at

www.laas.fr/∼henrion/software/gloptipoly

http://www.laas.fr/~henrion/software/gloptipoly

Metholodogy

GloptiPoly builds and solves a hierarchy of suc-

cessive convex linear matrix inequality (LMI)

relaxations of increasing size, whose optima are

guaranteed to converge asymptotically to the

global optimum

Relaxations are build from LMI formulation of

sum-of-squares (SOS) decomposition of

multivariate polynomials (see last chapter)

In practice convergence is ensured fast,

typically at 2nd or 3rd LMI relaxation

Features

General features of GloptiPoly:

• Certificate of global optimality (rank checks)

• Automatic extraction of globally optimal

solutions (multiple eigenvectors)

• 0-1 or ±1 integer constraints on some of the

decision variables (combinatorial optimization

problems)

• Generation of input and output data in

SeDuMi’s format

• Generation of moment matrices associated

with LMI relaxations (rank checks)

• User-defined scaling of decision variables

(to improve numerical behavior)

• Exploits sparsity of polynomial data

Major update of GloptiPoly (GloptiPoly 3.0)

planned (hopefully !) for summer 2005

Benchmark examples
Continuous problems

Mostly from Floudas/Pardalos 1999 handbook

About 80 % of pbs solved with LMI relaxation
of small order (typically 2 or 3) in less than 3
seconds on a PC Pentium IV at 1.6 MHz with
512 Mb RAM

Six-hump camel back function

Benchmark examples

Discrete problems

From Floudas/Pardalos handbook and also

Anjos’ Ph.D (Univ Waterloo)

By perturbing criterion (destroys symmetry)

global convergence ensured on 80 % of pbs

in less than 4 seconds

MAXCUT on antiweb AW 2
9 graph

Benchmark examples

Polynomial systems of equations

From Verschelde’s and Posso databasis
Real coefficients & coeffs only

Out of 59 systems:
• 61 % solved in t < 10 secs
• 20 % solved in 10 < t < 100 secs
• 10 % solved in t ≥ 100 secs
• 9 % out of memory

No criterion optimized
No enumeration of all solutions

Intersections of seventh and eighth degree polynomial curves

GloptiPoly: summary

GloptiPoly is a general-purpose software with

a user-friendly interface

Pedagogical flavor, black-box approach,

no expert tuning required to cope with very

distinct applied maths and engineering pbs

Not a competitor to highly specialized codes

for solving polynomial systems of equations or

large combinatorial optimization pbs

Numerical conditioning (Chebyshev basis)

deserves further study

See also the SOSTOOLS software

www.cds.caltech.edu/sostools

http://www.cds.caltech.edu/sostools

