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Course outline

I LMI optimization
[.1 Introduction: What is an LMI 7 What is SDP 7
historical survey - applications - convexity - cones - polytopes
[.2 SDP duality
Lagrangian duality - SDP duality - KKT conditions
1.3 Solving LMIs

interior point methods - solvers - interfaces

ITI LMIs in control

II.1 State-space analysis methods

Lyapunov stability - pole placement in LMI regions - robustness
II.2 State-space design methods

H>, H,, robust state-feedback and output-feedback design

IIT Aerospace applications of LMIs
III.1 Interferometric cartwheel stationkeeping

Robust D/H, performance via state-feedback
ITI.2 Robust pilot design for a flexible launcher

H>, H,/H> Multiobjective output-feedback design



Course material

Very good references on convex optimization:
e S. Boyd, L. Vandenberghe. Convex Optimization, Lecture Notes
Stanford & UCLA, CA, 2002

e H. Wolkowicz, R. Saigal, L. Vandenberghe. Handbook of semidef-
inite programming, Kluwer, 2000

e A. Ben-Tal, A. Nemirovskii. Lectures on Modern Convex Opti-
mization, SIAM, 2001

Modern state-space LMI methods in control:
e C. Scherer, S. Weiland. Course on LMIs in Control, Lecture
Notes Delft & Eindhoven Univ Tech, NL, 2002

e S. Bovyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix
Inequalities in System and Control Theory, SIAM, 1994

e M. C. de Oliveira. Linear Systems Control and LMIs, Lecture
Notes Univ Campinas, BR, 2002.

Results on LMI and algebraic optimization in
control:

e P. A. Parrilo, S. Lall. Mini-Course on SDP Relaxations and Al-
gebraic Optimization in Control. European Control Conference,
Cambridge, UK, 2003

e P. A. Parrilo, S. Lall. Semidefinite Programming Relaxations and
Algebraic Optimization in Control, Workshop presented at the 42nd
IEEE Conference on Decision and Control, Maui HI, USA, 2003
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LMI - Linear Matrix Inequality

n
F(z)=Fo+ ) x;F; =0
i=1

- F; € S™ given symmetric matrices
- x; € R™ decision variables

Fundamental property: feasible set is convex
S={zreR"”: F(x) > 0}
S is the Spectrahedron

Nota : > O (= 0O) means positive semidefi-
nite (positive definite) e.g. real nonnegative
eigenvalues (strictly positive eigenvalues) and
defines generalized inequalities on PSD cone

Terminology coined out by Jan Willems in 1971

AP+ PA+Q PB+C
B'P+C R
"The basic importance of the LMI seems to be largely unappre-

Ciated. It would be interesting to see whether or not it can be
exploited in computational algorithms”

F(P) = ~ 0



Lyapunov’'s LMI

Historically, the first LMIs appeared around 1890
when Lyapunov showed that the autonomous
system with LTI model:

d LN
ax(t) = z(t) = Ax(t)

is stable (all trajectories converge to zero) iff
there exists a solution to the matrix inequalities

A P4+PA<0 P=P =0

which are linear in unknown matrix P
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Aleksandr Mikhailovich Lyapunov
(1857 Yaroslavl - 1918 Odessa)
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Example of Lyapunov’'s LMI

-1 2 pP1 P2
A: P:
[ 0 —2] P2 P3
AAP+PA<0 P>0
L —2p 2p1 — 3po <0
| 2p1 — 3p2 4p2 — 4p3
P1 D2 “ 0
| P2 P3

o~ O0OO

Matrices P satisfying Lyapunov LMI’s

oleleole)

0] 3 O O 0]
3 -4 0 O 0]
p1+ 0 0 0 1 po+ 0
0] 0] 1 O 0]

oo ,O

oleleole)

—HOOO

]m>0



Some history (1)

1940s - Absolute stability problem: Lu're, Post-
nikov et al applied Lyapunov's approach to
control problems with nonlinearity in the ac-
tuator

= Ax + bo(x)

2 A

Sector-type nonlinearity

- Stability criteria in the form of LMIs solved
analytically by hand

- Reduction to Polynomial (frequency depen-
dent) inequalities (small size)



Some history (2)

1960s: Yakubovich, Popov, Kalman, Anderson
et al obtained the positive real lemma

The linear system ©z = Az + Bu, y = Czxz -+ Du is passive
H(s)+ H(s)* >0V s+ s*> 0 iff

AP+ PA PB-C

P20 BP—-C —-D-D

=<0

- Solution via a simple graphical criterion (Popov,
circle and Tsypkin criteria)

g=5-mu=1-a=1
T T T
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Mathieu equation: 4 + 2uy + (u? + a®> — gcoswot)y = 0
q < 2na



Some history (3)

1971: Willems focused on solving algebraic

Riccati equations (ARES)

AP+ PA— (PB+CHRIY(BP+C)4+Q=0

Numerical algebra

g_|A-BRIC BR™'B v
| —-C'R"lc -A4+C'R1PB -

Pa,fre — V2V1_1
By 1971, methods for solving LMIs:

- Direct for small systems
- Graphical methods
- Solving Lyapunov or Riccati equations




Some history (4)

1963: Bellman-Fan: infeasibility criteria for
multiple Lyapunov inequalities (duality theory)

On Systems of Linear Inequalities in hermitian Matrix Variables

1975: Cullum-Donath-Wolfe: properties of cri-
terion and algorithm for minimization of max-
imum eigenvalues

The minimization of certain nondifferentiable sums of eigenvalues

of symmetric matrices

1979: Khachiyan: polynomial bound on worst
case iteration count for LP ellipsoid algorithm

A polynomial algorithm in linear programming




Some history (5)

1981: Craven-Mond: Duality theory

Linear Programming with Matrix variables

1984: Karmarkar introduces interior-point (IP)
methods for LP: improved complexity bound
and efficiency

1985: Fletcher: Optimality conditions for non-
differentiable optimization

Semidefinite matrix constraints in optimization

1988: Overton: Nondifferentiable optimiza-
tion

On minimizing the maximum eigenvalue of a symmetric matrix

1988: Nesterov, Nemirovski, Alizadeh extend
IP methods for convex programming

Interior-Point Polynomial Algorithms in Convex Programming

1990s: most papers on SDP are written (con-
trol theory, combinatorial optimization, approx-
imation theory...)



Mathematical preliminaries (1)

A set C is convex if the line segment between
any two points in C lies in C

Vaei, 20 € C Ax14+(1-XNaxrecC VI 0<)A<1

Qe ~

The convex hull of a set C is the set of all
convex combinations of points in C

COCZ{Z)\Z{IZZ‘ cx; €C N >0 Z)\z‘=1}
1 1

Qe




Mathematical preliminaries (2)
A hyperplane is a set of the form:

H={az€Rn|a/(m—xo)=O} a7#%=0ecR"

A hyperplane divides R"™ into two halfspaces:

H-={z€R" | d(z—20) <O} a#*0eR"

Hyperplane and halfspace
rE€H, v1 € H_, xo0 € H_



Mathematical preliminaries (3)
A polyhedron is defined by a finite number of
linear equalities and inequalities

P {ZUER” a;xébj’-:17...’m7ch:di’i:1’...,p}
{x eR" : Az <b, Cx =d}

A bounded polyhedron is a polytope

Polytope as an intersection of halfspaces

e positive orthant is a polyhedral cone
e k-dimensional simplexes in R"

k k
X =co{vg, - ,v} = {ZAM A 20 ZM=1}
1=0 1=0



Mathematical preliminaries (4)

A set K is a cone if for every z € X and A >0
we have \x € K. A set £ is a convex cone if it
IS convex and a cone

0 0

I C R"™ is called a proper cone if it is a closed
solid pointed convex cone

acellC and —aek = a=0



lLorentz cone "

3D Lorentz cone or ice-cream cone
2 -+ y2 < 22 2 >0

arises in quadratic programming



mn
PSD cone S+

2D positive semidefinite cone

[;j z]§0<:>:c20 z>0 xz>vy

arises in semidefinite programming



Mathematical preliminaries (5)

Every proper cone K in R"™ induces a partial
ordering = defining generalized inequalities on
Rn

a-xb & a—-0bek

T he positive orthant, the Lorentz cone and the
PSD cone are all proper cones

e positive orthant IR%"}F: standard coordinatewise
ordering (LP)

xtmy & T 2 Y

e Lorentz cone L™

Tp > Zazg

e PSD cone Sj_: Lowner partial order




Mathematical preliminaries (6)

ThesetK*={yecR" | 2/y <0 V z e K} iscalled
the dual cone of the cone K

e Revolution cone Ks(0) = {x € R" : s’z < ||z|| cos 6}

7

0

K*
Ks(0)* = K_o(Z - 0)

e (R} )*=RI
KC* is closed and convex, K1 C Ko = K3 C K3

=i+ IS a dual generalized inequality

Ty <= )\/:I:S)\’y V A=xx 0



Mathematical preliminaries (7)

f  R*" — R is convex if domf is a convex set
and Vx, yedomf and 0 <A <1

fFOz+ (1 =MNy) <Af(z) + (1 =) f(y)

If f is differentiable: domf is a convex set and
Vz, yedomf

fly) > f(x) + VFi(x) (y — )

If f is twice differentiable: domf is a convex
set and V z, y € domf

VZ2f(z) = 0

Quadratic functions:
f(z) = (1/2)x’ Px+q'z+r is convex if and only
it P>0



Convex function y = 22
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Nonconvex function y = —x?
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Mind the sign !



LMI and SDP formalisms (1)

In mathematical programming terminology
LMI optimization = semidefinite programming
(SDP)

LMI (SDP dual) SDP (primal)
min 'z min —Tr(FpZ2)
under Fp+ é:l x; F; <0 under 21;%177;2) — G4
reR™ ZeS" F,ed, ceR?, 1=1,---,n
Nota:

In a typical control LMI

mn
A/P—I-PAZFO—l— ZibiFi<O
i=1
individual matrix entries are decision variables



LMI and SDP formalisms (2)

n
JzeR"| Fo+ ) 2, F; <0 < min Apae(F())

i=1 TeR™

F(z)

The LMI feasibility problem is a convex and
non differentiable optimization problem.

Example :

| —z1 -1 —Io
@) = —x2  —1+x

Amaz(F(2)) = 1+ /(23 + 23)
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LMI and SDP formalisms (3)

min 'z min b’y
s.t.
s.t. Ay = ¢
— / -
b— A'x e C e K

Conic programming in cone KC

e positive orthant (LP)
e Lorentz (second-order) cone (SOCP)
e positive semidefinite cone (SDP)

Hierarchy: LP cone C SOCP cone C SDP cone



LMI and SDP formalisms (4)

LMI optimization = generalization of linear
programming (LP) to cone of positive semidef-
inite matrices = semidefinite programming (SDP)

Linear programming pioneered by

e Dantzig and its simplex algorithm (1947, ranked in
the top 10 algorithms by SIAM Review in 2000)

e Kantorovich (co-winner of the 1975 Nobel prize in

economics)

George Dantzig Leonid V Kantorovich
(1914 Portland, Oregon) (1921 St Petersburg - 1986)

Unfortunately, SDP has not reached maturity of LP or
SOCP so far..



Applications of SDP

e control systems (part II of the course)

e robust optimization

e Signal processing

e synthesis of antennae arrays

e design of chips

e structural design (trusses)

e geometry (ellipsoids)

e graph theory and combinatorics (MAXCUT,
Shannon capacity)

and many others...

See Helmberg's page on SDP

www-user.tu-chemnitz.de/~helmberg/semidef .html


http://www-user.tu-chemnitz.de/~helmberg/semidef.html

Robust optimization (1)

In many real-life applications of optimization
problems, exact values of input data (constraints)
are seldom known

e Uncertainty about the future

e Approximations of complexity by uncertainty

e Errors in the data

e variables may be implemented with errors

min fo(xz,u)

under fi(z,u) <0 ¢=1,---,m
where x € R™ is the vector of decision variables
and u € RP is the parameters vector.
e Stochastic programming
e Sensitivity analysis
e Interval arithmetic
e \Worst-case analysis

min  sup fo(z,u)
X uel

under sup fi(z,u) <0 i=1,---.,m
ueld



Robust optimization (2)

Case study by Ben Tal and NemirovsKki:
[Math. Programm. 2000]

90 LP problems from NETLIB 4+ uncertainty
quite small (just 0.1% ) perturbations of " ob-
viously uncertain” data coefficients can make
the "nominal” optimal solution x* heavily in-
feasible

Remedy: robust optimization, with robustly
feasible solutions guaranteed to remain feasi-
ble at the expense of possible conservatism
Robust conic problem: [Ben Tal Nemirovski
96]

min cx
TzERM
st. Azx—-be, V(Ab) eclU

This last problem, the so-called robust coun-
terpart is still convex, but depending on the
structure of U, can be much harder that origi-
nal conic problem



Robust optimization (3)

Uncertainty Problem | Optimization Problem

polytopic LP LP
ellipsoid SOCP
L MI SDP

polytopic SOCP SOCP
ellipsoid SDP
L MI NP-hard

Examples of applications:

Robust LP: Robust portfolio design in finance
[Lobo 98], discrete-time optimal control [Boyd
97], robust synthesis of antennae arrays |[Le-
bret 94|, FIR filter design [\Wu 96|

Robust SOCP: robust least-squares in
identification [El Ghaoui 97], robust synthesis
of antennae arrays and FIR filter synthesis



Robust counterpart of robust LP

min cz

xR

s.t.
/ -
a;x < b;, 1=1,---m,
Voa; €€&;

87; = {EZ—FPZ’UJ | ||u||2 <1 and Pi >~ O}

Note that

max a,x = a,x + ||P;x||> < b;
a;€E;

SOCP formulation
min Jdz
rERM
s.t.



Robust optimization (5)
Example of Robust LP

Ji=max 2z+4y Jék:”;%x 20 +y
T,y ’
s.t. >0, y>0 S.t. x>0, y>0
x <2 z°+1y° <3 —x—y
y <2 ?+y*<2-z
r+y<3 /22 + 42 <2 —y
(z*,y*) = (2,1) (z*,y*) = (0.8284,0.8284)
Ji =5 J5 = 2.4852
J = 2.4852 J,=5
(1,2)
2
1.5
~ (2,1) = (%}

1 (0.8284,0.8284) =*(x,y ) /

C
051 / .




Truss Topology Design (TTD)

L 1 L L L 1 L L L
0 50 100 150 200 250 300 350 400

A truss is a network of N nodes connected by elastic bars
of length [; (fixed) and cross-sections s; (to be designed)

When subjected to a given load, the truss is deformed
and the distorted truss stores potential energy (compli-
ance) measuring stiffness of the truss.

Standard TTD:

For given initial nodes set N, external nominal load f
and total volume of bars v, allocate this resource to
the bars i.o.t. minimize the compliance (maximize the
stiffness) of the resulting truss

The compliance of the truss w.r.t. a load f is:

1
C==fd
>/

where d is the displacement vector



Truss Topology Design (2)

Construction reacts to external force f on each
node with displacement vector d satisfying equi-
librium displacement equations:

A(t)d = f

where A(t) is the stiffness matrix, t = l's is the
volume of the truss.

Linearity assumption: stiffness matrix A(s)
affine in s and positive definite.

N
A(s) = ) Lis;bb;
1=1

Constraints on decision variables:
- Bounds on cross-sections:
a<s<b

- Bound on total volume (weight)

N
s = Z l;s; <w
1=1



Truss topology design (3)

TTD an be formulated as an LMI optimization
problem:

,S

/
I’T7]in7' S.t. [T / ]>O U's<v a=<s=<b

Optimal truss [Scherer 04]

250
200
150
100+

50

| | | | | 1 1 1 |
0 50 100 150 200 250 300 350 400



Combinatorial optimization (1)

Combinatorics: Graph theory, polyhedral com-
binatorics, combinatorial optimization, enumer-
ative combinatorics...

Definition: Optimization problems in which the
solution space is discrete (finite collection of
objects) or a decision-making problem in which
each decision has a finite (possibly many) num-
ber of feasibilities

Depending upon the formalism
- 0-1 Linear Programming problems: 0-1 Knap-

sack problem,...
- Propositional logic: Maximum satisfiability

problems...
- Constraints satisfaction problems: Airline crew

assignment
- Graph problems: Max-Cut, Shannon capacity
of a graph,...



Combinatorial optimization (2)

- Many CO problems are NP-complete

- Combinatorial explosion (the number of ob-
jects may be huge and grows exponentially in
the size of the representation)

- Scanning all feasibilities (objects) one by one
and choosing the best one is not an option
Two strategies:

- Exact algorithms (not guaranteed to run in
polynomial time)

- Polynomial-time algorithms (guaranteed to
give an optimal solution)

Fundamental concept in CO: Relaxations (com-
binatorial, linear, Lagrangian relaxations)
Optimize over larger easy convex space instead
of optimizing over hard genuine feasible set

- Relaxed solution should be easy to get

- Relaxed solution should be "close” to the
original



Combinatorial optimization (3)

SDP relaxation of QP in binary variables

(BQP) erP_afl} Q

Noticing that z'Qx = trace(Qzz’)
we get the equivalent form

(BQP) max trace(QX)

:e=[1 o1
s.t. ~ 0
rank(X) =1

Dropping the non convex rank constraint leads
to the SDP relaxation:

(SDP) max trace(Q.X)
st =e=[1 - 1 '
~ 0

Interpretation: lift from R™ to S"



Combinatorial optimization (4)

Example
(BQP) min 2'Qr = r110 — 22123 + 32073
rxe{-1,1}
0 05 -1
with Q=05 0 1.5
-1 15 0

SDP relaxation
(SDP) m)gn trace(QX) = X1 —2X> 4+ 3X3

1 X7 Xo |
st. X=|X;7 1 X3 |~=0
 Xo X3 1
1 -1 1 |
X*=|-1 1 -1 rank(X™*) =1
1 -1 1 |

/ .
From X* = z*z*, we recover the optimal so-

lution of (BQP)
=1 -11]



Combinatorial optimization (4)
Example (continued)

Visualization of the feasible set of (SDP) in
(X1, X2, X3) space :

X7 Xo
= | X1 X3
Xo X3

ptimal vertex i —1 1 —



