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Course outline

I LMI optimization
I.1 Introduction: What is an LMI ? What is SDP ?

historical survey - applications - convexity - cones - polytopes

I.2 SDP duality

Lagrangian duality - SDP duality - KKT conditions

I.3 Solving LMIs

interior point methods - solvers - interfaces

II LMIs in control
II.1 State-space analysis methods

Lyapunov stability - pole placement in LMI regions - robustness

II.2 State-space design methods

H2, H∞, robust state-feedback and output-feedback design

III Aerospace applications of LMIs
III.1 Interferometric cartwheel stationkeeping

Robust D/H2 performance via state-feedback

III.2 Robust pilot design for a flexible launcher

H2, H∞/H2 Multiobjective output-feedback design



Course material

Very good references on convex optimization:
• S. Boyd, L. Vandenberghe. Convex Optimization, Lecture Notes

Stanford & UCLA, CA, 2002

• H. Wolkowicz, R. Saigal, L. Vandenberghe. Handbook of semidef-

inite programming, Kluwer, 2000

• A. Ben-Tal, A. Nemirovskii. Lectures on Modern Convex Opti-

mization, SIAM, 2001

Modern state-space LMI methods in control:
• C. Scherer, S. Weiland. Course on LMIs in Control, Lecture

Notes Delft & Eindhoven Univ Tech, NL, 2002

• S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory, SIAM, 1994

• M. C. de Oliveira. Linear Systems Control and LMIs, Lecture

Notes Univ Campinas, BR, 2002.

Results on LMI and algebraic optimization in
control:
• P. A. Parrilo, S. Lall. Mini-Course on SDP Relaxations and Al-

gebraic Optimization in Control. European Control Conference,

Cambridge, UK, 2003

• P. A. Parrilo, S. Lall. Semidefinite Programming Relaxations and

Algebraic Optimization in Control, Workshop presented at the 42nd

IEEE Conference on Decision and Control, Maui HI, USA, 2003
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LMI - Linear Matrix Inequality

F (x) = F0 +
n∑

i=1

xiFi � 0

- Fi ∈ Sm given symmetric matrices
- xi ∈ Rn decision variables

Fundamental property: feasible set is convex

S = {x ∈ Rn : F (x) � 0}
S is the Spectrahedron

Nota : � 0 (� 0) means positive semidefi-
nite (positive definite) e.g. real nonnegative
eigenvalues (strictly positive eigenvalues) and
defines generalized inequalities on PSD cone

Terminology coined out by Jan Willems in 1971

F (P ) =

[
A′P + PA + Q PB + C′

B′P + C R

]
� 0

”The basic importance of the LMI seems to be largely unappre-
ciated. It would be interesting to see whether or not it can be
exploited in computational algorithms”



Lyapunov’s LMI

Historically, the first LMIs appeared around 1890
when Lyapunov showed that the autonomous
system with LTI model:

d

dt
x(t) = ẋ(t) = Ax(t)

is stable (all trajectories converge to zero) iff
there exists a solution to the matrix inequalities

A′P + PA ≺ 0 P = P ′ � 0

which are linear in unknown matrix P

Aleksandr Mikhailovich Lyapunov
(1857 Yaroslavl - 1918 Odessa)



Example of Lyapunov’s LMI

A =

[
−1 2
0 −2

]
P =

[
p1 p2
p2 p3

]

A′P + PA ≺ 0 P � 0[
−2p1 2p1 − 3p2

2p1 − 3p2 4p2 − 4p3

]
≺ 0

[
p1 p2
p2 p3

]
� 0

Matrices P satisfying Lyapunov LMI’s

[ 2 −2 0 0
−2 0 0 0
0 0 1 0
0 0 0 0

]
p1+

[ 0 3 0 0
3 −4 0 0
0 0 0 1
0 0 1 0

]
p2+

[ 0 0 0 0
0 4 0 0
0 0 0 0
0 0 0 1

]
p3 � 0



Some history (1)

1940s - Absolute stability problem: Lu’re, Post-
nikov et al applied Lyapunov’s approach to
control problems with nonlinearity in the ac-
tuator

ẋ = Ax + bσ(x)

f(z)

z

Sector-type nonlinearity

- Stability criteria in the form of LMIs solved
analytically by hand

- Reduction to Polynomial (frequency depen-
dent) inequalities (small size)



Some history (2)

1960s: Yakubovich, Popov, Kalman, Anderson
et al obtained the positive real lemma

The linear system ẋ = Ax+Bu, y = Cx+Du is passive
H(s) + H(s)∗ ≥ 0 ∀ s + s∗ > 0 iff

P � 0

[
A′P + PA PB − C ′

B′P − C −D −D′

]
� 0

- Solution via a simple graphical criterion (Popov,

circle and Tsypkin criteria)
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Some history (3)

1971: Willems focused on solving algebraic

Riccati equations (AREs)

A′P + PA− (PB + C′)R−1(B′P + C) + Q = 0

Numerical algebra

H =

[
A−BR−1C BR−1B′

−C′R−1C −A′ + C′R−1B′

]
V =

 V1

V2


Pare = V2V −1

1

By 1971, methods for solving LMIs:

- Direct for small systems

- Graphical methods

- Solving Lyapunov or Riccati equations



Some history (4)

1963: Bellman-Fan: infeasibility criteria for
multiple Lyapunov inequalities (duality theory)
On Systems of Linear Inequalities in hermitian Matrix Variables

1975: Cullum-Donath-Wolfe: properties of cri-
terion and algorithm for minimization of max-
imum eigenvalues
The minimization of certain nondifferentiable sums of eigenvalues

of symmetric matrices

1979: Khachiyan: polynomial bound on worst
case iteration count for LP ellipsoid algorithm
A polynomial algorithm in linear programming
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Some history (5)

1981: Craven-Mond: Duality theory
Linear Programming with Matrix variables

1984: Karmarkar introduces interior-point (IP)
methods for LP: improved complexity bound
and efficiency

1985: Fletcher: Optimality conditions for non-
differentiable optimization
Semidefinite matrix constraints in optimization

1988: Overton: Nondifferentiable optimiza-
tion
On minimizing the maximum eigenvalue of a symmetric matrix

1988: Nesterov, Nemirovski, Alizadeh extend
IP methods for convex programming
Interior-Point Polynomial Algorithms in Convex Programming

1990s: most papers on SDP are written (con-
trol theory, combinatorial optimization, approx-
imation theory...)



Mathematical preliminaries (1)

A set C is convex if the line segment between

any two points in C lies in C

∀ x1, x2 ∈ C λx1+(1−λ)x2 ∈ C ∀ λ 0 ≤ λ ≤ 1

.
.

The convex hull of a set C is the set of all

convex combinations of points in C

co C = {
∑
i

λixi : xi ∈ C λi ≥ 0
∑
i

λi = 1}

.

.

.

.
.

.

.

.

.

.
.



Mathematical preliminaries (2)

A hyperplane is a set of the form:

H =
{
x ∈ Rn | a′(x− x0) = 0

}
a 6= 0 ∈ Rn

A hyperplane divides Rn into two halfspaces:

H− =
{
x ∈ Rn | a′(x− x0) ≤ 0

}
a 6= 0 ∈ Rn

x

a

x1

0

x2

x

Hyperplane and halfspace
x ∈ H, x1 6∈ H−, x2 ∈ H−



Mathematical preliminaries (3)

A polyhedron is defined by a finite number of
linear equalities and inequalities

P =
{
x ∈ Rn : a′jx ≤ bj, j = 1, · · · , m, c′ix = di, i = 1, · · · , p

}
= {x ∈ Rn : Ax � b, Cx = d}

A bounded polyhedron is a polytope
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Polytope as an intersection of halfspaces

• positive orthant is a polyhedral cone
• k-dimensional simplexes in Rn

X = co {v0, · · · , vk} =


k∑

i=0

λivi λi ≥ 0
k∑

i=0

λi = 1





Mathematical preliminaries (4)

A set K is a cone if for every x ∈ K and λ ≥ 0

we have λx ∈ K. A set K is a convex cone if it

is convex and a cone

.

.
0

.

.

.
0

0 .

.

K ⊆ Rn is called a proper cone if it is a closed

solid pointed convex cone

a ∈ K and − a ∈ K ⇒ a = 0



Lorentz cone Ln

3D Lorentz cone or ice-cream cone

x2 + y2 ≤ z2 z ≥ 0

arises in quadratic programming



PSD cone Sn
+

2D positive semidefinite cone[
x y
y z

]
� 0 ⇐⇒ x ≥ 0 z ≥ 0 xz ≥ y2

arises in semidefinite programming



Mathematical preliminaries (5)

Every proper cone K in Rn induces a partial

ordering �K defining generalized inequalities on

Rn

a �K b ⇔ a− b ∈ K

The positive orthant, the Lorentz cone and the

PSD cone are all proper cones

• positive orthant Rn
+: standard coordinatewise

ordering (LP)

x �Rn
+

y ⇔ xi ≥ yi

• Lorentz cone Ln

xn ≥

√√√√√n−1∑
i=1

x2
i

• PSD cone Sn
+: Löwner partial order



Mathematical preliminaries (6)

The set K∗ =
{
y ∈ Rn | x′y ≤ 0 ∀ x ∈ K

}
is called

the dual cone of the cone K

• Revolution cone Ks(θ) =
{
x ∈ Rn : s′x ≤ ||x|| cos θ

}

0

Ks(θ)∗ = K−s(
π
2
− θ)

• (Rn
+)∗ = Rn

−

K∗ is closed and convex, K1 ⊆ K2 ⇒ K∗2 ⊆ K∗1

�K∗ is a dual generalized inequality

x �K y ⇔ λ′x ≤ λ′y ∀ λ �K∗ 0



Mathematical preliminaries (7)

f : Rn → R is convex if domf is a convex set

and ∀ x, y ∈ domf and 0 ≤ λ ≤ 1

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

If f is differentiable: domf is a convex set and

∀ x, y ∈ domf

f(y) ≥ f(x) +∇f(x)′(y − x)

If f is twice differentiable: domf is a convex

set and ∀ x, y ∈ domf

∇2f(x) � 0

Quadratic functions:

f(x) = (1/2)x′Px+q′x+r is convex if and only

if P � 0



Convex function y = x2

Nonconvex function y = −x2

Mind the sign !



LMI and SDP formalisms (1)

In mathematical programming terminology

LMI optimization = semidefinite programming

(SDP)

LMI (SDP dual) SDP (primal)

min c′x

under F0 +
n∑

i=1

xiFi ≺ 0

min −Tr(F0Z)
under −Tr(FiZ) = ci

Z � 0

x ∈ Rn, Z ∈ Sm, Fi ∈ Sm, c ∈ Rn, i = 1, · · · , n

Nota:

In a typical control LMI

A′P + PA = F0 +
n∑

i=1

xiFi ≺ 0

individual matrix entries are decision variables



LMI and SDP formalisms (2)

∃ x ∈ Rn | F0 +
n∑

i=1

xiFi︸ ︷︷ ︸
F (x)

≺ 0 ⇔ min
x∈Rn

λmax(F (x))

The LMI feasibility problem is a convex and
non differentiable optimization problem.

Example :

F (x) =

[
−x1 − 1 −x2
−x2 −1 + x1

]

λmax(F (x)) = 1 +
√

(x2
1 + x2

2)

−5

0

5

−5

0

5
1

2

3

4

5

6

7

8

9

x
1

x
2

λ m
ax



LMI and SDP formalisms (3)

min c′x
s.t.

b−A′x ∈ K

min b′y
s.t.

Ay = c
y ∈ K

Conic programming in cone K

• positive orthant (LP)

• Lorentz (second-order) cone (SOCP)

• positive semidefinite cone (SDP)

Hierarchy: LP cone ⊂ SOCP cone ⊂ SDP cone



LMI and SDP formalisms (4)

LMI optimization = generalization of linear
programming (LP) to cone of positive semidef-
inite matrices = semidefinite programming (SDP)

Linear programming pioneered by
• Dantzig and its simplex algorithm (1947, ranked in
the top 10 algorithms by SIAM Review in 2000)
• Kantorovich (co-winner of the 1975 Nobel prize in
economics)

George Dantzig
(1914 Portland, Oregon)

Leonid V Kantorovich
(1921 St Petersburg - 1986)

Unfortunately, SDP has not reached maturity of LP or
SOCP so far..



Applications of SDP

• control systems (part II of the course)

• robust optimization

• signal processing

• synthesis of antennae arrays

• design of chips

• structural design (trusses)

• geometry (ellipsoids)

• graph theory and combinatorics (MAXCUT,

Shannon capacity)

and many others...

See Helmberg’s page on SDP

www-user.tu-chemnitz.de/∼helmberg/semidef.html

http://www-user.tu-chemnitz.de/~helmberg/semidef.html


Robust optimization (1)

In many real-life applications of optimization
problems, exact values of input data (constraints)
are seldom known
• Uncertainty about the future
• Approximations of complexity by uncertainty
• Errors in the data
• variables may be implemented with errors

min f0(x, u)
under fi(x, u) ≤ 0 i = 1, · · · , m

where x ∈ Rn is the vector of decision variables
and u ∈ Rp is the parameters vector.
• Stochastic programming
• Sensitivity analysis
• Interval arithmetic
• Worst-case analysis

min
x

sup
u∈U

f0(x, u)

under sup
u∈U

fi(x, u) ≤ 0 i = 1, · · · , m



Robust optimization (2)

Case study by Ben Tal and Nemirovski:
[Math. Programm. 2000]
90 LP problems from NETLIB + uncertainty
quite small (just 0.1%) perturbations of ”ob-
viously uncertain” data coefficients can make
the ”nominal” optimal solution x∗ heavily in-
feasible
Remedy: robust optimization, with robustly
feasible solutions guaranteed to remain feasi-
ble at the expense of possible conservatism
Robust conic problem: [Ben Tal Nemirovski
96]

min
x∈Rn

c′x

s.t. Ax− b ∈ K, ∀ (A, b) ∈ U

This last problem, the so-called robust coun-
terpart is still convex, but depending on the
structure of U, can be much harder that origi-
nal conic problem



Robust optimization (3)

Uncertainty Problem Optimization Problem

polytopic LP LP
ellipsoid SOCP
LMI SDP

polytopic SOCP SOCP
ellipsoid SDP
LMI NP-hard

Examples of applications:

Robust LP: Robust portfolio design in finance

[Lobo 98], discrete-time optimal control [Boyd

97], robust synthesis of antennae arrays [Le-

bret 94], FIR filter design [Wu 96]

Robust SOCP: robust least-squares in

identification [El Ghaoui 97], robust synthesis

of antennae arrays and FIR filter synthesis



Robust optimization (4)

Robust LP as a SOCP

Robust counterpart of robust LP
min
x∈Rn

c′x

s.t.
a′ix ≤ bi, i = 1, · · ·m,
∀ ai ∈ Ei
Ei = {ai + Piu | ||u||2 ≤ 1 and Pi � 0}

Note that

max
ai∈Ei

a′ix = a′ix + ||Pix||2 ≤ bi

SOCP formulation
min
x∈Rn

c′x

s.t.
a′ix + ||Pix|| ≤ bi, i = 1, · · ·m,



Robust optimization (5)
Example of Robust LP

J∗1 = max
x,y

2x + y

s.t. x ≥ 0, y ≥ 0
x ≤ 2
y ≤ 2
x + y ≤ 3

J∗2 = max
x,y

2x + y

s.t. x ≥ 0, y ≥ 0√
x2 + y2 ≤ 3− x− y√
x2 + y2 ≤ 2− x√
x2 + y2 ≤ 2− y

(x∗, y∗) = (2,1) (x∗, y∗) = (0.8284,0.8284)
J∗1 = 5 J∗2 = 2.4852

0.5 1 1.5 2 2.5
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(0.8284,0.8284) = (x ,y )*



Truss Topology Design (TTD)

A truss is a network of N nodes connected by elastic bars
of length li (fixed) and cross-sections si (to be designed)

When subjected to a given load, the truss is deformed
and the distorted truss stores potential energy (compli-
ance) measuring stiffness of the truss.

Standard TTD:
For given initial nodes set N , external nominal load f
and total volume of bars v, allocate this resource to
the bars i.o.t. minimize the compliance (maximize the
stiffness) of the resulting truss
The compliance of the truss w.r.t. a load f is:

C =
1

2
f ′d

where d is the displacement vector



Truss Topology Design (2)

Construction reacts to external force f on each

node with displacement vector d satisfying equi-

librium displacement equations:

A(t)d = f

where A(t) is the stiffness matrix, t = l′s is the

volume of the truss.

Linearity assumption: stiffness matrix A(s)

affine in s and positive definite.

A(s) =
N∑

i=1

lisibib
′
i

Constraints on decision variables:

- Bounds on cross-sections:

a ≤ s ≤ b

- Bound on total volume (weight)

l′s =
N∑

i=1

lisi ≤ v



Truss topology design (3)

TTD an be formulated as an LMI optimization
problem:

min
τ,s

τ s.t.

[
τ f ′

f A(s)

]
� 0 l′s ≤ v a � s � b

Optimal truss [Scherer 04]



Combinatorial optimization (1)

Combinatorics: Graph theory, polyhedral com-

binatorics, combinatorial optimization, enumer-

ative combinatorics...

Definition: Optimization problems in which the

solution space is discrete (finite collection of

objects) or a decision-making problem in which

each decision has a finite (possibly many) num-

ber of feasibilities

Depending upon the formalism

- 0-1 Linear Programming problems: 0-1 Knap-

sack problem,...

- Propositional logic: Maximum satisfiability

problems...

- Constraints satisfaction problems: Airline crew

assignment

- Graph problems: Max-Cut, Shannon capacity

of a graph,...



Combinatorial optimization (2)

- Many CO problems are NP-complete

- Combinatorial explosion (the number of ob-

jects may be huge and grows exponentially in

the size of the representation)

- Scanning all feasibilities (objects) one by one

and choosing the best one is not an option

Two strategies:

- Exact algorithms (not guaranteed to run in

polynomial time)

- Polynomial-time algorithms (guaranteed to

give an optimal solution)

Fundamental concept in CO: Relaxations (com-

binatorial, linear, Lagrangian relaxations)

Optimize over larger easy convex space instead

of optimizing over hard genuine feasible set

- Relaxed solution should be easy to get

- Relaxed solution should be ”close” to the

original



Combinatorial optimization (3)

SDP relaxation of QP in binary variables

(BQP ) max
x∈{−1,1}

x′Qx

Noticing that x′Qx = trace(Qxx′)
we get the equivalent form

(BQP ) max
X

trace(QX)

diag(Xii) = e =
[
1 · · · 1

]′
s.t. X � 0

rank(X) = 1

Dropping the non convex rank constraint leads

to the SDP relaxation:

(SDP ) max
X

trace(QX)

s.t. diag(Xii) = e =
[
1 · · · 1

]′
X � 0

Interpretation: lift from Rn to Sn



Combinatorial optimization (4)

Example

(BQP ) min
x∈{−1,1}

x′Qx = x1x2 − 2x1x3 + 3x2x3

with Q =

 0 0.5 −1
0.5 0 1.5
−1 1.5 0


SDP relaxation

(SDP ) min
X

trace(QX) = X1 − 2X2 + 3X3

s.t. X =

 1 X1 X2
X1 1 X3
X2 X3 1

 � 0

X∗ =

 1 −1 1
−1 1 −1
1 −1 1

 rank(X∗) = 1

From X∗ = x∗x∗
′
, we recover the optimal so-

lution of (BQP)

x∗ =
[
1 −1 1

]′



Combinatorial optimization (4)

Example (continued)

Visualization of the feasible set of (SDP) in
(X1, X2, X3) space :

X =

 1 X1 X2
X1 1 X3
X2 X3 1

 � 0

Optimal vertex is
[
−1 1 −1

]


