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Geometry of LMI sets

Given F; € S™ we want to characterize the
shape in R™ of the LMI set

S={zeR": F(z) =Fy+ ) =z;F; >0}

=1

Matrix F'(x) is PSD iff its diagonal minors f;(x)
are nonnegative

Diagonal minors are multivariate polynomials
of indeterminates x;

So the LMI set can be described as
S={xeR”: fi(x) >0,i=1,...,n}
which is a semialgebraic set

Moreover, it is a convex set



Example of 2D LMI feasible set

l—xz1 x1+ x> 1
Flx)=| z14+20 2—xo 0 >~ 0
1 0 1+xp

Feasible iff all principal minors nonnegative

System of polynomial inequalities f;(x) > 0

1st order minors

filz) =1—-21 >0
fo(r) =2—-20>0
f3(x) =14+22>0




2nd order minors

fa(@) =1 —21)(2—22) — (z1 +22)2 >0
fo(@) =1 —z1)(14+22)—27>0
fe(z) =(2—22)(1+22) >0




3rd order minor

f7(z) = (14 22)((1 —21)(2 —22) — (z1 + 72)?)
—z2(2—22) >0




LMI feasible set = intersection of
semialgebraic sets f;(x) >0 fori=1,...,7




Example of 3D LMI feasible set

LMI set
1z x5 |
S={zcR3: |z; 1 z3| >0}
|z x3 1 |

arising in SDP relaxation of MAXCUT

Semialgebraic set

S={recR3: —|— w1m2x3—(m1—|—w2—|—w§)>0
<1,22<1,25<1}



Intersection of LMI sets
Intersection of LMI feasible sets

F(x) =0 x1>-2 2x1+20<0

is also an LMI

F(x) 0 o)
0 142 0 = 0
0 0 —2x1 — X2



Conic representability

LMI sets are convex semialgebraic sets.. but
are all convex semialgebraic sets representable
by LMIs 7

A set X C R"™ is conic quadratic representable
(CQR) if there exist N affine mappings F;(x,u)
S.t.

x
u

Ju Fz-(a:,u)zAz-[
i=1,---,N

A convex function f : R®™ — R is CQR if its
epigraph

Epi = {(z,t) e R"" xR : f(x) <t}
is CQR



SDP/LMI representability (1)

We say that a convex set X C R" is SDP representable
if there exists an affine mapping F(x,u) such that

r€e€X <— Ju: F(z,u) >0

In words, if X is the projection of the solution set of the
LMI F(x,u) = 0 onto the z-space and u are additional,
or lifting variables

We say that a convex set X C R" is LMI representable
if there exists an affine mapping F(x) such that

r€e€X < F(x) >0

In other words, additional variables v are not allowed

Similarly, a convex function f : R* — R is SDP or LMI
representable if its epigraph

Ei ={(z, t) ER" xR : f(z) <t}
is an SDP or LMI representable set



SDP/LMI representability (2)
CQR and SDP representability

The Lorentz, or ice-cream cone

Lrtl — {[ "f ] e R ¢ ||z||s < t}

iIs SDP representable as

(1] [% 1)

As a result, all (convex quadratic) conic repre-
sentable sets are also SDP representable

n n
L™ C S
In the sequel we first give a list of conic repre-

sentable sets (following Ben-Tal and Nemirovski
2000)



SDP/LMI representability (3)
Quadratic forms

The Euclidean norm {z,t e R" xR : ||z|l» <t}
is CQR by definition

The squared Euclidean norm

{(a:,t) ceR" xR : o'z <t}

is CQR as




SDP/LMI representability (4)
Quadratic forms (2)

More generally, the convex quadratic set
{ac ceR"teR : 2’Ax+Vx+c< O}

with A = A" >0 is CQR as

t—blx—c

S0
2

||[ t—I—b’x—I—c ]

where D is the Cholesky factor of A = D'D




SDP/LMI representability (5)
Hyperbola

The branch of hyperbola

{(w,y)ERQ Doy > 1, :c>0}

is CQR as
T—Y
2
7]

< Tty
2




SDP/LMI representability (6)
Geometric mean of two variables

The hypograph of the geometric mean
of 2 variables

{(1,22,t) €R® © 21,25 > 0, /Z122 > t]
is CQR as

e
SR
S




SDP/LMI representability (7)
Geometric mean of several variables

The hypograph of the geometric mean of 2F

variables

k k
{('CU].?"' 7w2k7t) € RQ e c x> 0, (33]_ "'ka)l/Q > t}

iIs also CQR

Proof: Iterate the previous construction

Example with k£ = 3:

X01X02
L03L04
L0520
Lo7L0

i

VIV IV IV

11
12
13
L14

\VL11L12
\/ZT13T14

>
>

(w122 -28)1/8 > ¢

€T
xi; } \/T21Z22 > 31 > L

Useful idea in other SDP representability problems



SDP/LMI representability (8)
Rational functions (1)

Using similar ideas, we can show that
the increasing rational power functions

o’

with rational p/q > 0, are both CQR



SDP/LMI representability (9)
Rational functions (2)

Example:
{(:c,t) eR2 : 2>0,27/3< t}

Start from conic representable

[<(z1---7g)%/8

and replace

t=21=2>0
To=x3=24=12>0
Tys =g =x7 =28 =1
to get
r < 21/843/8
+7/8 < ¢3/8
z7/3 < t

Same idea works for any rational p/q > 1
e |ift = use additional variables, and
e project in the space of original variables



SDP/LMI representability (10)
Even power monomial (1)

The epigraph of even power monomial
Epi = {:L',t - 22P < t}

where p is a positive integer, is CQR

Note that
{x,t 1 x2P <t}
—
{z,y,t : 22 <y}
{z,y,t : y>0, y? <t}
both CQR

Use lifting y and project back onto z,t

Similarly, even power polynomials are CQR (com-
binations of monomials)



SDP/LMI representability (11)
Even power monomial (2)

Epi = {a:,t ; x4§t}




SDP/LMI representability (12)
LLargest eigenvalue

The epigraph of the function largest eigenvalue
of a symmetric matrix

{X = X' eR"" teR : dmax(X) < t}
is SDP (LMI) representable as

X X tln




SDP/LMI representability (13)
Sums of largest eigenvalues

Let
k
S(X) =3 N(X), k=1,...,n
=1

denote the sum of the k largest eigenvalues of
X eS"

The epigraph
{X S teR : Sp(X) < t}

is SDP representable as

t— ks —traceZ >0
Z =0
/Z — X +slp, =0

where Z and s are additional variables



Determinant of a PSD matrix

The determinant

det(X) = [ [ 2:(X)
=1
iSs not a convex function of X, but the function
f(X) = —det?(X), X = X' >0
is convex when ¢ € [0, 1/n] is rational

The epigraph
{fo(X) < t}

is SDP representable as
X A
[ A diaga | 20
t S (51"'5n)q

since we know that the latter constraint (hypograph of
a concave monomial) is conic representable

Here A is a lower triangular matrix of additional
variables with diagonal entries §;



Various representations of an ellipsoid in R™

E

{x e R" : 'Px+ 22'q+r <0}
{x e R" : (x —xc)'P(x —xc) < 1}
{r=Qy+zcR" : ¢y <1}

{x € R" ! |Rx — z¢|| £ 1}

where Q=R 1=p-1/2y ¢
Volume of ellipsoid £ = {Qy + z¢ : vy <1}
VOl E = kpdet @

where k., is volume of n-dimensional unit ball

2(n+1)/2,(n—1)/2

- n(n—2)TI for n odd
n — n
n(7372£21)! for n even
|1 2 3 4 5 6 7 8

n
ko | 2.00 3.14 4.19 4.93 526 b5.17 4.72 4.06

Unit ball has maximum volume for n =5 |



Outer and inner ellipsoidal approximations

Let S C R" be a solid = a closed bounded
convex set with nonempty interior

e the largest volume ellipsoid Ej, contained in
S is unique and satisfies

Ein C S Cnkj,

e the smallest volume ellipsoid E,,t containing
S is unique and satisfies

Eout/n C S C Eout
These are Lowner-John ellipsoids
Factor n reduces to /n if S is symmetric

How can these ellipsoids be computed 7



Ellipsoids and polytopes (1)
Let the intersection of hyperplanes
S = {:CER” Car <b,i=1,... ,m}
describe a polytope
The largest volume ellipsoid contained in S is

E={Qy+u=z : yy<1}
where (), z. are optimal solutions of the LMI

max det!/"Q
Q=0
|Qaill2 < b —alze, i=1,...,m




Ellipsoids and polytopes (2)
Let the convex hull of vertices
S=co {x1,... ,zn}
describe a polytope
The smallest volume ellipsoid containing S is
E={z : (zx—2.)P(zx—x.) <1}

where P, z. = —P~1g are optimal solutions of the LMI
max t
t < det/np
[ P40
q T
. Px; +2ziq+r <1, i=1, , M



SDP representability and singular values

Let

k
Zk(X): ZO‘Z'(X), k=1,...,n
i=1
denote the sum of the k largest singular values
of X € R"xn

Then the epigraph
{(XeS"teR : T (X) <t}

is SDP representable since

0 X’
w=r((27)

and the sum of largest eigenvalues of a
symmetric matrix is SDP representable



Nonlinear matrix ineqalities (1)
Schur complement

We can use the Schur complement to convert
a non-linear matrix inequality into an LMI

A(z) — B(z)C~ Y (2)B'(z) = 0
C(x) =0

<~

A(x) B(x)
[ B(z) C(z) ] =0

C(x) =0

Issai Schur
(1875 Mogilyov - 1941 Tel Aviv)



Nonlinear matrix ineqalities (2)
Elimination lemma

To remove decision variables we can use the
elimination lemma

A(z) + B(x)XC(x) + C'(2)X'B'(x) > 0

<~

B (2)A(x)BY(z) >0 C*H(2)A(z)C*H () >0

where B1 and (J’L are orthogonal complements
of B and C’ respectively, and x is a decision
variable independent of matrix X

Can be shown with SDP duality and theorem
of alternatives



LMIR and Positive polynomials (1)

The set of univariate polynomials that are
positive on the real axis is a convex set that is
LMI representable

Can be proved with cone duality (Nesterov) or
with theory of moments (Lasserre)

The even polynomial

p(s) = pg + P15+ - + pops"

satisfies p(s) > 0 for all s € R if and only if

|
o
% c
&
[
o
\.H
“I\J
S

Pk

trace H, X

for some matrix X = X' >0



LMIR and Positive polynomials (2)
Sum-of-squares decomposition

T he expression of p, with Hankel matrices Hy,
comes from

p(s)=[1 s --- S"|X[1 s --- S"*
hence X > 0 naturally implies p(s) > 0
Conversely, existence of X for any polynomial
p(s) > 0 follows from the existence of a sum-

of-squares decomposition (with at most two
elements) of

p(s) =Y qi(s) >0
k

Matrix X has entries X;; = Z%ﬂkrj
k



Optimizing over polynomials (1)
Primal and dual formulations

Global minimization of polynomial

n
p(s) = 3 pis”
k=0
Global optimum p*: maximum value of p such
that p(s) —p >0 for all s€ R

Primal LMI
max p = pg — trace HpX
s.t. traceH . X =p, k=1,...,n
X =0

Dual LMI
mn
min po + > pryk

k=1
n

st. Ho+ > Hpyr =0
k=1

with Hankel structure (moment matrix)



Optimizing over polynomials (2)
Example
Global minimization of the polynomial

p(s) = 48 — 925 + 5652 — 135> + s*
We just have to solve the dual LMI

min 48 — 92y; + 56y> — 13y3 + y4
1 y1 w
s.t. y1 Y2 y3 | =0
Y2 Y3z Ya

to obtain p* = p(5.25) = —12.89

100

p(s)

-20
0




Complex LMIs

The complex valued LMI

F(z) = A(z) +jB(z) = 0

IS equivalent to the real valued LMI

A(z) B(z)

_B(x) A(z) | Z°

If there is a complex solution to the LMI
then there is a real solution to the same LMI

Note that matrix A(z) = A'(x) is symmetric
whereas B(x) = —B’'(z) is skew-symmetric



Rigid convexity
Helton & Vinnikov showed that a convex 2D set
F={z€R? : p(z) >0}

defined by a polynomial p(x) of minimum degree d is
LMI representable without lifting variables iff F is rigidly
convex, meaning that

for every point x € X and almost every line through x
then the line intersects p(x) = 0 in exactly d points

Example: F = {(:I:l,wz eR? : p(x) =20 — 27 > O}
with 2 line intersections
is not rigidly convex because 2 <d=24

4

. but it is LMI representable with lifting variables
see the previous construction for even power monomials



