COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART I. 3

GEOMETRY OF LMI SETS

Denis Arzelier
www.laas.fr/~arzelier
arzelier@laas.fr

January 2005

Geometry of LMI sets

Given $F_{i} \in \mathbb{S}^{m}$ we want to characterize the shape in \mathbb{R}^{n} of the LMI set

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{n}: F(x)=F_{0}+\sum_{i=1}^{n} x_{i} F_{i} \succeq 0\right\}
$$

Matrix $F(x)$ is PSD iff its diagonal minors $f_{i}(x)$ are nonnegative

Diagonal minors are multivariate polynomials of indeterminates x_{i}

So the LMI set can be described as

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0, i=1, \ldots, n\right\}
$$

which is a semialgebraic set

Moreover, it is a convex set

$$
\begin{gathered}
\text { Example of 2D LMI feasible set } \\
F(x)=\left[\begin{array}{ccc}
1-x_{1} & x_{1}+x_{2} & x_{1} \\
x_{1}+x_{2} & 2-x_{2} & 0 \\
x_{1} & 0 & 1+x_{2}
\end{array}\right] \succeq 0
\end{gathered}
$$

Feasible iff all principal minors nonnegative System of polynomial inequalities $f_{i}(x) \geq 0$

1st order minors
$f_{1}(x)=1-x_{1} \geq 0$
$f_{2}(x)=2-x_{2} \geq 0$
$f_{3}(x)=1+x_{2} \geq 0$

2nd order minors

$$
\begin{aligned}
& f_{4}(x)=\left(1-x_{1}\right)\left(2-x_{2}\right)-\left(x_{1}+x_{2}\right)^{2} \geq 0 \\
& f_{5}(x)=\left(1-x_{1}\right)\left(1+x_{2}\right)-x_{1}^{2} \geq 0 \\
& f_{6}(x)=\left(2-x_{2}\right)\left(1+x_{2}\right) \geq 0
\end{aligned}
$$

3rd order minor

$$
\begin{aligned}
f_{7}(x)= & \left(1+x_{2}\right)\left(\left(1-x_{1}\right)\left(2-x_{2}\right)-\left(x_{1}+x_{2}\right)^{2}\right) \\
& -x_{1}^{2}\left(2-x_{2}\right) \geq 0
\end{aligned}
$$

LMI feasible set $=$ intersection of semialgebraic sets $f_{i}(x) \geq 0$ for $i=1, \ldots, 7$

Example of 3D LMI feasible set

LMI set

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{3}:\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & 1 & x_{3} \\
x_{2} & x_{3} & 1
\end{array}\right] \succeq 0\right\}
$$

arising in SDP relaxation of MAXCUT

Semialgebraic set

$$
\begin{aligned}
\mathcal{S}=\left\{x \in \mathbb{R}^{3}:\right. & 1+2 x_{1} x_{2} x_{3}-\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \geq 0, \\
& \left.x_{1}^{2} \leq 1, x_{2}^{2} \leq 1, x_{3}^{2} \leq 1\right\}
\end{aligned}
$$

Intersection of LMI sets

Intersection of LMI feasible sets
$F(x) \succeq 0 \quad x_{1} \geq-2 \quad 2 x_{1}+x_{2} \leq 0$

is also an LMI

$$
\left[\begin{array}{ccc}
F(x) & 0 & 0 \\
0 & x_{1}+2 & 0 \\
0 & 0 & -2 x_{1}-x_{2}
\end{array}\right] \succeq 0
$$

Conic representability

LMI sets are convex semialgebraic sets.. but are all convex semialgebraic sets representable by LMIs ?

A set $X \subset \mathbb{R}^{n}$ is conic quadratic representable (CQR) if there exist N affine mappings $F_{i}(x, u)$ s.t.

$$
\begin{aligned}
& x \in X \Longleftrightarrow \exists u: F_{i}(x, u)=A_{i}\left[\begin{array}{l}
x \\
u
\end{array}\right]-b_{i} \succeq_{\mathbb{L}^{m_{i}} 0} \\
& i=1, \cdots, N
\end{aligned}
$$

A convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is CQR if its epigraph

$$
\mathcal{E} p i=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq t\right\}
$$

is CQR

SDP/LMI representability (1)

We say that a convex set $X \subset \mathbb{R}^{n}$ is SDP representable if there exists an affine mapping $F(x, u)$ such that

$$
x \in X \Longleftrightarrow \exists u: F(x, u) \succeq 0
$$

In words, if X is the projection of the solution set of the LMI $F(x, u) \succeq 0$ onto the x-space and u are additional, or lifting variables

We say that a convex set $X \subset \mathbb{R}^{n}$ is LMI representable if there exists an affine mapping $F(x)$ such that

$$
x \in X \Longleftrightarrow F(x) \succeq 0
$$

In other words, additional variables u are not allowed
Similarly, a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is SDP or LMI representable if its epigraph

$$
\mathcal{E}_{p i}=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq t\right\}
$$

is an SDP or LMI representable set

SDP/LMI representability (2)
 CQR and SDP representability

The Lorentz, or ice-cream cone

$$
\mathbb{L}^{n+1}=\left\{\left[\begin{array}{c}
x \\
t
\end{array}\right] \in \mathbb{R}^{n+1}:\|x\|_{2} \leq t\right\}
$$

is SDP representable as

$$
\mathbb{L}^{n+1}=\left\{\left[\begin{array}{l}
x \\
t
\end{array}\right]:\left[\begin{array}{cc}
t I_{n} & x \\
x^{\prime} & t
\end{array}\right] \succeq 0\right\}
$$

As a result, all (convex quadratic) conic representable sets are also SDP representable

$$
\mathbb{L}^{n} \subset \mathbb{S}_{+}^{n}
$$

In the sequel we first give a list of conic representable sets (following Ben-Tal and Nemirovski 2000)

SDP/LMI representability (3) Quadratic forms

The Euclidean norm $\left\{x, t \in \mathbb{R}^{n} \times \mathbb{R}:\|x\|_{2} \leq t\right\}$ is CQR by definition

The squared Euclidean norm

$$
\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: x^{\prime} x \leq t\right\}
$$

is CQR as

$$
\left\|\left[\begin{array}{c}
x \\
\frac{t-1}{2}
\end{array}\right]\right\|_{2} \leq \frac{t+1}{2}
$$

SDP/LMI representability (4) Quadratic forms (2)

More generally, the convex quadratic set

$$
\left\{x \in \mathbb{R}^{n}, t \in \mathbb{R}: x^{\prime} A x+b^{\prime} x+c \leq 0\right\}
$$

with $A=A^{\prime} \succeq 0$ is CQR as

$$
\left\|\left[\begin{array}{c}
D x \\
\frac{t+b^{\prime} x+c}{2}
\end{array}\right]\right\|_{2} \leq \frac{t-b^{\prime} x-c}{2}
$$

where D is the Cholesky factor of $A=D^{\prime} D$

SDP/LMI representability (5) Hyperbola

The branch of hyperbola

$$
\left\{(x, y) \in \mathbb{R}^{2}: x y \geq 1, x>0\right\}
$$

is CQR as

$$
\left\|\left[\begin{array}{c}
\frac{x-y}{2} \\
1
\end{array}\right]\right\|_{2} \leq \frac{x+y}{2}
$$

SDP/LMI representability (6)
 Geometric mean of two variables

The hypograph of the geometric mean of 2 variables

$$
\left\{\left(x_{1}, x_{2}, t\right) \in \mathbb{R}^{3}: x_{1}, x_{2} \geq 0, \sqrt{x_{1} x_{2}} \geq t\right\}
$$

is CQR as

$$
\exists u: u \geq t,\left\|\left[\begin{array}{c}
u \\
\frac{x_{1}-x_{2}}{2}
\end{array}\right]\right\|_{2} \leq \frac{x_{1}+x_{2}}{2}
$$

SDP/LMI representability (7)

Geometric mean of several variables

The hypograph of the geometric mean of 2^{k} variables
$\left\{\left(x_{1}, \ldots, x_{2^{k}}, t\right) \in \mathbb{R}^{2^{k}+1}: x_{i} \geq 0,\left(x_{1} \cdots x_{2^{k}}\right)^{1 / 2^{k}} \geq t\right\}$
is also CQR

Proof: Iterate the previous construction
Example with $k=3$:

$$
\begin{aligned}
& \left(x_{1} x_{2} \cdots x_{8}\right)^{1 / 8} \geq t \\
& \left.\begin{array}{rlll}
\sqrt{x_{01} x_{02}} & \geq & x_{11} \\
\sqrt{x_{03} x_{04}} & \geq & x_{12} \\
\sqrt{x_{05} x_{06}} & \geq & x_{13} \\
\sqrt{x_{07} x_{08}} & \geq & x_{14}
\end{array}\right\} \sqrt{ } \begin{array}{ll}
& \\
\sqrt{x_{11} x_{12}} & \geq
\end{array} x_{21}
\end{aligned}
$$

Useful idea in other SDP representability problems

SDP/LMI representability (8)

Rational functions (1)

Using similar ideas, we can show that the increasing rational power functions

$$
f(x)=x^{p / q}, \quad x \geq 0
$$

with rational $p / q \geq 1$, as well as the decreasing

with rational $p / q \geq 0$, are both CQR

SDP/LMI representability (9) Rational functions (2)

Example:

$$
\left\{(x, t) \in \mathbb{R}^{2}: x \geq 0, x^{7 / 3} \leq t\right\}
$$

Start from conic representable

$$
\hat{t} \leq\left(\hat{x}_{1} \cdots \hat{x}_{8}\right)^{1 / 8}
$$

and replace

$$
\begin{aligned}
& \hat{t}=\widehat{x}_{1}=x \geq 0 \\
& \widehat{x}_{2}=\widehat{x}_{3}=\widehat{x}_{4}=t \geq 0 \\
& \widehat{x}_{5}=\widehat{x}_{6}=\widehat{x}_{7}=\widehat{x}_{8}=1
\end{aligned}
$$

to get

$$
\begin{aligned}
x & \leq x^{1 / 8} t^{3 / 8} \\
x^{7 / 8} & \leq t^{3 / 8} \\
x^{7 / 3} & \leq t
\end{aligned}
$$

Same idea works for any rational $p / q \geq 1$

- lift $=$ use additional variables, and
- project in the space of original variables

SDP/LMI representability (10)

 Even power monomial (1)The epigraph of even power monomial

$$
\mathcal{E}_{p i}=\left\{x, t: x^{2 p} \leq t\right\}
$$

where p is a positive integer, is CQR

Note that

$$
\begin{gathered}
\left\{x, t: x^{2 p} \leq t\right\} \\
\Longleftrightarrow \\
\left\{x, y, t: x^{2} \leq y\right\} \\
\left\{x, y, t: y \geq 0, y^{p} \leq t\right\}
\end{gathered}
$$

both CQR

Use lifting y and project back onto x, t

Similarly, even power polynomials are CQR (combinations of monomials)

SDP/LMI representability (11)

Even power monomial (2)

$$
\mathcal{E}_{p i}=\left\{x, t: x^{4} \leq t\right\}
$$

SDP/LMI representability (12) Largest eigenvalue

The epigraph of the function largest eigenvalue of a symmetric matrix

$$
\left\{X=X^{\prime} \in \mathbb{R}^{n \times n}, t \in \mathbb{R}: \lambda_{\max }(X) \leq t\right\}
$$

is SDP (LMI) representable as

$$
X \preceq t I_{n}
$$

SDP/LMI representability (13) Sums of largest eigenvalues

Let

$$
S_{k}(X)=\sum_{i=1}^{k} \lambda_{i}(X), \quad k=1, \ldots, n
$$

denote the sum of the k largest eigenvalues of $X \in \mathbb{S}^{n}$

The epigraph

$$
\left\{X \in \mathbb{S}^{n \times n}, t \in \mathbb{R}: S_{k}(X) \leq t\right\}
$$

is SDP representable as

$$
\begin{gathered}
t-k s-\text { trace } Z \succeq 0 \\
Z \succeq 0 \\
Z-X+s I_{n} \succeq 0
\end{gathered}
$$

where Z and s are additional variables

Determinant of a PSD matrix

The determinant

$$
\operatorname{det}(X)=\prod_{i=1}^{n} \lambda_{i}(X)
$$

is not a convex function of X, but the function

$$
f_{q}(X)=-\operatorname{det}^{q}(X), \quad X=X^{\prime} \succeq 0
$$

is convex when $q \in[0,1 / n]$ is rational
The epigraph

$$
\left\{f_{q}(X) \leq t\right\}
$$

is SDP representable as

$$
\left[\begin{array}{cc}
X & \Delta \\
\Delta^{\prime} & \operatorname{diag} \Delta
\end{array}\right] \succeq 000{ }^{t \leq\left(\delta_{1} \cdots \delta_{n}\right)^{q}}
$$

since we know that the latter constraint (hypograph of a concave monomial) is conic representable Here Δ is a lower triangular matrix of additional variables with diagonal entries δ_{i}

Application: extremal ellipsoids

Various representations of an ellipsoid in \mathbb{R}^{n}

$$
\begin{aligned}
E & =\left\{x \in \mathbb{R}^{n}: x^{\prime} P x+2 x^{\prime} q+r \leq 0\right\} \\
& =\left\{x \in \mathbb{R}^{n}:\left(x-x_{c}\right)^{\prime} P\left(x-x_{c}\right) \leq 1\right\} \\
& =\left\{x=Q y+x_{c} \in \mathbb{R}^{n}: y^{\prime} y \leq 1\right\} \\
& =\left\{x \in \mathbb{R}^{n}:\left\|R x-x_{c}\right\| \leq 1\right\}
\end{aligned}
$$

where $Q=R^{-1}=P^{-1 / 2} \succ 0$
Volume of ellipsoid $E=\left\{Q y+x_{c}: y^{\prime} y \leq 1\right\}$

$$
\operatorname{vol} E=k_{n} \operatorname{det} Q
$$

where k_{n} is volume of n-dimensional unit ball

$$
k_{n}= \begin{cases}\frac{2^{(n+1) / 2} \pi^{(n-1) / 2}}{n(n-2)!!} & \text { for } n \text { odd } \\ \frac{2 \pi^{n / 2}}{n(n / 2-1)!} & \text { for } n \text { even }\end{cases}
$$

n	1	2	3	4	5	6	7	8
k_{n}	2.00	3.14	4.19	4.93	5.26	5.17	4.72	4.06

Unit ball has maximum volume for $n=5$!

Outer and inner ellipsoidal approximations

Let $S \subset \mathbb{R}^{n}$ be a solid $=$ a closed bounded convex set with nonempty interior

- the largest volume ellipsoid $E_{\text {in }}$ contained in S is unique and satisfies

$$
E_{\text {in }} \subset S \subset n E_{\text {in }}
$$

- the smallest volume ellipsoid $E_{\text {out }}$ containing S is unique and satisfies

$$
E_{\text {out }} / n \subset S \subset E_{\text {out }}
$$

These are Löwner-John ellipsoids

Factor n reduces to \sqrt{n} if S is symmetric How can these ellipsoids be computed ?

Ellipsoids and polytopes (1)

Let the intersection of hyperplanes

$$
S=\left\{x \in \mathbb{R}^{n}: a_{i}^{\prime} x \leq b_{i}, i=1, \ldots, m\right\}
$$

describe a polytope
The largest volume ellipsoid contained in S is

$$
E=\left\{Q y+x_{c}: y^{\prime} y \leq 1\right\}
$$

where Q, x_{c} are optimal solutions of the LMI

$$
\begin{aligned}
\max & \operatorname{det}^{1 / n} Q \\
& Q \succeq 0 \\
& \left\|Q a_{i}\right\|_{2} \leq b_{i}-a_{i}^{\prime} x_{c}, \quad i=1, \ldots, m
\end{aligned}
$$

Ellipsoids and polytopes (2)

Let the convex hull of vertices

$$
S=\operatorname{co}\left\{x_{1}, \ldots, x_{m}\right\}
$$

describe a polytope
The smallest volume ellipsoid containing S is

$$
E=\left\{x:\left(x-x_{c}\right)^{\prime} P\left(x-x_{c}\right) \leq 1\right\}
$$

where $P, x_{c}=-P^{-1} q$ are optimal solutions of the LMI

$$
\begin{aligned}
\max & t \\
& t \leq \operatorname{det}^{1 / n} P \\
& {\left[\begin{array}{cc}
P & q \\
q^{\prime} & r
\end{array}\right] \succeq 0 } \\
& x_{i}^{\prime} P x_{i}+2 x_{i}^{\prime} q+r \leq 1, \quad i=1, \ldots, m
\end{aligned}
$$

SDP representability and singular values

Let

$$
\Sigma_{k}(X)=\sum_{i=1}^{k} \sigma_{i}(X), \quad k=1, \ldots, n
$$

denote the sum of the k largest singular values of $X \in \mathbb{R}^{n \times n}$

Then the epigraph

$$
\left\{X \in \mathbb{S}^{n}, t \in \mathbb{R}: \Sigma_{k}(X) \leq t\right\}
$$

is SDP representable since

$$
\sigma_{i}(X)=\lambda_{i}\left(\left[\begin{array}{cc}
0 & X^{\prime} \\
X & 0
\end{array}\right]\right)
$$

and the sum of largest eigenvalues of a symmetric matrix is SDP representable

We can use the Schur complement to convert a non-linear matrix inequality into an LMI

$$
\begin{aligned}
& A(x)-B(x) C^{-1}(x) B^{\prime}(x) \succeq 0 \\
& C(x) \succ 0 \\
& \Longleftrightarrow \\
& {\left[\begin{array}{ll}
A(x) & B(x) \\
B(x) & C(x)
\end{array}\right] \succeq 0} \\
& C(x) \succ 0
\end{aligned}
$$

Issai Schur
(1875 Mogilyov - 1941 Tel Aviv)

Nonlinear matrix ineqalities (2)

Elimination Iemma

To remove decision variables we can use the elimination lemma

$$
\begin{gathered}
A(x)+B(x) X C(x)+C^{\prime}(x) X^{\prime} B^{\prime}(x)>0 \\
\Longleftrightarrow \\
B^{\perp}(x) A(x) B^{\perp^{\prime}(x)>0 \quad C^{\perp}(x) A(x) C^{\perp^{\prime}}(x)>0}
\end{gathered}
$$

where B^{\perp} and $C^{\prime} \perp$ are orthogonal complements of B and C^{\prime} respectively, and x is a decision variable independent of matrix X

Can be shown with SDP duality and theorem of alternatives

LMIR and Positive polynomials (1)

The set of univariate polynomials that are positive on the real axis is a convex set that is LMI representable

Can be proved with cone duality (Nesterov) or with theory of moments (Lasserre)

The even polynomial

$$
p(s)=p_{0}+p_{1} s+\cdots+p_{2 n} s^{2 n}
$$

satisfies $p(s) \geq 0$ for all $s \in \mathbb{R}$ if and only if

$$
\begin{aligned}
p_{k} & =\sum_{i+j=k} X_{i j}, \quad k=0,1, \ldots, 2 n \\
& =\operatorname{trace} H_{k} X
\end{aligned}
$$

for some matrix $X=X^{\prime} \succeq 0$

LMIR and Positive polynomials (2) Sum-of-squares decomposition

The expression of p_{k} with Hankel matrices H_{k} comes from

$$
p(s)=\left[\begin{array}{llll}
1 & s & \cdots & s^{n}
\end{array}\right] X\left[\begin{array}{llll}
1 & s & \cdots & s^{n}
\end{array}\right]^{\star}
$$ hence $X \succeq 0$ naturally implies $p(s) \geq 0$

Conversely, existence of X for any polynomial $p(s) \geq 0$ follows from the existence of a sum-of-squares decomposition (with at most two elements) of

$$
p(s)=\sum_{k} q_{k}^{2}(s) \geq 0
$$

Matrix X has entries $X_{i j}=\sum_{k} q_{k_{i}} q_{k_{j}}$

Optimizing over polynomials (1) Primal and dual formulations

Global minimization of polynomial

$$
p(s)=\sum_{k=0}^{n} p_{k} s^{k}
$$

Global optimum p^{*} : maximum value of \hat{p} such that $p(s)-\hat{p} \geq 0$ for all $s \in \mathbb{R}$

Primal LMI
$\max \hat{p}=p_{0}$ - trace $H_{0} X$
s.t. \quad trace $H_{k} X=p_{k}, \quad k=1, \ldots, n$ $X \succeq 0$

Dual LMI

$$
\begin{array}{ll}
\min & p_{0}+\sum_{k=1}^{n} p_{k} y_{k} \\
\text { s.t. } & H_{0}+\sum_{k=1}^{n} H_{k} y_{k} \succeq 0
\end{array}
$$

with Hankel structure (moment matrix)

Optimizing over polynomials (2)
 Example

Global minimization of the polynomial

$$
p(s)=48-92 s+56 s^{2}-13 s^{3}+s^{4}
$$

We just have to solve the dual LMI

$$
\begin{array}{ll}
\min & 48-92 y_{1}+56 y_{2}-13 y_{3}+y_{4} \\
\text { s.t. } & {\left[\begin{array}{ccc}
1 & y_{1} & y_{2} \\
y_{1} & y_{2} & y_{3} \\
y_{2} & y_{3} & y_{4}
\end{array}\right] \succeq 0}
\end{array}
$$

to obtain $p^{*}=p(5.25)=-12.89$

Complex LMIs

The complex valued LMI

$$
F(x)=A(x)+j B(x) \succeq 0
$$

is equivalent to the real valued LMI

$$
\left[\begin{array}{cc}
A(x) & B(x) \\
-B(x) & A(x)
\end{array}\right] \succeq 0
$$

If there is a complex solution to the LMI then there is a real solution to the same LMI

Note that matrix $A(x)=A^{\prime}(x)$ is symmetric whereas $B(x)=-B^{\prime}(x)$ is skew-symmetric

Rigid convexity

Helton \& Vinnikov showed that a convex 2D set

$$
\mathcal{F}=\left\{x \in \mathbb{R}^{2}: p(x) \geq 0\right\}
$$

defined by a polynomial $p(x)$ of minimum degree d is LMI representable without lifting variables iff \mathcal{F} is rigidly convex, meaning that
for every point $x \in X$ and almost every line through x then the line intersects $p(x)=0$ in exactly d points

Example: $\mathcal{F}=\left\{\left(x_{1}, x_{2} \in \mathbb{R}^{2}: p(x)=x_{2}-x_{1}^{4} \geq 0\right\}\right.$ with 2 line intersections
is not rigidly convex because $2<d=4$

.. but it is LMI representable with lifting variables see the previous construction for even power monomials

