
VERIFICATION OF A LOCAL AREA NETWORK PROTOCOL
WITH TINA, A SOFTWARE PACKAGE FOR TIME PETRI NETS

J-L. ROUX, B. BERTHOMIEU

Centre National de la Recherche Scientifique
Laboratoire d'Automatique et d'Analyse des Systemes

7, Avenue du Colonel-Roche
31077 TOULOUSE, FRANCE

Abstract

TINA is a softwar~-package for computer aided description and verification
of time dependent systems, among such syatems are communication protocols,
for instance. The systems are expressed as Time Petri nets <Merlin's­
extension of Petri nets); TINA implements the enumerative analysis method
known for these nets and provides faci lities for editing nets and
processing the results of analysis. The use of the package is illustrated
with the specification and verification of a bus access protocol for a
loca l area network.

INTRODUCTION

This paper focuses on analysis of concurrent systems in which time is part
of the specifications. Real time systems and communication protocols belong
to that class of systems; functional properties may be time dependent, and
performance requi rements are often expressed by means of tempora l
constraints. Time Petri nets IMerlin 741 were choosen for modeling these
systems because of their ability to handle these various aspects.

An enumerative analysis technique for Time Petri nets was proposed in
IBerthomieu 83/. This method has been proven convenient on a number of
significant examples, but it necessarily requires the help from a computer

1

for managing the construction of the graph of state cLasses, which is the
basis of the anaLysis method. TINA is an impLementation of the method; it
aLso incLudes facilities for editing Time Petri nets, and a set of tooLs
for convenientLy extracting information from the graph of state cLasses.
EvaLuation of the tooL is in progress, by processing meaningfuLL exampLes.

The foLLowing section recaLLs the necessary background on Time Petri nets
and summarizes the enumerative method; section 2 describes the features of
TINA; "and a significant exampLe of use is reported in section 3. The TINA
session transcripts for the example in section 3 are given in appendix.

1. TIME PETRI NETS

1.1. Terminology and behavior

Time Petri nets (TPNs) are obtained from Petri nets by associating a time
intervaL 3a,b3, with a <= a <= b, with each transition of the net. Assume
that transition t Last became enabLed at time u, then it must fire between
u+a and u+b, unLess it is disabLed by the firing of another transition.

States in TPNs are pairs (M,I) c6nsisting of a marking M and for each
transition k enabLed by M, a firing intervaL I k specifying the time.r-a-nge
in which the transition is allowed to fire. It must be pointed out that
these intervaLs may dynamically differ from the Static Firing IntervaLs
initiaLLy assigned to the transitions. The state change function for Time
Petri nets may be stated as foLLows:

Firing a transition t, at a time &, from a state (M,!) is aLLowed iff both
the transition is enabLed by marking M, and time e is comprised between the
earliest firing time (EFT) of transition t and the smaLLest of the Latest
firing times (LFTs), among those of the transitions enabLed by marking M.

,
The next state (M',I') is computed as foLLows:
(i) The new marking MI for pLace p is defined, as usuaL, as:

M'(p) = MCp) - BCt,p) + FCt,p)
where Band F are the Backward and Forward Incidence Functions of the
net, respectiveLy.

(ii) The new firing intervaLs II for transitions are computed as foLLows:
- For aLL transitions n not enabLed by marking M', I'n is empty;
- For aLL transitions k enabLed by marking M and not in confLict with
transition t for marking M, then:

I'k = 3 Max(Q, EFTk - e), LFTk - e 3

2

where' EFT k and LFT k denote the EFT and LFT of transition k,
respectiveLy;
- ALL other transitions receive their static firing intervaLs.

More detai Ls on the firing ruLe and exampLes may be found in /Berthomieu
82/ and /Berthomieu 83/ where, in particuLar, soLutions are presented to
deaL with muLtipLe enabLedness of transitions.

The above firing ruLe defines a reachabiLity reLation among states of a
Time Petri net. A Firing ScheduLe is a sequence of pairs (transition, time)
such that the transitions in the sequence may be successiveLy fired, at
their corresponding times.

1.2. The enumerative method for analyzing Time Petri nets

The behavior of a TPN is characterized by its set of states reachabLe from
its i nit i a L s tat e 0 r , a Lt erna t i veL y, by its set 0 f fir i ng 's chedu Le s
feasibLe from its initiaL state. UnfortunateLy, as time is continuous and
as transitions may fire at any time in their aLLowed intervaL, states have
genera LLy an unbounded number of successors; wh i ch forbi ds an enumerat i ve
anaLysis based upon states.

State CLasses have'been introduced to overcome this problem. A State Class
will be associated with each firing sequence, defined as the union of all
states reachabLe' from the initial state by firing scheduLes with this
firing sequence. More formally, the firing domain of a state being defined
as the product set of the firing intervaLs of the transitions enabLed, the
class associated with sequence s is the pair (M,D) in which M is the
marking reached from the initial marking by firing sequence s, and D is the
union of all firing domains of states reachabLe from the initiaL state by
firing scheduLes with sequence s.

It may be shown that Firing Domains in state cLasses are convex sets; they,
may be expressed as soLution sets of some systems of Linear inequalities
A.! >= b, in which A is a matrix of integers, .£ is a vector and variabLe !i
is associated with the i th transition enabLed by the marking.

A transition ruLe may be directly expressed for state classes:

The initiaL class is defined as the cLass containing onLy the initiaL
state. For this cLass, the firing domain is simpLy the soLution set of the
system ai <=!i <= bi , i ranging over the number of enabLed transitions, !i

3

corresponding to the i th transition enabLed and ai' bi being its Static EFT
and LFT respectiveLy.

A transition t (assume it is the i th enabLed) is firabLe from a cLass (M,O)
iff both the foLLowing conditions hoLd:
- t is enabLed by marking M, i.e. M(p) >= B(t,p) for aLL pLaces p;
- transition t may fire the first among the transitions enabLed by M,

i.e. the foLLowing system of inequaLities is consistent:
A.t >= b- -
t,' <= t. for aLL variabLes t., j~i.
- -J -J

Computation of the successor class (M',O') is done as fo LLows:
1) Compute new marking M' as for Petri nets;
2) Compute new domain 0' in four steps:

a) Augment the system A.!>= b with the above firabiLity conditions,
for transition t;
b) ELiminate from this system the variabLes associated with
transitions in confLict with t;
c) Express each remaining variabLe !j' with j:;ti, as the sum of
variabLe!i and a new variabLe !'; and eLiminate!i from the system;
d) Add one variabLe for each newLy enabLed transition, constrained to
beLong to the Static Firing IntervaL of the transition it is
associated with.

FuLL justification of "the ruLe may be found in the reference. The ~uLe

aLLows buiLding a tree of state cLasses from the initiaL cLasses. Two
cLasses are defined equaL iff bot~ their markings and their firing domains
are equaL. Due to the simpLicity of the inequations invoLved, an efficient
aLgorithm may be found for comparing domains for equaLity. The graph of
state cLasses is obtained from the tree by merging equaL cLasses.

Further, it is known from IBerthomieu 83/ that a Time Petri net admits a
bounded number of state cLasses iff it is bounded, which is an undecidabLe
probLem /Jones 77/. FortunateLy, usabLe sufficient conditions can be
found. The foLLowing condition has been proven adequate for most of the
appLications we have in mind.

A Time Petri net is Bounded if no pair of state cLasses C=(M,O) and
C'=(M',O') reachabLe from its initiaL state cLass are such that:
(i) C' is reachabLe from C;
(ii) for aLL pLaces p: M'(p) >= M(p),

and for at Least one pLace p: M'(p) > M(p);
(iii) 0'= o.

4

Stronger conditions are discussed in IBerthomieu 82/. It may be pointed out
that Line (ii) corresponds to the necessary and sufficient condition given
in IKarp 691 for the boundedness of usuaL Petri nets and Vector Addition
systems. ALthough it aLLows proving bounded a Large cLass of TPNs, it
appears too weak from the meaningfuLL exampLes we have treated so far.

The graph of state cLasses of a bounded TPN wiLL be used, as a finite
representation of its graph of states, to check the properties
characterizing the correct behavior of the system represented by the net.

2. THE TINA ANALYZER

2.1. Outline

TINA (for TIme petri Net AnaLyzer) is a prototype software package designed
for handLing Time Petri nets.

The functions provided by TINA may be spLit into three cLasses: net editing
compiLing and Loading; enumeration of state cLasses, using the method
described in section 1; and tooLs for extracting information from the graph
of state cLasses. ,

Nets are input in textuaL form, using an editor. Net definitions may be
Loaded into the anaLyzer, which in effects compi Les net definitions into
some internaL representation. SeveraL nets can be merged together at
Loading time. CompiLed net definitions can be saved for Later use.

The package for enumerating state cLasses maintains a high LeveL of
interactivity with the user. The enumeration is run after a number of
options are set, incLuding an increment on the number of cLasses. The user
may aLso provide properties to be incrementaLLy checked on state cLasses,
such as marking invariants. W~en an exception is raised, the user may
either abort, suspend or resume enumeration. In any case, partiaL or totaL
informations about the graph of cLasses, the cLasses themseLves and the
scheduLes of the graph of cLasses are avaiLabLe upon request.

When a TPN has been proven bounded, the required properties for the modeL
can be investigated using its graph of state classes. Liveness and Cyclic
properties are defined for Ti me -Petri nets as they are for Petri nets and
proven in a simiLar way, using the connexity structure of the graph of
classes. FinaLLy, utilities such as path finding functions, for instance,
heLp reading the content of the graph of cLasses.

5

2.2. Packages

Access:

The TINA system is a single-user interactive software tool. An information
menu can be displayed, giving the main functions avai lable at top-Level;
mo respecia lized fun ct ion s are propo sed wher e use f u L. TIN A i s wr itt en i n
APL, the user working space contains a copy of the system, together with
its private library of net definitiolls and result of analysis. The whoLe
workspace can be saved in a disk file and Later reloaded in the ,APL
environment for further work. Access to TINA consist of caLLing the APL
interpreter, loadi ng the desired working space, and eventua lly savi ng the
work done before closing the. session.

Editing, compiling and loading nets:

Nets are edited using the APL function editor; designing a speciaLized
editor did not appear necessary since the APL editor is convenient enough.
The data structure describing the net is input as an APL function, whose
name is the name of the net. A net is described as a set of transition
declarations and ,an initial marking assignement. An exampLe of net
definition is given in table 1 of appendix.

Ea ch t ran sit ion dec l a rat ion mu s t con t a ina t ran sit ion ide nt i fie r,
optionaLly followed by its static firing -intervaL (default value is 30,
infinite3); its input places (if any) separated by comas and optionaLLy
ascribed a weight (default 1); and finaLLy its output places (if any). The
exact format of transition declarations is the following, where optionaL
occurrences are enclosed in brackets:

Trld (Oa,b§) : (PLId(xN) (, PLId(xN))) -> (PLId(xN) (, PLId(xN)))

Spaces are optional; transition and pLace identifiers must begin with a
Letter and may onLy contain Letters or digits; N is the weight ascribed to
the edge connecting the corresponding place and the transition. An arrow
de Li mi ts input and output pLaces.

A net definition must also assign initial markings to the pLaces for which
this marking is not null. The format of marking assignement should be cLear
from the example given in tabLe 1 of appendix. FinaLLy, comments are
aLlowed with the same format as comments in APL functions.

6

The APL function editor aLlows to list, augment, comment and modify the
description of the net. TINA supports also some net Library management
functions; utilities are provided for Listing the names of defined nets,
renaming or deleting some nets, and merging severaL net definitions.

Once defined (as an APL function), a net can be Loaded into the analyzer.
loading a net consists of parsing the definition of the net, skipping
comments, and compiLing it into some internal representation suitabLe for
fast enumeration of the state classes. The tables produced correspond, as a
ma t t e r 0 f fa ct, tot he da t a s t ruct ureof the net (i nput and 0 ut put
matrices, time intervals, initial marking, place and transition names).
Care has been taken so that, in normaL practice, the use need never to see
or manipulate the internaL representation of nets. In case the definition
of a net is not syntacticaLly correct, loading is aborted and the anaLyzer
reverts to the state in which it was before.

The Loader aLLows aLso to merge, at Loading time, severaL net definitions,
and to save their composition, in textual form, under a given name. But,
once a net loaded, its components cannot be .modified; if the anaLysis does
not show the expected behavior for the net, a new textuaL description must
be edited for it (possibLy starting from the old description) and it must
be loaded aga i n.

The enumeration package:

Behavior analysis constitutes the core of the system. The anaLyzer applies
the firing ruLe for state classes, starting depth first from the initiaL
class, and buiLds the graph of state cLasses of the Last TPN loaded.

A number of parameters may be set by the user for managing enumeration.
These aLlows to interrupt the enumeration by setting increments for the CPU
time and the number of cLasses. The user may aLso choose its boundedness
sufficient condition among severaL, of increasing strength; or specify some
conditions to be incrementally checked when enumerating the classes. These
conditions must be entered as APL booLean expressions, through the 'option'
command of the package. Predefined conditions incLude safeness and non­
multiple enabling for transitions. User defined specific conditions, such
as marking invariants, may be entered as weLL, but defining them currently
requires knowledge of APL and of the internaL representation of data in the
anaLyzer; it is scheduLed to introduce some Language for expressing user
defined conditions but this remains to be done.

7

For each transition firabLe from a class, a new cLass in computed,
constituted of a marking and a firing domain; the cLass is compared for
equaLity with those previousLy enumerated and the graph of state cLasses is
updated accordingLy. If the cLass is new, the boundedness sufficient
condition and the optionaL user defined conditions are checked for this
cLass; in any case, overfLow conditions for CPU time and number of cLasses
increment are checked before proceeding from the next non deveLoped cLass.

When a cLass faiLs to satisfy a predefined condition, or when overfLow
occurrs on one of the increments, the anomaLy is dispLayed and enumeration
is interrupted. The user may then either abort enumeration, suspend it or
resume. If suspended, enumeration may be resumed Later from the point where
it has been interrupted, eventuaLLy with different enumeration options.
PartiaL resuLts (the current graph of state cLasses and its content or part
of it) may be examined at any time when at top LeveL. ResuLts of anaLysis
may be stored under the name of the net for Later use. PartiaL or totaL
resuLts are dispLayed in cLear, in the Language in which the net has been
defined. An exampLe of anaLysis session is given in tabLe 2 of appendix.

Extracting information from the graph £t cLasses

When the Time Petri net has been found bounded, its graph of state cLasses
has been produced, ,together with information about its connexity. A set of
standard utilities is provided for checking the Liveness and cyclic
properties of the net. For tricky cases, one may aLso have compLete
information about the strongLy connected components of the graph of· state
cLasses (dispLayed as a graph of equivaLence cLasses over cLasses). An
exampLe of Liveness anaLysis is shown in tabLe 3 of appendix.

The cyclic property for Time Petri nets deserves a comment. Let us recaLL
that a TPN is cycLic if its initiaL state class can be recovered from any
other. A Live TPN, as for usuaL Petri nets, may be not cycLic. This is
actuaLLy the case for most TPNs, due to temporaL reasons. Most TPN modeLs
of actuaL systems exhibit a transient behavior before reaching a steady
state behavior; this because the configuration of time intervaLs initiaLLy
assigned to the enabLed transitions is never recovered in normaL behavior.

Other utilities report deadLocks and dead transitions, giving the classes
from which comes the diagnosis. Combined use with firing sequence finding
faciLities aLLows detecting design errors faster. Saving the whoLe anaLysis
resuLts is possibLe and may be advantageous for further investigation on
the same net.

8

Finally TINA may be connected with other existing packages not described
here; among them are a package for structuraL anaLysis of Petri nets, and
generaL purpose packages for graph and automata manipuLation.

Performances:

ImpLementation and performance considerations are now addressed. TINA runs
in APL on an IBM 3081 computer; experiments have been made with TPNs with
up to 100 pLaces and 100 transitions, producing more than 3000 cLasses. It
becomes relativeLy sLow as the number of cLasses grows, and depending on
the paraLLeLism exhibited by the net. But performances are in the Line of
what one can expect from an software written in an interpreted Language.

TINA is used in the foLLowing section for processing a meaningfuLL exampLe;
efficiency is preserved by using an adequate proof methodoLogy to controL
the state exp Los ion.

3. PROWAY EXAMPLE: BUS ACCESS PROTOCOL ANALYSIS

PROWAY is an industriaL LocaL Area Network IAuger 81, Kryskow 811 Linking
functionaL units by means of a shared hardware bus, through which they
communicate. Cooperation between the stations is ruLed by the Highway Unit
ProtocoL ICEI Part.3 84/, which specifies the fr.ame structure, the message
processing and the Line access mechanism.

3.1. Bus access protocol description

Each station is organized in a three Layer architecture, in a way similar
to the OSI modeL. The bus allocation procedure is performed by the data
Link Layer, and is based on the token bus access techni que I IEEE 802.4 84/.
Stations are distributed on a LogicaL ring, independently of the physicaL
organization. A baton gives to stations the controL of the bus. NormaL
behavior is as foLLows: when a station has the baton, it can send an
appLication message, whereas the other stations can onLy answer to it upon
request. When the transaction is compLeted, the baton is passed to the next
station on the virtuaL ring.

Baton-passing is based on a LocaL Live stations List, which represents the
Log i caL r i ng mad e 0 f the 100 s tat ion ad res sesen com pas sed by a com p Let e
cycLe of baton transfers. When a baton frame is detected on the bus, the
entry in the Live List corresponding to the source address is updated; i.e.

9

a "Live" indication is assigned to that statione

NormaL behavior may be aLtered in three main ways:

1) Messages Losses may occur at emission or at reception. Assume that a
unit, after using the bus, wants to transmit the baton; it checks the next
entries in its Live List.

- If the next Live station, known as the Next Live Address, is Located
immediateLy after the sender, it receives the baton. If the sender does not
Listen any activity on the Line.a certain time Later, a frame intervaL
timer T1 ti mes out. Th·e sender supposes that the baton has been Lost and
does up to three retries. In case of repeated faiLures, the receiver is
discarted from the LocaL Live stations List, and the baton is transmitted
to the new next Live unit on the ring, according to the List indications.

- If an Address Gap exists between the station's own address and its Next
Live Address, the sender executes a Gap Searching Procedure. The search
invoLves a sequentiaL check of the non-Live gap addresses. OnLy one gap
address, said the Next Gap Address, is tested each time the station holds
the baton. If the attempt in passing the baton faiLs, the Next Gap Address
is incremented by one and the Next Live Address receives the baton.

2) A station may become permanently "dumb", and may induce a durabLe lost
of the baton, if it has the baton. The other stations in the ring must
detect that. the baton-passing cycle is broken. Consequently each one has a
Lost baton timer T2, whose purpose is to initiate a new baton if the
current baton appears to be Lost. The vaLue of T2 is indexed with the
station's own address, in such a way that the Live station with the
smalLest address monitors the recovery.

3) A station may become permanentLy "deaf" so that it does not detect any
activity on the bus. If the fauLty unit has the baton, it wiLL be unabLe to
pass it correctLy. Because of no detecting transitions on the Line after
sending the baton, it wiLL perform three retries, that may Lead to a
dupLication of the baton on the ring. Recovery from this error is based on
messages anaLysis. When a aLLowed sender receives an unexpected frame
denoting another active sender, it gives up its bus controLLer status to
come back to the bus Listening state.

10

3.2. Bus access protocol modeling

The distributed and compLex structure of the protocoL needs the use of
formaL modeLing and anaLysis techniques to verify its properties. Time
Petri nets constitute a suitabLe tooL, because they keep the preciseness
and formaL background of Petri nets, and aLLow direct expressing of the
temporaL constraints through the firing intervaLs associated with the
transitions.

The way a station accesses the transmission medium and their behaviors are
essentiaLLy identicaL for aLL stations. So we couLd use the same Time Petri
net for modeLing each u.nit. The gLobaL modeL for the system is made up of.
severaL instances of this net connected together /Ayache 82, Voss 84/.
AdditionaL hypotheses have been made to simplify the modeL. OnLy one
application message is involved in each transaction, and the sender cannot
hear its own transmission in normal behavior.

Figure 1 gives a Time Petri net modeL for station 1 of the PROWAY system,
in a four unit configuration. Recovery mechani sms are represented but not
the fauLt hypothesis. Time vaLues associated with the transitions
correspond to the standard specifications; the aLlowed working time for the
stations has been computed such that it is compatibLe /Roux 85/. The
station Live list'for unit i is restricted to the entries i+1 and i+2,
because of the single fault hypothesis; we assume that any error ·is
recovered before another one occurs. Hence i passes the baton to the Next
Live Address i+1, and if a Loss is detected, to i+2. In the next cycLe, i
tests the Next Gap Address i +1, and if a new loss is detected the baton is
passed to the new Next Live Address i+2. From this time on, fauLty unit i+1
is excLuded from the ring. The LocaL station Live List is automaticaLy
updated upon detection of a baton frame from the successor station.

11

~~

'p.Zt/3~--iol~-t
~Ulr

,-.--'............. __ PA~U~

--":f-"--,
_~,r' .,,/

n-U!I­
1.2.0.2­
'P4-U.3
7.z,ulj..

baton
to U3

Figure 1
A TPN modeL for the PROWAY Bus Access ProtocoL

I
~U4

baton
from U2

(Su f fix Uion p Lac e sand t ran si t ion s na me s ref e r S tot he un i ts)

12

Li st of pLaces:

P1U1: U1 Listens to the bus, for detecting message frames.
P2U1, P4U1: Receive places for appLication messages and batons.
P3U1:U1 has accepted the baton, but must wait a minimun time before

transmitting.
PSU1: AppLication message sent, to be broadcast.
P6U1: U1 controls the bus, supervising the transaction.
P7U1, P8U1, P9U1, P10U1: LocaL station Live list.
P11U1, P13U1: Baton sent to U2 and U3 respectively, to be broadcast.
P12U1, P14U1: Wait places for detection of transitions-on-Line.

List of transitions:

T1 U1 (O,Q): Processi ng of an app l i cation message, or a baton not addressed
to U1.

T2U1<260,30Q): Expiration of the LocaL Lost baton timer 12; its vaLue is
defined as (200 + 80 x <i» .!.. 20 us, <i> = address of Ui.

T3U1(0,0): Acceptance of the baton from U3 or U4; detection times are
negLected.

T4U1(16,24), T5U1(0,10): Sending and broadcast of an appLication message.
T6U1(0,Q), T7U1<0,d), T8U1<0,Q): Update of the station Live List.
T9U1(SO,100), T10U1(16,24): Sending of baton to U2; (50,100) is the aLLowed

working time interval for the stations.
T11U1<0,1Q) (resp. T14U1<0,1Q)): Broadcast of baton addressed to U2 (resp.

U3).
T12U1<50,100), T13'U1<16,24): Sending of baton to U2, after one fai Lure in

the last cyc leo
T15U1(50,100), T16U1(16,24): Sending of baton to U3; U2 is excLuded from

the ring after two successive faiLures in the preceeding cycLes.
T17U1(50,53): Expiration of the Local frame intervaL timer 11.
T18U1 (O,Q), T19U1<0'Q): Detection of trans i t ions-on-L ine certifyi ng correct

baton-passing.
T20U1(0,0), T21U1(0,0): Detection of an unexpected message on the Line,

whiLe U1 has the baton; it drops it and returns to the Listening
state.

T22U1 (0,0): Rejection of the baton because U1 has just used' it.

figure 1
(continued)

13

The global net model obtained by interconnecting four instances of the net
of figure 1, represents the normal error-free behavior of the protocol.
Table 1 of the appendix presents the way how the net has been edited using
TINA.

3.3. Bus access protocol verification

Under the transient losses, "deaf" and "dumb" fault assumptions, and the
single fault hypothesis, the bus access protocol must satisfy the following
requirements /Menasche 83/:

(i) At most one station has the control of the bus at any time; i.e. no
marking of the graph of state classes is reachable such that several
stations have a baton.
(ii) The loss of the baton may not be permanent; i.e. there exists no
circuit in the graph of classes that goes only through state classes in
which no station has the control of the bus.
(iii) The cycle of baton transfers must respect the logical location of the
stations on the logical ring; i.e. in all paths of the graph, classes are
ordered in such a way that stations 1, 2, 3, and 4 (except for mi sbehaving
units) are successively given the control of the line.

Proof of these properties has been conducted on the graph of state classes
of the gLobal Time Petri Net modeL. TabLes 2 and 3 of the appendix describe

- the computer analysis session. Enumerative analysis of the error-free
behavior produces 180 state classes. Exhaustive check of the markings in
the classes shows that property (i) is satisfied. In the same way, no
marking exists such that all stations are in the listening state; this fact
is sufficient to prove property (ii) in the error-free case. Property (iii)
is checked by applying automata reduction methods (not discussed in section
2 but avai lable as a specialized package); the graph of state cLasses for
the permanent behavior can be reduced to four nodes, each one corresponding
to the baton-holding time by a given station. The cycle thus obtained shows
that stations 1, 2, 3, and 4 control successively the bus.

In presence of errors, the single-fauLt assumption aLLows us to verify the
behavior of the protocoL by anaLyzing each fauLt seperateLy. If the
protocol recovers a state of the error-free model from each of the three
above fault hypotheses taken individuaLLy, it wilL recover its correct
functioning from any sequence of these faults. So a distinct net is used to
modeL the different fauLt hypotheses, including onLy one faulty station
among the four making the system.

14

~---'-

Figure 2 represents station 1 with the transient Losses of messages. The
anaLysis of the corresponding gLobaL net Led to modify one protocoL
parameter to ensure a correct behavior. The station response time, when it
receives a vaLid frame addressed toit, must be greater or equaL than 16
us. This change has been reported previousLy on the figures 1 and 2. With
this modification, the three required properties have been verified. When
a Loss occurs, the station which is responsibLe for baton-passing keeps the
controL of the Line and initiates a recovery upon expiration of its time­
out T1. The fauLty station may be excLuded from the current cycLe, but
reintegrates into the ring at the next one.

Figure 3 modeLs the "deaf" and "dumb" fauLt hypotheses. DeLetion of the
outgoing (resp. incoming) arcs expresses the dumb (resp. deaf) behavior of
a unit. AnaLysis of the gLobaL corresponding nets produces their graphs of
state cLasses from which it comes that:

- With a dumb unit, a correct behavior for the system impLies modifying the
vaLues of time-outs T2. Otherwise two recoveries from two different
stations may interfere. The changes have been notified previousLy on the
figures. The "dumb" station is excLuded from the cycLe of baton transfers
within two turns; but it stiLL receives appLication messages.

- In the other case, a misbehavior may appear if the station is in the
Listening state (without the baton) when it become.s deaf. Its time-out T2
wiLL expire, initiating a recovery when the ring is functioning correctLy.
To deaL with that case, the time-out mechanism T2 can be modified as
foLLows: on figure 3 a LocaL Loop must be associated with the Lost baton
timer transition. Thus when T2 expires, a LocaL check of the coupLer
internaL circuitry is performed. Detection of a faiLure at the transmitter
(dumb unit) or at the receiver (deaf unit), prevents the station from
starting a recovery, by Locking it in the LocaL state, disconnected from
the bus. The anaLysis conducted with that method, shows that the deaf
station is removed from the ring within three turns at most. The remaining
stations behave normaLLy, accessing the Line in the correct ordering.

This Last protocoL modeL has been anaLyzed with the three fauLt hypotheses.
The graphs of state cLasses of aLL gLobaL nets produced show that no
inconsistencies appear in the protocoL behavior when operating in a four
unit configuration.

15

'P.ZU~

p.:.U3 'E-~:'-.....J

rzU,,"

baton
to .U3

,..----1-1-1--'1---__.-1

1'4..fu4
-:)y ,

~_70 /

1
T.taU4

PF

baton
from U2

-----------4. r---------------...J

TF1 (0,10), TF2(0,10): Loss, at emission, of a broadcast message, applica­

tion message or baton respectively.
TF3(0,Q), TF4(0,Q), TF5<O,Q): Loss, at reception, of an appl ication message

or a baton.

Single-fault hypothesis is modeled by the extra place PF marked with one
token. No fault may occur when station 1 is running a recovery (e.g. the

baton addressed to station 3 may not be lost).

Figure 2
Transient fault hypothesis for station 1 of PROWAY

16

~lJ~

~1J3~--if~--I

P.&UJ,.

baton
to U3

oX baton
from U2

I
~u4

X when deaf

X when dumb

Figure 3
"Deaf" and "Dumb" fauLt hypotheses for station 1 of PROWAY

17

One must be careful in extending the proof of correctness to an arbitrary
number of stations. Arguments such as: the diffusion like medium allows the
number of stations varying without altering its features; the unprecision
of time-outs can be expressed exactly with TPNs; or the time intervals
associated with the transitions represent all actual behaviors defined by
the specifications, are not sufficient to conclude for the correct behavior
whatever the number of units is.

Another point of interest with the example studied ~as the protocol
performance evaluation. Experiments have been carried out with the normal
behavior and with the transient fault hypothesis. By examining the contents
of the state classes and the firing scheduLes of the graph, we could devise
on one hand the minimun and maximun times a station can keep the baton, on
the other hand the maximun recovery times induced by transient losses IRoux
85/. This performance analysis is limited by the complexity of the graph of
state classes. So investigations on more efficient scheduLe finding
algorithms are currently in progress.

CONCLUSIONS AND FURTHER WORK

The PROWAY experiment induces some comments about the anaLysis method and
the software package.

The number of state classes may grow very· large (e.g. around 1000 for
instance for the PROWAY ring with the transient fault hypothesis). This
increases the cost of analysis, if state explosion is not controLLed by an
adequate proof methodology. With the PROWAY exampLe, the same superposition
like anaLysis method of considering separately each kind of fauLts,.
eLsewhere successfully appLied IMenasche 83/, has been proven adequate.

The anaLysis method requires that temporaL parameters are preset; time
bounds of intervaLs of transitions must be given values and cannot be
considered as parameters. Some investigations on simple exampLes showed
that it might be possible to handLe temporal parameters, but no
sufficientLy general method has been devised yet.

The efficiency of the implemented TPN-analyzer allows handLing quite Large
nets but, of course, a version of the package in compi Led Language wouLd
run much faster. This is considered; by the same opportunity, we wiLL
remove some Limitations induced by the use of the APL for the prototype
sys t em. Ed i ting a net wiLL not r equi ret he (eve n Li ght) know Ledge 0 f APL
the current versi on requi res.

18

The experiment also enlighted some known deficiencies of TINA; for instance
the fact that entering user defined incrementally checked conditions
require knowledge of some internal detai ls of the analyzer, an improved
version should include a full logical language for expressing such
propert i eSa

Despite this, TINA has been very helpful in analyzing the PROWAY
protocol. Our future research will concentrate on performance evaluation; a
promising approach is presented in IRoux 85/. It consists in extending the
TPN model by using probabilities associated with the firing times of the
transitions. A performance evaluation methodology is then proposed, based
on the graph of state classes generated via the enumerative method; it
contributes to fi II the gap between functional and performance analysis.

TI NA s h0 u ld be soon ext end ed, i none han d, by a set 0 f grap h sea r ch
functions and commands for finding constrained firing schedules in the
graph of classes of a TPN and, in another hand, by an implementation of the
above discussed performance analysis method for augmented TPNs.

19

REFERENCES

IAuger 811 M. Auger, "Presentation de PROWAY", Doc. HN 231, EDF-GDF,
Service Normalisation et Brevets, Nov. 1981.

IAyache 821 J. M. Ayache, J. P." Courtiat, M. Diaz, "REBUS, A Fault-Tolerant
Distributed System for Industrial Real-Time Control", IEEE

Tr • on Com put e r s, Vo l. C- 31, N° 7, J u l y 1982.
IBerthomieu 821 B. Berthomieu, M. Menasche, "A State Enumeration Approach

for Analyzing Time Petri Nets'~ 3rd European Workshop on Applications

and Theory of Petri Nets, Va renna, Italy, Sept. 1982.
IBerthomieu 831 B. Berthomieu, M. Menasche, "An Enumerative Approach for

Analyzing Time Petri Nets", IFIP Congress 1983, Paris, Ed. North
Holland, Sept. 1983.

ICEI Part.3 841 CEI, Sous-Comite d'tHudes 6SC, "Process Data Highway
"(PROWAY) for distributed process control systems. Part 3: Specifi­
cation for Highway Unit Protocol", Doc. 6S(Central Office, March 1984.

/IEEE 802.4 841 IEEE Project 802, Local Area Network Standards, "Token­
Passi ng Bus Access Method", Document IEEE/802.4/84, Draft E, Approved

Standard, 1984.
/Jones 77/ N. D. Jones, L. H. Landweber, Y. E. Lien, "Complexity of some

problems in Petri Nets", Theoretical Computer Science 4, 1977.
/Karp 691 R. M. Ka~p, R. E. Mi ller, "Parallel Program Schemata", Journal of

Computer and System Sciences 3, 1969.
/Kryskow 81/ J. M. Kryskow, C. K. Mi ller, "Local Area Networks Overview­

Part 1: Definitions and Attributes, Part 2: Standards Activities",
Computer Desig~, Feb. and March 1981.

/Menasche 831 M. Menasche, B. Berthomieu, "Time Petri Nets for Analyzing
and Verifying Time Dependent Communication Protocols", 3rd IFIP/WG 6.1

International Workshop on P--rotocol Specification, Testing and
Verification, Zurich, Switzerland, May 1983.

/Menasche 8S1 M. Menasche, "PAREDE, An Automated Tool for the Analysis of
Time(d) Petri Nets", 1st International Workshop on Timed Petri Nets,

Torino, Italy, JUly 1985.
IMerl in 74/ M. Merl in, "A Study of the Recoverabi l ity of Computer Systems",

Ph.D. Thesis, University of California, Irvine, 1974.
IRoux 8S1 J. L. Roux, "Modelisation et Analyse des Systemes Distibues par

les Reseaux de Petri Temporels", These de Docteur-Ingenieur, INSA,
Tou louse, Decembre 1985.

/Voss841 K. Voss, "A predicate/transition-net model of a local area
network protocol", Sth European Workshop on Applications and Theory of

Petri Nets, Aarhus Univ., Denmark, June 1984.

20

[1]
[2]
[3]
[~]

[5]
[5]
[7]
[a.]
[9]
[10]
[11]
(12]
[13J
[140]
[15]
[lEi]
(17]
Oa J
(19]
[20]
[21]
[22]
[23]
C240]
C2S]

APPENDIX

'V P~OWAYl

A STATIOiV 1
T1U1CO,O]: P1Ul,P2Ul • P1Ul
T2Ul[260,300]: P1Ul • P3Ul
T3UlCO,O]: P1Ul,P40Ul • P3Ul
T40U1C15,240]: P3Ul • P5Ul,P6Ul
TSU1CO,lO]: P5Ul • P2U2,P2U3,P2U40
T6Ul[O,O]: P7Ul,P9Ul + paUl
T7U1CO,O]: P7Ul,P8Ul • paUl
TSU1CO,O]: P7Ul,PlOUl + paUl
T9UlC50,lOO]: P6Ul,P3Ul • P9Ul,PlWl,P12Ul
Tl0Ul[l6,2~]: P3Ul,paUl • P9Ul,PllUl,Pl2al
TllUlCO,lO]: PllUl • P40U2,P2U3,P2U40,P7U40
Tl2Ul[SO,lOO]: P6Ul,P9Ul + PlOUl,PllUl,P12Ul
Tl3Ul[l6,240]: P3Ul,P9Ul + Pl0Ul,PllUl,Pl2Ul'
Tl~UlCo.rO]: Pl3Ul + P2U2,P40U3,P2U40,P7U40
TlSUlCSO,lOO]: P6Ul,PlOUl • PlOU1,Pl3Ul,Pl40Ul
Tl6UlC16.240]: P3Ul,PlOUl • P10Ul,Pl3Ul.Pl40Ul
T17U1C50.53]: P12Ul + P13Ul,Pl40Ul
TlaUl[O,O]: P2Ul,pi40Ul + P1Ul
T19U1CO,O]: P2Ul,Pl2Ul • P1Ul
T20Ul[O,O]: P2Ul,P3Ul + P1Ul
T21Ul[O.O]: P2al,poUl + PlUl
T22UlCO,O]: P40Ul,Pl2Ul • P12Ul

A INITIA~ ~ARKING '
MO=P6lJl(1) ,PSU1(1)
'V

RBADNBT 'PROWAYl'

Description
TPN model for
1 of PROWAY.

of the
station

PROWAYl WADBD,
l~ PLACBS, 22 TRANSITIONS.

RBADHBI?GBNBT ' P.,,?O'-'lA:12'

PROWAY2 .'.fBRGBD
2a PLACBS, 40~ TR~NSi~idNS.

RBADMBRGBNBT , Pl?O W.4Y 3 '

PROWAY3 MBRGBD
402 PLACBS, 56 TRANSITIONS.

RBADMBRGBNBT 'PROWAY40'

PROWAY40 ;\lBRGBD
56 PLACBS, aa TRANSITIONS.

..

Loading sequence of
the g loba l TPN mode L
using functions
"READNET" and
"READMERGENET".

Local modeLs for the other stations, PROWAY2, PROWAY3 and PRO~~AY4

respectively, are obtained from PROWAY1 by circular permutation of suffixes
Uj (i •e. j = j +1 mod 4).

Table 1
Production of the globaL TPN modeL

21

OPTIONS

CPU TIME INCREMENT IS 10; ENTER NEW VALUE OR RETURN: 50

NUMBER OF CLASSES INCREMENT IS: 50; ENTER NEW VALUE OR RETURN: 100

BOUNDEDNESS TEST IS 2; ENTER NEW VALUE (lSVS~) OR RETURN:

SPECIFIC CONDITION IS PSAFE
TSAFE. PSAFE AND EMPTY ARE KNOWN CONDITIONS
ENTeR NEW CONDITION OR RETURN:

BOUNDED

OVERFLOW NUMBeR OF CLAsses
100 CLASSES ENu¥eRATED
CONTINUE (C) OR PAUSE (P) 1: P

ENU~ERATION suspeNDeD. ENTER CONTINue FOR ~ORE

100 'CLAsses eNUMERATED SO FAR.
CPUT = 18. 922S

CLAsses '38*1+0'

Starting enumeration
'using function

"BOUNDED" and option

"PSAFE".

CLASS C~O:CLASS C38:
M = P3Ul. P2U3.

P8Ul. P1U2.
P8U2. P1U3.
P7U3. P9U3.
P9U4. • .P12114-

D 16 s ~~ul s 24­
16 S Tl0Ul s 24­
34.0 S T2U2 S 380
a S TW3 S 0
310 S T2U3 ~ 4-20
o S T6U3 s 0
~o S Tl1f1~ s 53
T211 3 - T17 U4- S
370
T17UI+ - T2U3 S
-267

NODES '35*1+0'

CLASS C39:
M = P3Ul. P8111. M =

PW2. P8U2.
PW3. P7U3.
P9113. P9U4..
P12U4- D

D 16 s T4.Ul S 24­
16 :so Tl0Ul S.24­
34-0 s T2U2 S 3S0
1+20 S T2U3 S 1+60
o S T6U3 ,S 0
40 S Tl7UI+ S S3

P3Ul. PSU1.
PW2. PSU2'.
PW3. P8113.
P9U~. P12tH
16 S T~Ul S 2~

16 S Tl0U'1 S 21+
340 S T2112 S 3BO
420 S T2U3 :s; 1+60
~O S T17U~ :s; 53

C3S • (TllU~€(0.10])/C36

C36 • (T3Ul~(0.0])/C37. (T1U2((0.0])/C84. (T1U3~(0.0})/ca8.
(T 6U 3'E (0 • 0]) / C9 a
C37 • (Tl(J2~(0.0])/C3a. (T1U3((0.0])/C81. (T6U3E(0.0])/C83
C38 • (T1U3E(0.0])/C39. (T6U3E(0.0])/C80
C39 • (T6U3ECO.0])/C~0

C4-0 • (T4U1E(15.24])/C41. (Tl0U1E(16.24-])/C65

CONTINU'?

80 (J[iDBD
180 STATe CLAsses
CPUT = 4-4.134S

Continuation and
mination of
analysis.

ter­

the

Parameters for enumeration are set via' the function "OPTIONS"; Boundednes

tests imp Lement the suffi c i ent condi ti ons. Enumerati on is suspended when
the increment for the number of cLasses is reached. Then the partial graph
can be examined using functions "CLASSES 'x*y'" and "NODES 'x*y'''.

Table 2
AnaLysis of the gobaL TPN model

??

LIV E

NOT LIVE (USE LIVEDIAGNOSIS FOR ~ORE INFORMATION)
NOT CYCLIC

LIVEDIAGNOSIS

LIVENESS DIAGNOSIS:

TRANSITIONS T1Ul T3Ul T~Ul T5Ul T6Ul T9Ul Tl0Ul TllUl T19Ul T1U2 13U2 T~

U2 T5U2 T6U2 T9U2 Tl0U2 TllU2 T19U2 T1U3 T3U3 T~U3 T5U3 T6U3 T9U3
110U3 Tl1U3 T19U3 T1U~ T3U~ T~U~ T5U~ T6U~ T9U~ f10U~ Tl1U~ f19U~

ARE LIVE

TRANSITIONS T2Ul T7U1 TaUl '1'12Ul T13Ul Tl~Ul T15Ul T16Ul Tl7t/1 .11aYl 120
Ul T21U1 122Ul T2U2 T7U2 T8U2 '1'12U2 T13U2 Tl~U2 '1'15U2 '1'16U2 T17U2
T18U2 T20U2 T21U2 '1'22U2 T2U3 T7U3 T8U3 '1'12U3 Tl~U3 Tl'U3 115U3 f16
U3 T17U3 T18U3 '1'20U3 T21U3 T22U3 '1'2U~ T7U~ Tau~ T12U~ '1'13U~ Tl~U~

T15U~ T16U~ T17U~ T18U~ T20U~ T21U~ T22U~.ARE DEAD PRO~ THE INITIA
[, CLASS

Function "LIVE" tests the liveness property. Diagnosis provided in our case
shows that several transitions never fire. It comes from the fact that we
are analyzing the error-free behavior of th'e protocol. As the TPN of
figure 1 includes the recovery mechanisms but not the fault hypothesis, the
corresponding transitions cannot fire.

The global net is not cyclic, because a transient initialization stage
appears before the system enters its repetitive behavior. This is due to
the fact that the firing intervals bounds may be interdependent in the
permanent behavior, as opposed to the static values alL transitions have
received in the initial cLass.

TablE' 3

Ch~racterization of the error-free behavior

23

