Abstract Data Nets
combining Petri nets and abstract data types
for high level specifications

of distributed systems

B.Berthomieu*, N.Choquet**,
* % * ¥ %

C.Colin , B.Loyer ,
JM.Martin*, A.Mauboussin”™.

* LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse-Cédex, France.
. ¥* LdM-CGE, Route de Nozay, 91460 Marcoussis, France.
**% Alcatel, Route de Perros-Guirec, BP.344, 22304 Lannion—Cédex, France.

This work was supported by DAII, under grant n®84.35.087 including
Alcatel, Laboratoires de Marcoussis and Laboratoire d'Automatique et
d'Analyse des Systémes.

I. Introduction

The work presented here is part of az broader project involving the
Alcatel company, the CGE and the LAAS research laboratories. The goals of
the project were to investigate the respective power and applicability of
Petri nets and Algebraic abstract data types for modelling complex
switching systems. A particular subtask of the project was aimed at
designing and evaluating a composite model, combining Petri nets and
Abstract data types; this paper summarizes the work done in this particular
subtask.

Switching exchanges; which are usually very large systems, are
characterized by &a very high complexity. While most of +the mechanism
involved are related to real time process control, they also involve large
amounts of data. Petri nets, when used alone, has proven to be unsufficient
to account for a2ll the relevant aspects of these systems; on the other
hand, preliminary studies have shown that Abstract data types were suitable
for representing most aspects of data handling, but lacked some
zapabibities for expressing comfortably some synchronization and real time
.constraints. This led to the idea of a composite model.

Let wus recall first some capabilities and limits of nets and abstract
data types in our context:

Petri nets are'well suited for expressing and analyeing properties of
operaticonal nature in concurrent systems; for instance, +they can clearly
represent deadlocks, or parallelism. However, some mechanisms, even if they
are pure synchronisation, require a2 level of abstraction which cannot be
given by basic Petri nets (in which everything is expressed in terms of
places and transitions). This lack of flexibility of Petri nets may lead to
models which are complicated in spite of the fact that they give a correct
representation of the problem; a typical example could be that of a waiting
queue, for instance.

Considering these limits, several authors proposed what can be called
"composite models", which generally combine two distinct formalisms,
devoted to the control and data handling aspects, respectively. Among them,
_let us mention:

~ the Keller model /Keller/, which combines a control structure
expressed by a Petri net, with a programming language and data sets
for representing data,

- Petri nets schemes from Valette /Valette/ or the UCLA Graph Model of
Behavior /Cerf/ . Both models share the same goal as Keller's model.
They both use nets (or UCLA graphs for the latter model) for
expressing the control aspects, plus some formalism for data handling.
In addition, both try to provide the data aspect with some known
advantages of Petri nets (e.g. visual aids, ...).

On the other hand, algebraic specifications /Goguen/ allow describing
abstractly the operations performed on data. However, the specifications
does not generally describe the way actions are scheduled. Indeed, the

‘constraints on operation scheduling could be expressed in this formalism
too, Dbut doing this would generally obscure the specifications; in any
case, operational properties such as liveness or deadlock freeness are
difficult to express and prove.

A strong advantage of algebraic specifications over Petri nets is
their capability of manipulating infinite sets of data. Another advantage
is that algebraic data types allow a modular and hierarchical design of
specifications. A 'specification is built on a set of lower level
specifications, and may be, in turn, used as component of a more complex
specification. Complex specifications can be constructed from elementary
specifications using libraries of specificatiohs. through some facilities
for combining specéifications together, such as parameterisation or
renaming.

14

A preliminary study showed sevaral ways of combining Petri nets and
Abstract data types /Berthomieu/; one of the models investigated, called
"Abstract Data Nets", was selected for further investigations and is
presented in the following section. -

The proposed model can be seen as a graphical representation of
abstract data types with a net part which is an extension of
Predicate/Transition nets. ’

This model has some obvious relationships with two recently proposed
composite models, also combining Petri nets and Abstract data types. The
first of these is the Semi Graphical Specification language (SEGRAS) from
_Kramer /Kramer/, the second is much closer to our model thought developed
independantly /Vautherin/. Both these models combine a control structure
derived from Petri nets with the formal expression and the structuring
facilities obtained from the algebraic specifications.

Abstract Data nets are presented in the following section, Section 3

is devoted to some examples of use while Section 4 concludes on the
applicability of the model.

I1. Presentation
ITI.1. The model

We use Predicate/Transition nets /Genrich/ as a starting point. But
the conditions which guarantee their equivalence with classical Petri nets
have been removed: tokens in the nets do not necessarily belong to finite
sets. Furthermore, there is no resiriction on the structure of tokens.

An ADN (Abstract Data Net) specification is made up of two parts:

- the algebraic part stipulates:
- the imported specifications defining the lower level data types,
- the name of the new type or system under specification, '
- the profiles of the required operations and predicates (that are
boolean operations),
- a set of axioms.
- the net part expresses the contrcl structure of the specified system. The
tokens are typed terms whose. types are defined in the imported algebraic
specification: Ty,
- each place of the net is typed: =a place may only hold terms of its
associated type, it may contain several copies of the same term; '
- multisets (or bags) of variables are associated with the incoming
and outgeing arcs of the transitions. It 1is required that the
variables used on the outcoming arcs also appear on the incoming arcs.
- A predicate Py is associated to each transition t. This predicate is
built on operations defined in the imported specifications and <can
thus be algebraically specified. The free variables in P: must belong
to the variable bags associated to the incoming arcs of the
transition.

In Fig. 1, Qe show an example of information associated éo a
transition <. The +types T1, T2, T3 are defined in <the imported
specifications. ¢j, PBi, &i are respectively terms of types T1, T2 and T3.
u,v,w are typed variables and f,g,h are operations defined in the imported
specifications. Let us notice that in Fig. 1, we give only a transition
example and give neither +the algebraic part of the specification
corresponding to the new specified type, nor the imported specifications.

24VIHLW

th.mw)

2n¢v> <E(v,v)>+cg(w,v)>

1 I3 : T2

The oprofile of the operations f,g,h and Py defined in the imported
specifications are:

£ : 72 x T2 -==> T2

g .72 x T2 ~-=> T2

h : T2 =w=> T3

Py: T2 x T? x T2 «--> hoolean
Variables:

u: T1; v,w: T2

Figure 1: Example of a +transition t in +the ADN model

I1.2 Ewvolution rules

The initial marking is an distribution of terms into the places of the
net, in accordance with the type of each place.

Let p be one of the incoming places of t, and <vi>+<va>+...+<vp> the
multiset of variables associated with the arc (p,t) and <u(>+<uz>+...+<ug>
the multiset associated with the arc (t,p):

. Let Pt(w1,:..,wn) be the predicate associated with the transition %,
where wi are incoming variables of transition t.

The +transition t is firable from the marking M if and only if ~ there
exists =a substitution 8 (a function which associates a term with each
variable; and by extension a function on the set of terms) compatible with

"the typing of each place such that:

S(v1)+S(va)+...+8(vy) << M(p) is true for each incoming place p of the
transition t;
and Py(S(w1),...,8(wp)) is true;

where terms S(vi) and 8(wj) are the results of substituting the
variables vi; and wi, and << denotes multiset inclusion.

For instance, ‘in Fig. 2, a possible substitution would be: S(x)=3 and
S(y)=4.

After the firing of the transition t, the new marking of place p will
be '

M (p) == S(v1)+S(va)+...+8(vp) ++ S{u)+S(uz)+...+8(uk)

where S(u1)+S{uz)+...+S(uk) is the result of applying the substition S
to the multiset associated with the arc (t,p), and -- (resp. ++) denote the
multiset difference (resp. union).

Since the places are typed, the terms associated with the arcs
adjacent to a place must possess the same type as the place. Thus a
syntactic verification of the net is needed.

’

13
5 3 T1
4 0
KX+
. A SN G t cnllmms X <Y
CXFIHTIFLEIFLTD) CRAFHFOHLCRIHLYD
) 4

1 5
: T2 9 3 : T2
3+3%5
Before firing After firing

Figure 2: Example of firing

It must also be pointed out that the net expresses a transformation of
terms and not the-congruence on terms. The congruence is expressed, for
each type, by the axioms of the algebraic specification. Thus, with respect
to the example in Fig.2, it cannot be inferred from the net alone that the
terms 3+3%5 and 18 are equivalent.

II.3. Relationships between the algebraic part and the net part.

An ADN specification can be seen as an algebraic specification in the
following way:

- A new type can be associated with the composite model, which has the
structure a product type; a constant of the type is associated with the
initial marking of the composite model; constructors are associated with
the +transitions of +the model (a constructor may handle one or more
transitions), and selectors (or observers) are associated with the places
of the model. Intuitively, the values of the type associated with the model
are the markings of the net;

- The constructor associated with transition t rettrns the ‘'global’
marking of the model obtained by firing the tramsition t from the current
marking when it enables the transition; the transformation on marking
performed by each constructor can be expressed by a conditional equation.
The selector associaﬁgd with place p returns the marking of place p for a
given 'global’ state of the model; !

Thus, from a composite specification, it is possible to build
{mechanically) an algebraic specification which can be used in a higher
level specification. The net part of an ADN specification can also be seen
as a graphical representation of the type being defined.

II.4. Simplified notation

Prior to formulating our examples with this formalism, it seems useful
to introduce a more intuitive notation for the net.

In most cases, +the predicate associated with a2 transition can be
-expressed by pattern-matching constraints expressed directly on the
incoming arcs of the transitions. Arcs carry: +the information relative to
the number of terms which must either be extracted from the incoming places
or added to the outcoming places and the information (which may be
partial) on the contents (or structure) of these terms. The example in Fig.
3, which ©places have tokens of the "element" or "list of elements" type,

illustrates this notation.

p:list

<> <e af £

<e> <e al f'>» <f'y

r:elem q:list

Figure 3: Use of the simplified notation

Let "elem" be some data type and let "list" be the algebraic
specification of a list of these elements, in which the operations empty
-(for the empty list), al (add a last element) and af (add a first element)
are defined. The profiles of these operations are:

empty : ---=> list
,al ¢ elem x list ---> list
caf_ ¢ elem x list ---»> list

let e1,...,en, be elements of the elem type. A term of the list type
can be describved specifically as a composition sequence of either the _al_
operator:

e; al (ez al (... (ep al empty)...))
or the _af_ operator:

eq af (eq af (... (ep af empty)...))

on the empty opefator.

It is always possible to use one of these notations to describe the
terms of the list type and to change from one notation to the other one.

Let us assume that we have to describe a transition t (cf.Fig.3) which
takes a non-empty list f1 from the place p, extracts the first element e
from this list, introduces it in the place r and add it to the end of some
list in the place gq.

The non-empty condition on f1 means that there must exist a list £ and
an element e such that f1 = <e af £>. To simplify +the notation, this
condition is written directly on <the arc with the 1label <e af .
Similarly, the outgoing arc to q will be labeled <e al £'>.

I1T. Examples
III.1. Preliminary remarks

Two applications examples are presented in +this paper, i.e. the
alternating bit protocol and a telephone-based example. In accordance with
the model defined in chap.II, each specification compriseé a net part and
an algebraic part.

For each example, specifications are written using the ADN model, when
the control aspects are essential to the specification. When such aspects
are not relevant, the specification is directly built with algebraic data
types.)

I1I.2. The Alternating bit protocol

The first example we specify using the ADN model, is the alternating
bit protocol. This protocol deals with the exchange of data between two
distant entities called “"sender"™ and ‘"receiver". These entities are
connepted through an unreliable transmission support called "medium", a
" message is either correctly transmitted or lost. Each message sent must be
positively acknowledged. It is assumed that the loss of messages 1is
signaled by the medium.

The addition of a label to a message allows detecting the duplicates
-when several copies of the same messages have been sent. In this protococl a
one bit label is enough since only one message can be in transit at a time.

We wont detail further the behavior of the protocol since it is wvery
well known; the reader who wants more details can find them in /Bartlett/.

Let us first make precise the primitive data types needed for
describing the protocol. Only the names of the defined sorts and the name
and profile of the required functions are given:

sort msg % describes a message: no more details are necessary here except
that there exists a particular constant "nil" which denctes the
absence of message %

sort bit
functions
0,1 ¢ -==> Dbit
~ : bit ---> bit % to complement a bit %

sort pkt % a packet is made up of a message and a bit %
functions
<_ _>: msg X bit ---> pkt

% Each sort m list , b_list, p_list is a particular instantiation of the
"list of elem" sort where elem is respectively msg, bit, pkt %
sort list of elem

functions
empty : ---> list
af .: elem x 1list ---> list % f1 = e af fO: e first elem of f1 %
al : elem x list ---> list % f1 = e al fO: e last elem of f1%

4
Specific data are required for the sender (respectively the receiver).
They correspond to their states:

sort s_state = (readysm, wait)

sort r_state = {readyrm, readysa)

Then we specify the sender and the receiver. Afterwards we built the
alternating bit specification combining these +two specifications and
describing the interactions between the sender and the receiver (medium).

a) Sender
Construntors are:
- send: associated with both the sending and the retransmission of a
message after the reception of a negative acknowledgement. In the net
part of the specification, <two transitions are associated with this
constructor.

- rack : represents the reception of an acknowledgement from the
receiver. In the net part of the specification, two transitions are
associated with rack. One corresponds to a positive acknowledgement,
the other one to a negative acknowledgement.

Observers are:
- to_send: represents the list of messages to send.
- last_p: memorizes the last sent packet (last messages and last bit
sent).
- sstate: gives the state of the sender which is either ready to send
a new message (readysm) or waiting for a positive acknowledgement
(wait). In the net part of the specification, two control places are
associated with the state of the sender.

b) Receiver

Constructors are:
- rec: represents the reception of a packet. Depending on the segquence
bit of its packet, the message is either accepted, stored into <the
list of received messages or rejected. In the net part of the
specification two transitions are associated with this constructor.
- sack: represénts the sending of a positive or negative
acknowledgement.

4

Observers are: .
- received: represents the list of messages transmitted correctly.
- last_a: gives the value of the last sent acknowledgement.
- rstate: gives the state of the receiver, which is either ready to
receive a packet (readyrm) or ready .to send an acknowledgement
(readysa). In the net part of the specification, <wo control places
are associated with the state of the receiver.

¢) Medium

The medium describes the interconnection of +the sender and the

.receiver. It may be split into two parts: sender ---> receiver and
receiver ---> sender, as can be seen on the net part of the specification
(Fig 5.).

The medium is characterized by the list of packets in transit from the
sender to the receiver and by the list of acknowledgements in transit from
the receiver to the sender. These are associated with the observers

11

p_transit and a_transit, respectively.

Furthermore as +transmission 1is assumed unreliable, packets and
acknowledgements may be lost.

There are thus two specific constructors of the medium: loss_p and
loss_a. ’

Combining those parts and adding an initialisation constructor, we get
the list of the functions used in the alternating bit protocol
specification (Fig.4).

The init constructor represents the initialisation of the global
system. In the net part no transition is associated with it. But the
initial marking of 1the net corresponds to the initial wvalues of each
observer of the system. These values are given in the axiom item of the
algebraic part.

In the alternating bit example, the control aspect is more complex
than the data management aspect. Therefore the net part of this example is
important and is not very different from the corresponding specification to
those written in Prédicate/Transition nets. However the ADN model enables
some writing simplification by allocating a type to places. In the same
way, places of type message list, packet list or bit listrcan be used.

12

specification AB

Algebraic Part

import MSG, BIT, PKT, M_LIST, B_LIST, P_LIST, S_STATE, R_STATE
sort system ’

functions
init : m_list ---> system
send : system x bit ---> system
rack : system x pkt ---> system
rec : system x pkt ---> system
sack : system ¥ bit ---> system
loss_p : system ---> system
loss_a : system ---> system
to_send : system ---> m_list % list of messages to send %
last_p : system ---> pkt % last sent packet %
sstate : system ---> s_state %4 state of the sender %
received : system ---> m_list % list of received messages %
last_a : system ---> pkt % last sent acknowledgement %
rstate : system ---> r_state % state of the receiver %

s

p_transit: system ---> p_list
a_transit: system ~---> b_list
’ 7
variables % also used in the net part %
b: bit; m,x: msg; £: m_list; 1: p_list; 1': b_list;

axioms
to_send (init(f)) f
last_p (init(f)) = <nil 0>; .
sstate (init(f)) = readysm;

u

received (init(f)) = empty;
last_a (init(f)) = 0O;
restate (init(f)) = readyrm;

p_transit (init(f)) = empty;
a_transit (init(f)) = empiy;

% In this example there is no oth;r axiom in the algebraic part of the
specification because those needed for an algebraic data type specification
can be deduced from the net part of the specification. %

Figure 4: Alternating bit specification

13

Net Part

tousend: m.list / \ received:m.list
O, G
\
SEND RECEIVER
=R <{> / (def>
/

\ <

: 1>
-nd(<m/ y —2 i (<b.>)
 | <~b>
. ‘ £
>)

rstate:r.state
{-—\rendynn)
last.a:bit

rec{<m b

U

Figure 5: Alternating bit specification (continuation)

ITT.3. A telecommunication protocol: the signalling link management.

This section presents a significant example taken from the Signalling
System No. 7 /CCITT/: The signalling link management level 3 of the Message
Transfer Part (MTP).

ITII.3.1. Background

The Signalling System No. 7 is an internationally standardized general

14

purpose common channel signalling system. It provides a reliable transport
system for information transfer between switching exchanges. It is divided
into a2 common MTP on the one hand and separate User Parts as Telephone User
Part (TUP) on the other hand.

The functions of the MTP are separated -into 3 levels: the signalling
data link functions (level 1), the signalling link functions (level 2),
which are related to the +transfer of signalling messages over one
individual signalling data 1link without duplication or 1loss, and the
signalling network functions (level 3) which ar; transport functions common
to several signalling links. Two of these functions are the signalling
traffic management, which controls message routing, and the signalling link
management (SLM), which controls the locally connected link sets.

III.3.2. The specification

The SLM provides means for establishing and maintaining a
predetermined capability of a link set. In our example, p links among n
must be active even if some of them become unavailable.

The ADN model of SLM imports two algebraic specifications: +the LINK
specification that represents the individual signalling link and the
LINKSETSTATE specification.

Specif LINK ,

import LINKNUM, % 1iink number% !
LINKSTATE 3

sort link

functions

% constructors %

linkinit : linknum ~--> link % initialisation %

act : link ---% link % link activation %
desact : link ---> link % link desactivation %
in_serv : link ~---> link % link activated %

% observers %
st : link ---> linkstate % link state %
in : link ---> linknum % link number %
Variables

X ¢ linknum
1l : link

15

axioms -
st (linkinit(x)) = inactive;
st (act(l)) = init;
st (in_serv(l)) = active;
st (desact(l)) = inactive;
selective_obs (1ln, linkinit);
- 1n (linkinit(x)) = x;

end LINK

Note: "Selective_obs" is a metaconstruction /Biebow/ allowing the writing
of +the significant axioms only. The other ones, which do not change the
value of the observers, are automatically deduced.

The LINK specification uses LINKNUM and LINKSTATE which describe
the number of the link and its state, respectively.

sort linknum is an instantiation of a more general sort: the natural number
interval sort with an upper bound equal to n, a lower bound equal to O and
with the operations +1 and -1,

'sort linkstate = {inactive, init, active). The link is inactive in the
initial state. If SLM decides to initialise a link, it sends "Start" to the
level 2. The link state is then init. The level 2 can answer to SLM by "Out
of Service" or "In Service". In the first c¢ase, another "Start" is
transmitted to level 2 and in the second one, the link becomes active. The
link can therefore be desactived after the management request or if the
number of active links become greater than p.

The linkstate LINKSETSTATE specification defines the linksetstate sort
and c¢orresponds to the two possible states of a link observed from a link
set point of view: "LSACTIVE" when the link is "init" or '"active" and
"LSINACTIVE" when the link is "inactive”. If no link belongs to LSACTIVE,
the link set is inactive.
sort linksetstate = { LSACTIVE, LSINACTIVE)}

The Fig. 6 and Fig. 7 represent respectively the algebraic part and
net part of the ADN of SLM.

The oconstructor (event) names recall the various messages received
from the management (MGMT) and the level 2 (L2) that trigger off the firing
of the corresponding transition. They are:

16

MGMTI?Actls : represents the reception of the "Active link set" message

{Actls) sent by MGMT; ’

MGMIT?Desls : represents the reception of the "Desactive 1link set™"

message (Desls) sent by MGMT;

MGMT?Desl : represents the reception of the "Desactive link" message
" (Desls) sent by MGMT;

L2TRPO : represents the reception of the "Remote Processor Outrage"
message sent by L2;

L27IS : represents the reception of the "In Service" message sent by
L2;

L2108 : represents the reception of the "Out of Service" message
sent by L2.

Observers are .
link? : used to observe the evolution of an individual link;
state : the state of the link observed by the link set: LSACTIVE, when
its state is active or init, or LSINACTIVE otherwise. .
ACTIVELINK : memorises +the number of active links. So this place
always contains one token.

The net part (Fig. 7) uses the following conventions:

- The initial marking is written accordingly to the initialization
axioms of the algebraic part. ' ’

- BEach +transition (or event) is labeled with the received message
which enables it and the messages that must be sent (messages are separated
by ;).

For instance:

MGMT?Actls means that the transition cannot fire without having

received the message "Actls" from MGMT ("?" means that MGMT is a

module of level 3),

L210S(x) means that the transition cannot fire without having received

"08(x)" from the level 2 and .

L2¥Start(x) means that during the firing of the transition, SIM will

send Start(x) to level 2.

-Let us explain some of the transitions of Fig. 7.

The transition (1) is fired at the system activation. Then p "Start"
signals are sent to the level 2 (indicated by L2+Start) to activate the p
signalling 1links, +the p tokens, 1linkinit(0), ..., "linkinit(p-1), are

removed from the place "LSINACTIVE" and p tokens act(linkinit(0)),

17

act(linkinit(p-1)) are added to the place "LSACTIVE". This transformaticn
is mentioned on the arc (2). The system is then waiting for the answer of
the various links of the level 2 for each start request. If the answer 1is
"Out of Service" (3) (L2$0S), another link of the place "LSINACTIVE" is
activated, and if it is "In Service" (4) (L27IS), the content of the place
"ACTIVELINK" is incremented.

The model does not show the transfer of messages because it only
represents one entity. However, if we want to have a global model of the
SLM connected to level 2, we should introduce a medium (cf. I@.Z.C.)

Note:

The method used for building the net part of the SIM is a bit
different from the one used for the alternating bit protocol specification.
We said in II.2. that we would associate to each observer of the algebraic
part a place or a set of places (when they correspond to control states) of
the net part. In large applications, this method may complicate the net
because of the great number of places with loops connecting them to the
transitions. So, we choose to associate several observers to a place or a
set of places when it is possible that is To say when the observers
describe the same entities. In this examﬁle, _we associate the observers
link? and state in the two places LSACTIVE:link and LSINACTIVE:link. The
modifications of the wvalues of the observers link? and’ state are then
mentioned respectively on the arcs between the <transitions and +these
places, and by the name of the place.

Other applications of the ADN /Choquet!/ have been done: they concern
the signalling traffic management level 3 of the MTP and some functions
related to the c¢all control signalling, as TUP and +the subscribers
management.

18

Specif SLM

Algebraic Part
import LINK, LINKSETSTATE
sort linkset

functions

% constructors %
linksetinit: ---> linkset
MGMT?Actls : linkset ---> links
MGMT?Desls : linkset ---> links
MGMT?Desl : linkset x linknum

L2108 : linkset x linknum
L211Is : linkset x linknum
L27RPO : linkset x linknum

% observers %
link? : linkset x linknum
state : linkse?t x linknum

et;
et
—_——
——
—

-

-

———

activelink : linkset =---> linknum

Variables
X,y :linknum
lg, «.vy 1p-1, 1k, 1,1’ ¢ 1link

axioms
% initialisation %

% initialisation %

% link set activation %

% link set desactivation %
linkset % link desactivation %
linkset % out of service %
linkset % in service %
linkset % remote processor outrage %
link
linksetstate

link? (linksetinit, x) = linkinit (%)

state (linksetinit, %) = LSINACTIVE

activelink (linksetinit) = O

Figure 6: Algebraic part of the SLM specification

19

assessiza

fasofzy
d-A ¢ llllllllllllll
TUHINE 2
¥ X<
: a
{(1yrses-up
¢ (<)oaufzy 10
easiizi
W) 3
SHEVIAN OV d>A
& 9 xe(1 4] o
¢\>v)
N
& < di1noe) on
O 1)r105.uy '
)
Y3 .
RS TERTI O] P2 DAY Jiupysaessizy
JOTELTYINTY] 10 piug= g pyas C(xypesizy

v <G] oasi)zr 2 =t et} fexasofzd

Grnovsep)

Net Part

BUiY ¢ 9ATLIVSY

¥ Aa TTED
£]
N3]
L]
o111y
L. (-diegsi
=411y :
B :
0= | 1(g)sse45i27
fSLIOVLIHO

‘e

vassegstzy
fx180)21

3 ry
bALOR=(§)1S
¥ X={1)u]

whugu gy ¢
@» MUIIAL 1DV

Q130> -
+
Aw:v. A.L_:umv
. \ L4 i
<+ u-)
o *
dotroe)
(41)ug) doygny
(5A1§28= (] }4S, : L
0 Jjug(41145) . Y
20 v foonundordsn RN

(BA(420=(01)4S] !siseqdinm
JO J{u[=(0f)4S)

MY OIALLIVHIST

A.%

)

Q-7 /(o
- oy

0 ressizr
(omysseisizy

xo (191 oadosstza

otz earssainn

fex1s0jz1

ion

icat

Net part of the SLM specif

Figure 7

20

IV. Model evaluation
IV.1. BExpressiveness

With respect to Petiri nets describing a control structure, ADNs have
clearly the same expressiveness as Turing machines (the zero-testing
problem can be easily encoded into an ADN); ADNs thus extend the
expressiveness of nets. Moreover, the new structuration possibilities still
increase the power of abstraction of such models; the tokens‘contained in
the places are not only integers (as in Place/Transition nets) or
constituted of some basic types (as in Predicate/Transition net) but are
typed marks of arbitrary structure, for which a complete specification is
written.

With respect to data handling, ADNs have the same capability as the
abstract data type formalism.

IVv.2. Structuration

The structuration possibilities of +the ADN model originate from
algebraic abstract data type ones, since it is always possible to shift
from a ADN specification to an abstract data type specification.

Furthermore, it is not necessary to specify each level by using the
ADN model. This formalism will be used when operational aspects must . be
described, elsewﬁere the algebraic data type formalism is sufficient. Thus,
as can be seen in the example given in III.3. sgome specifications (as the
link specification) can be directly written in the algebraic data 1type
formalism. o '

IV.3. Verification

As each ADN specification can be transformed into an algebraic
specification, the wusual verification techniques for abstract data types
can be applied. The verification of ©properties may wuse equational
reasoning, confluence analysis (Knuth-Bendix algorithm), structural
induction /Thompson/, /Paul/, or symbolic evaluation /Kaplan/ and
specification execution /Choquet 2/.

But, as marks are not necessarily finite natural integers, few

_information can ggnerally be inferred from the net structure. Checking
liveness properties, for instance, will need general purpose methods such
as Floyd's method.

The notion of complete specification is generally too powerful to be
verified. Thus, Guttag /Guttag/ defines a sufficiently complete notion

21

which is suitable. It cannot be shown whether or not a set of axioms is
sufficiently complete. Nevertheless, /Quttag/ gives a syntactic method to

establish specifications, which ensures a sufficiently complete
axiomatisation. Moreover, when there is no axiom expressing the relations
between constructors, this method ensures the consistency of the
specification.

V. Conclusion

The ADN model can be seen either as a formalism belonging to the
Predicate/Transition net family in which tokens are terms of some
algebraically defined abstract data type, or as a graphical representation
of an algebraic specification.

For the expressiveness aspects, ADNs brings both the advantages of
Petri nets for the operafional aspects, and of abstract data types, for
abstract data handling. On the verification side, it is not clear yet what
dedicated verification methods for ADNs would be, nor if such methods are
needed since one can transform ADNs into algebraic specifications, in any
case, tools and methods derived for Petri nets seem to be of few help.
These issues should be investigated further.

’

References
s
/Bartlett/ Bartlett. K.A., Scantleburry R.A., Wilkinson P.T.,
"A note on reliable full-duplex transmission over half-duplex links",
Commun. Ass. Comput. Mach., vol.12 n®5, May 1969.

/Berthomieu/ Berthomieu B.,
"Perspectives sur quelques modéles mixtes A base de réseaux de Petri
et de types abstraits algébriques", Contrat DAII/Alcatel/LdM-CGE/LAAS-
CNRS, No.B4.35.087, doc GIS.P.3.7, Toulouse, March 1985.

/Biebow/ Biebow B., Choquet N., Mauboussin A.
"Spécification par types abstraits algébriques de fonctions
caractéristiques d'une Unité de Raccordement d'Abonnés", marché
DAII/Alcatel/LdM-CGE/LAAS-CNRS, No. 84.35.087, doc GTS.P.3.12,
Marcoussis, 1985.

/Cerf/ Cerf V.G.,

"Multiprocessors, Semaphores, and a graph Model of Computation", PhD
Dissertation, UCLA Computer Science Dept., April 1972.

22

/CCITT/ "Specifications of signalling system No. 7", Recommandation Q.704,
.Red book, vol.VI, fasc. VI.7, October 1984.

/Choquet1/ Choquet N., Colin C., Martin J.-M., Mauboussin A.,
"Spécifications en modéles mixtes, réseaux de-Petri et types abstraits
algébriques, de fonctions caractéristiques d’'une unité de raccordement
d'abonnés", marché DAII/Alcatel/LdM-CGE/LAAS-CNRS, No0.84.35.087, doc
GTS.P.3.13, 1985.

/Choguet2/ Choquet N., Fribourg L., Mauboussin A.,

"Runnable Protocol Specifications Using the logical Interpreter SLOG",
th
)

Testing, Toulouse_Moissac, June 1985.

IFIP WVWorkshop on Protocol Specifications,. Verification and

/Genrich/ Genrich H.J., Lautenbach XK., Thiagarajan P.S..
"Predicate/Transition nets", Lecture notes in computer sciences" n®°
84, Springer Verlag.

/Goguen/ Goguen J., Thatcher J., Wagner J.
"An. . initial approch to the specification, correctness, and
implementation of abstract data types", Current Trends in Programming
Methodology, Vol 4 Prentice Hall 1978.

’ -

/Guttag/ Guttag J.V., Horning J.J.,
"The Algebraic Specification of Abstract Data Type",” Acta Informatica,
vol.10, n°t, pp27-52, 1978,

/Kaplan/ Kaplan S., .
"Conditional Rewrite Rules", Theoretical Computer Science 33, December
1984.

/Keller/ Xeller R.M.,

"Formal Verification of Parallel Programs", Communications of the ACM,
July 1976.

/Kramer/ Kramer B..
"Stepwise Construction of Non-Sequential Software Systems Using a Net-
Based Specifiication Language". Advances in Petri Nets 1984, L.N.C.S.
188, G.Rozenberg Ed., p. 307-327. Springer-Verlag (1985).

/Paul/ Paul E.,
Manuel OASIS, Rapport Greco n%6.85, Fev. 1985.

23

/Thompson/ Thompson D.H., Sunshine C.A., Erickson R.W., Gerhart S.L.,

Schwabe D.,
"Specification and verification of Communication Protocols in AFFIRM
using state transition models", IEEE Transaction on Software

Engineering, SE-8.5, p.460-489, 1982,

/Valette/ Valette R.,
"Sur la description, 1l'analyse et la validation des systémes de
commande paralléles", Thése d'état, UPS Toulouse, November 1976.

/Vautherin/ Vautherin J.,
"Un modéle algébrique basé sur les réseaux de Petri, pour 1l’étude des
systémes paralléles", Theése de Doctorat d’'Ingénieur, Université de
Paris-Sud, 1985.

24

