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Abstract

1nis paper is concerned with the specification and proof of con

current asynchronous systelns in which time appears as a parameter : the

modclused here for representing these systems are Merlin's Time Petri Nets.

An enumerative analysis technique is introduced, based on a derivation of

classes of states, defined in the text. An algorithm is given for enumerating

the classes in TPNS ; .it allows to derive a finite representation of the

behavior of a large family of TPNS. Among the illustrative examples provided

is the verification of a communication protocol that makes use of a time out

mechanism for recovering from losses of. messages.
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INTROVUCTION
Two sorts of times are generally dealt with in computing systems

Logical time and Physical time. Use of Logical time is made when expressing

an ordering between events in the system, or a reachability relation among

states of the system, it is the kind of time manipulated in Petri Nets or

Transition Systems based models and also in Temporal Logic. Physical time di.f

fers from Logical time in that it, may be quant.i tied : it may be given a value.

Analysis of the behavior of concurrent asyncronous systems in

which time appears as a quantifiable and continuous parameter is the object

of the present paper. Among such systems are communication systems because com

munication protocols make a wide use of physical time in their specifications

using time-outs for specifying recovery mecanisms from losses of messages

appears there in a quite natural way.

Several attempts to tackle the problem of analyzing systems in

which temporal constraints are part of the specification have been made in the

past and have been successful in particular fields, such as a performance

evaluation. But, few references are available and so far, no general purpose

technique has been devised. Such a technique is proposed here.

Most models devised in the past for representing these systems

were derived from Petri Nets, probably because of their ability for representing

parallel and asynchronous behaviors. Two formalisms, known as Time Petri Nets

[1][2] and Timed Petri Nets [3 ] appeared in 1974.

Merlin defined its Time Petri Nets (TPNs) as Petri Nets in which

a pair of non negative numbers (ot, ~), with Of ( J?>, is associated with each

transition. Numbers 0( and ~ associated with transition t are meant to be times,

relative to the moment at which transition t was last enabled. Further assume

that transition t has been last enabled at time ~ , then t may not fire before

time b + ~ and must fire before, or at, time b + f3 unless it has been disabled
before then by the firing of another transition. Furthermore, firing a transition
takes no time to complete.

Merlin studied, using its TPNs, the recoverability problems in

computing systems n) and the design of <:!ommunication protocols [2] .

Ramchandani's Timed Petri Nets (TdPNs) are obtained from Petri

Nets by associating a firing time with each transition of the net. The firing

rule is further modi fied consider'ing that firing of a tranBi t.ion is in1 tiflt.(,d
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at the same moment it is enabled and that firing takes to oomplete the firing

time associated with the transition.

Ramchandani's TdPNs, or slightly different but equivalent models,

have been mainly used for perfOrmances evaluation. Ramchandani's results in

[3] have been since extended in different directions, recent references in

this area include [4Jtsll6][7] .

Some properti2s of TdPNs are further investigated in (19] •

Our first concern is to model systems in which temporal constraints

appear and analyse their behavior : performances analysis will not be addressed

in this paper. The model we choosed for representing these systems are

Merlin's TPNs. Associating two times with each elementary action of the system

permits to express conveniently most of the required temporal constraints on

the actions, including duration; while associating only a fixed duration makes

difficult to express durations that may not be precisely quantified.

The main contribution of this paper is the concept of state class,

defined in section 2. A method is given that permits to compute for an important

family of TPNs a finite representation of their behavior, in terms of a set of

state classes and a reachability relation in it. This enumerative approach is

related to the "reachability graph ll method for analyzing usual Petri Nets.

Section 1 recalls the definition of the Time Petri Nets and makes

precise how their behavior may be caracterized.

States classes, and an algorithm for enumerating them, are intro

duced in section 2. Decidability questions for some properties of TPNs are

investigated in section 3 and some examples of application of the introduced

analysis method constitute section 4. In the last section are presented comments

arising from the experiments carried out so far and suggestions for further

work.
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1. TIME 'PETRI NETS, VEf1NITION ANV BEHAVIOR

This section first recalls the definition of the time Petri Nets

(1][2] and then introduces a notion of state for these nets that allows to

caracterize their behavior.

Time 'Pe.tJU Nw
A Time Petri Net is a tuple (P,T,B,F,Mo,Is) where

- P is a finite, non empty, set of Places ;

- T is a finite, non empty, set of Transitions,

- B is the Backward Incidence function

B TxP41N

where N is the set of non negative integers

- F is the Forward Incidence function

F:TxP~1N

- Me is the Initial Marking function

Me=p.....,.,.lN

(P,T,B,F and Mo together define a Petri Net)

Is is a mapping called Static Interval

Is : T --:,. Q x <fl U 110 )

where Q is the set of rational numbers.

Further, Static Intervals satisfy the following restriction

Is(t) = (O«,~) ~ 0 ~of.~ ~

Assume Is(t) = (eI,~) for some transition t. Then:

- the closed interval of reals [at.,~] will be called Static Firin9 Interval

of transition t ;

- the left bound ex will be called Static Earliest Firing Time (Static EFT

for short) ;

- the right bound ~will be called Static Latest Firtns Time (Static LFT

for short).

As mentioned in [1], Petri Nets may be considered as particular

TPNs in which each transition has assigned the interval [0,00:1-
"

It may be noticed that our definition of TPNs slightly differs

from Merlin1s in that we restrict numbers ~ and ~ associated with the tran

sitions to be rational numbers, while they were defined as real numbers in

[1][2]. The reason for this restriction, which in practice induces no limitations,
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will appear in section 3 where properties of TPNs are investigated.

One may also notice that the terminology we use is not quite

Merlin's one. This terminology has been introduced for making what follows

easy to read.

TempoJ!.a1 In.teJtp1Le;ta.ti.on
The behavior of TPNs will be made formal in the remaining of the

section, but let us first introduce an example. The TPN figure 1 will be used

throughout the text for illustrating the concepts and methods introduced.

No particular meaning is assumed for it. it covers most of the cases onernight

be faced with in applying the firing rule for TPNs.

FIGURE 1 A Time Petri Net
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With this restriction, we can assume the following general form

state.!> .in a TPN

a State S will be a pair S = (M,D) constituted of :for states of a TPN

This non essential restriction is aimed at clarifying the state

ment of the firing rule ; it will be discussed at the end of the section.

We will make the restriction on TPNs we consider for analysis

that none of their transitions may become enabled more than once "simulta

neously". That is, for any marking M, the following holds for any transition

(SIp) (M(P) < 2. B(t,p))

- a marking M ;

I
!.

- a Firing Domain D which is a set of vectors of possible firing times.

Vectors have one component for each transition enabled by marking M.
th

Components i in vectors of this set are the times at which the i tran-

sition enabled by M is, individually, allowed to fire.

Firing domains may be conveniently expressed as the product set

of the firing intervals of the enabled transitions, with intervals appearing

in the product in the same order as enabled transitions appear in the ordered

set of transition.

As an example, the initial state of the net represented figure 1

will be the pair So =(Me,Do) in which :

- Me = Pl (1) ; (Pi marked with one token)

Do =[0,10].

Interval Do is related with transition tl which is the unique

transition enabled by Mo.

For states other than the Initial State, firing intervals in the

Firing Domain will be generally different from the Static Firing Intervals of

the Transitions they are related with, and so will be their lower bounds

(called simply EFT) and their upper bounds (called LFT) .

Ena. bie.dnu.l> 06 tJta.n.t;,ilio n.l>

Let us assume that the current state of the TPN is S = (M,D).

Some transitions may be enabled by the marking M, but not all of them may be

allowed to fire due to the imperative firing of transitions between their EFT

and their LFT. This "Firability condition" is formally expressed as follows :

::~~~

•••••

I
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A transition t is firable from a state S = (M,D) at a time C>

iff both the following conditions hold :

(1) t is enabled by marking M :

('lip) (M(p) ~ B(t,p»

(ii) ~is not smaller than the EFT of transition t and not greater than

the smallest of the LFTs, among those of the transitions enabled by

marking M

EFTt ~ ~ '" Min {r'FTtil

where ti ranges over the set of transitions enabled by M.

(i) is the current enabledness for Petri Nets, (ii) translates

the fact th~t an enabled transition may not fire before its EFT and must fire

before, or at, its LFT unless another fires before then and disables it.

It must be kept in mind that delay ~ is relative to the Time at

which state S has been reached, that is, the absolute time at which t may be

fired is : "5 plus the absolute time at which state S has been reached.

FbUng JWi.e. between .6tt.vte..6
Let us assume that a transition t is firable at a time l; from a

state S = (M,D). Then the state S' = (MI,D') reached from S by firing t at

time 'G is computed as follows :

(1) the new marking M' is computed as in Petri Nets

(Vp) (M' (p) = M(p) - B(t,p) + F (t,p»

(2) the new firing domain 0' is computed in three steps

(a) Remove from the expression of domain D the intervals that relate to

the Transitions disabled while t is firing. These transitions disabled

are those enabled by M and not enabled by M - B(t, -) ; they include

transition t.

(b) Shift towards the origin of times the firing intervals that remain in

the expression of the domain, of the value 1) and troncate them, if

necessary, to non negative values.

(c) Introduce in the expression o! the domain with respect to the ordering

on transitions the static intervals of the transitions newly enabled.

The transitions newly enabled are those not enabled by M - B(t,~) and

enabled by M'.



Step (a) corresponds to projecting the domain on the dimensions

corresponding to the transitions that remained enabled while t fired.

At step (b), time is incremented of the value ~. This is trans

lated by shifting the remaining intervals of the value ~ • At step (c), the

domain of the new state is defined as the product of the current domains of

the transitions that remained enabled and of the static firing intervals of

the newly enabled transitions.

Example:

Let us illustrate the firability condition and the firing rule by

some firings in the net figure 1.

.'

The initial state is So (Mo ,Do) with

- Mo = P1(1)

- Do =[0, DO] (t1 enabled).

Transition t
1

may fire at any time from So. Firing t
1

at a time ~1

would lead to a state S1 = (M1 ,D1) with :

- M1 = P2 (1), P3 (1), P4 (1) ;

- D1 =[0,21 x [i ,4] x [4 ,51 x &,5].

Enabled transitions are t
2

, t
3

, t
4

and t
S

• Their firing intervals

appear in this ordering in the expression of D1. Note that time '(;1 has not

been used in the computation of Domain D1 since no transition remained enabled

when firing t 1 "

From state S1, only transitions t
2

and t
3

may fire since the EFT

of t 4 and t s are later than the LFT of t 2 . Transition t 2 may fire at any time

in its firing interval[0,2] while transition t
3

may only fire in the interval

[1 ,2], between its EFT and the LFT of t
2

.

Firing t 3 at a time b3 in the interval D,2] from state S1 would

lead to the state S3 =(M3,D3) with

- M3 = P3 (1), P4 (1), P5 (1) ;

- D3 = (1nax (0,4- g3), 5 - 't3]x tmax (0,3 -l;3), 5 -1>,3]

::;: [4 - ~3.' 5 - ~11x ~ - bJ" 5 - 631 since ~3 ~ 2.

h
1;1

'I11.- '~ ._
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Intervals in the domain are related with transitions t
4

and t
s

'
these transitions remained enabled while t was firing and thus their inter-

, 3
vals have been shifted of a value equal to the time at which t

3
was fired.

Further, transition t
2

was in conflict with t
3

and no transition is newly

enabled.

CalLac.tell1.zing .the beha.v-ioJt. 06 a TPN

The sentence "transition t is firable from state S at time b
and firing it leads to State S I" will be denoted :

S ( t , '5 ).,. 5 I

A Firing Schedule will be a sequence of pairs

in which t
1

, t 2 , ... , t
n

are transitions and (;1' b!, ... , ~h are times. This

firing schedule is feasible from a state 5 iff there exist states

51,52, o 0 0 , 5n such that :

5

The firing rule permits to compute states and a reachability

relation among them. The set of states that are reachable from the initial

state or the set of firing schedules feasible from the initial state caracte

rizes the behavior of the TPN, in the same fashion as the set of reachable mar

kings or the language of firing sequences caracterized the behavior of a Petri
Net.

One could think about using this set of states for analysis purposes.

Unfortunately, this is not possible in general since this set is usually infi

nite. The reason is that, as time is continuous, a firable transition may fire

at any time in its' allowed interval and thus leads to an infinity of successors

for the state.

Section 2 is entirely devoted to finding a finite representation

for this set of states. Before ending this section, let us discuss the restric

tion we introduced earlier on the TPNs to be analysed.

Assume that a transition t, with static firing interval [ot, ~J ,
'3

is enabled by the current marking and that a time ~ (with C;~ ~) elapsed since

it was last enabled (this is possible when other transitions may fire indepen

dently of t). The current firing interval of t is thus ~ax (0,0( - '& ) , 13 - -r;].



Now assume that the last firing have made transition t twice

enabled by the current marking M, that is (Vp) (2.B(t,p)~M(p» and

(.:j p) (M(p) -< :J.B (t,p» .

Transition t has now two intervals associated with

- maxVo, 0( -~ ), ~ -l']for the first time it wag enabled

-&'.(3.] for the last time it was enabled.

The question is : which one of these intervals should be considered
l

when t fires or when t is disabled: anyone randomly? the oldest? another,

obeying some rule 7

As can be seen, several interpretations are possible for multiple

enabledness, and the firing rule would depend on the choosen interpretation.

In the most general interpretation, transitions enabled several times simulta

neously could be considered as independent occurrences of the same transition.

If the choice is taken of firing the occurrence with the oldest interval, then

transitions are fired with, in some sense, a first-in first-out discipline.

Many other strategies may be devised and consistant meanings may

be certainly found for all of them. As a consequence, unless explicitely men

tionned, the nets considered in the remaining of the paper obey to the previous

restriction, i.e. no transition can be enabled more than once.

2. GROUPING STATES, STATE CLASSES AND ENUMERATION ALGORITHM
This section introduces state classes and an algorithm for enume

rating them. This algorithm will allow to derive for a large family of TPNs

a finite representation of their behavior. This behavior will be represented

as a graph whose nodes are state classes and arcs represent a reachability

relation among classes.

Rather than considering the state reached from the initial state

by firing a firing schedule (0"', e), we will consider the set of states reached

from the initial state by firing all feasible schedules with the same firing
1)

sequence~. This set of states will be called the State Class associated with

the firing sequence (}.
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These classes will be pairs C = (M,D) in which :

The step from states to State classes in given in the diagram

- D is the firing domain of the class, it is defined as the union of the

firing domains of all the states in the class.

- M is the marking of the class, it is clear that all states in the dass

have the same marking

cr

Co={So}50

belowI
I

c= US;. :- (fV1 U D;'). ) .
.fi /4

Computing cl~~e6

In practice, we are interested in computing recursively the set

of classes, i.e. deriving the class associated with sequence~.t from the

class asociated with sequenceU), the initial class being defined as the class

that contains only the initial state.

Let us assume that classes have the following g~neral form

C = (M,D) with :

- M marking

- D Firing Domain, defined as the solution set of some system of inequa

lities in which variables are 1 to 1 associated with the transitions

enabled by marking M :

(A is a matrix, ~ a vector of constants and t the vector of variables).

, It may be shown easily (in the next section) that the Firing Domain

of the initial class may be expressed as above. Further, the statement of the

firing rule will make clear that it maintains the general form above for domains

of the classes.

"
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Unlike the expressions of domains in the states, the expressions

of domains for state classes allow to introduce relationships between the

firin~ times of several transitions.

EnabtedneM DO ;OI.a.nhilioY/..6. OJz.om ctM.6e.6

Let us assume that the current state class of the net is C = (M,D),

D being the solution set of some system of linear inequalities

A transition t is firable from the'class C

following conditions hold :

(i) t is enabled by marking M :

(Vp) (M(p) ~ B(t,p»

(M,D) iff both the

:..

(ii) Assuming that transition t is the i
th

transition enabled by marking M,

then the following system of inequalities is consistent :

A • !.~ b

t (i) " t (j ) for all j, j .;. i

where ~ (j) denotes the jth component of vector t •

Condition (i) is the usual enabledness, condition (ii) means that

ampng the set of vectors of firing times that constitutes the domain of class C,

at least one is such that transition t may be fired before, or at the same

time than, any other enabled transitions.

It would be difficult to express condition (ii) for classes using

the EFTs and LFTs of the transitions, as we did for states in section 1. This

is because it exists possible relationships between the firing times of diffe

rent transitions.

F)}z.,tng Jz.ui.e between ci.Mhe.6

Let us assume that transition t is firable from a class C = (M,D)

with

,
~:, ~If.' _
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The class C' = (M' ,D') reached from class C

the transition t is computed as follows ':

(1) As in Petri Nets, the new marking is defined by

(Vp) (M' (p) = M(p) - B(t,p) + F(t,p»

(2) Domain D' is computed from domain D in four steps

= (M,D) by firing

/

til ~ b"- ~

(a) Add to the system A • !..., £ , that defines domain D, the firability

condition for transition t. This leads to the following system

(assuming that t is the i
th

transition enabled) :

{

A. t ~ b

!.. (i) , !.. (j) for all j, j F 1.

(b) First, make the following change of variables : express all variable

!.. (j), with j F i, as the sum of component t (i) and a new variable

~' (j)

t ( j ) = !.. (i) + til ( j), for all j, j F 1.

Second, eliminate from the system the variable t (i).

The resulting system may be written:

{

A" •

o ~ til

with A", bl! computed from A,b, the equations that define the new va

riables and using Fourier's method (see[a]for instance) for eliminating

variable!.. (i).

(c) Eliminate from the system obtained after step (b) all variables corres

ponding to the transitions disabled when t is fired : these transitions

are those enabled by M and not enabled by M - B(t,-) Le. before

computing the new marking M - B(t , -) + F (t ,-) •

(d) Augment the system obtained after step (c) with new variables, one

associated with each transition newly enabled, and constrain these

variables to belong to the Static Firing Intervals of the transitions

they are associated with, respectively. The newly enabled transitions
"

are those not enabled by M - B(t, -) and enabled by M'.

This system may be written

A' • !..'~ £'.

It has as ma.ny variables as there are transitions enabled by marking

M' and its solution set defin.8s DI •

'.



Some comments may be worth to explain these different steps

(a) Assuming that class C is the class associated with the firing of

somesequence(f, then the solution set of the system found in ta)

is the union of the firing domains of the states belonging to class C.
Trom which transi tilDn t is firable and rest ricted by !. (t) ~ !(others).

(b) Considering component ~ (i) as a parameter, the system expressed

with the new variables (after the first sub-step) gives, for a given

value x of the parameter, the possible vectors of firing times for

all enabled transitions distinct from t with, as new origin for times,

the parameter x, which is the moment at which transition t is fired.

Further, eliminating variable ~ (i) from the system gives a system

whose solution set is the set of all possible vectors of firing times

for these transitions, relative to the moment at which transition t

is fired, this for all possible values of the firing time of t.

(c) The solution set of system found at step (C) is the projection, on

the remaining dimensions, of the solution set of the system found at

step (b).

Relationships between variables that remain in the system are not

changed by the elimination operation.

(d) The resulting solution set is the product of the set found at step (e)

and the Static Firing Intervals of the neWly enabled transitions.

These comments should suffice to convince the reader that, if C

was the class associated with the firing sequence tr, then C' = (M',D') as

computed above is actually the class associated with sequence~.t. For a more

rigourous demonstration, we should detail the

sed in the comments.

Ho w cla.6.6 e.I.l e.xptte..6.6 the. be.hav-w1L 0 n.the. TPN

proofs of the assertions expres-

t

Using the firing rule, a tree of classes can be built. Its root

is the initial class and there is an arc labelled with t from class C to

class C' if t is firable from class~C and if firing it leads to class ct.

It may be noticed that in this tree of classes, each class has only

a finite number of successors, at most one for each transition enabled by the

marking of the class.

~----------------
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It is clear from the definition of the classes that any sequence

of transitions firable in the TPN will be a path in the above tree cfclasses.

Further, the existence of a path labelled w between two classes C, associated

with sequence T, and C' of the tree must be interpreted as follows

There exist feasible firing schedules (If, q) and (CAJ, Et) such that

So (Q", 9... ) S (c.>,82) S'
-----"".!~~ 1lI'

with state S belonging to class C and state S' belonging to class C'.

Chec.IU..Ylg .6:ta.te c£.a.6.6e.6 nOh. equ.aLUy

Two state classes will be defined equal iff both their markings

are equal and their firing domains are equal. Checking firing domains for

equality require some comments since domains are defined as solution sets of

systems of linear inequalities.

It may be shown that, in the general case, comparing for equality

the solution sets of two systems of linear inequalities, with same variables

and nand m inequalities respectively may be done by solving m systems with

(n + 1) inequalities and n systems with (m + 1) inequalities with same varia

bles as the systems to compare. This method is a straight forward application

of the set equality, the solution set of a system of inequalities being the

intersection of the solution sets of its constituting inequalities.

We will not address this problem in the general case. For our

particular case, it may be shown (this will be done in section 3) that the

systems defining the firing domains are systems with at most two variables

"per inequation and have the following general form :

Though possible, this method would be rather unefficicent since

every domain computed has to be compared pair-wise with each previously com

puted domain. A better method should be first to put the systems that define

the domains into some canonical form, as soon as they are computed, and then

comparing for identity the canonical forms of the systems. This canonical form

for systems should have obviously the property that canonical forms of two

systems are identical if and only if the solution sets of the systems are ~

equal.

GF

f
of. ~ t (i) ~ ~.

~ " - r~

t (j) - t (k)~ (J'k
- - "" J

\'.

for all i

for all j, k with j ~ k



where t (i),:!:. (j) and t (k) are variables and.o(.,~., Kjk are constants.
- 1 '1

So, let us assume that we start from a system with the above

form. A canonical form for this system would be the following

for all i

for all (j,k) with j # k.

smailiest possible value of variable t. ,
1

()(.~ ~ t (i)" a~
1 '" - .'.,11

~
t ( j ) - t (k) ~ Y' .k
- - (J )

with

largest possible value of variable t.,
)

largest possible value of the difference t j - ~.

The solution set of a given system of form (GF) may be associated

with only one system of form (CF) since transforming into an equality any

inequality in system (CF) gives anequality the solution set of which contains

a part of the boundary of the domain.

Details of the method will not be given here, but comp~ting this

canonical form from a system with form (GF) may be done by a series of elimi

nations and simple comparisons. About the complexity of computing the canonical

form, it is conjectured at the moment that this can be done in polynomial time.

Strong convictions for this claim come from a result in 1)2] in which it is

shown that solving systems of inequalities with at most two variables per

inequalities can be done in polynomial time.

A state class may thus be caracterized by its marking M, constants
~ ~ ~

~i and,~i for each enabled transition and constant 0jk for each distinct pair

of enabled transitions. Computation of the canonical form may be put as an

additionel step to the firing rule ; comparing classes for equality will be

then comparing per equality strings of numbers.

When the tree of classes of a TPN will have a bounded number of

distinct nodes, we will associate a graph to the net, obtained by grouping

equal classes of the tree into a single class. This graph will be called the

reachability graph of the TPN.

txampte.
Before giving as an example the classes and the graph of classes

for the TPN represented figure 1, let us introduce a (non essential) technical

trick we use for computing classes : let us suppose that some transition may

:.ft..i _
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be fired from a class C" but that the earliest time at which a transition may

fire i.s a strictly positive timeO(. Then firing a transition t fr6!t1 C at a

time ~ ( ~ will be necessarily greater or equal than Of) may be decomposed

into

"advance" time doing nothing, until time Ol is reached. Let us denote C'

the class reached at that step ;

-" fire transition t at time (j - Of from the class C'.

\
When computing classes, the class C' above will be choosen as re-

presentative for class C. Computation of time 0\ and of the firing domain of

class C' are easily carried out from the canonical form of class C.

The following table 1 gives the list of representative classes for

the net represented figure 1, table 2 gives the reachability graph for this net.

List of State Classes for the net figure 1

where Ti is the variable associated with transition ti.

I

CLASS CO :

M = Pi (1)

I = 0.( Ti "eo

CLASS C3 :

M = P4 (1), P5 (1), P6 (1 )

I = 0 ,*T5 "1
0", T6~ 2

CLASS C6 :

M = P4 (1) , P7 (1)

I = 2 ~T5' 4
o (T7 <2

CLASS C9 :

M = P4(1), P5(1), P6(1)

I = 1 'T5' 5
0$T6~2

CLASS C12 :

M P4 (1), P7 (1 )

I = 0 ~T5' 5
1~T7 ~~

TABLE 1

....~

CLASS C1 :

M = P2(1), P3(1), P4(1)

I = 0 ~T2' 2
1 ~T3 ~ 4
4 ~T4'5
3 ~T5~ 5

CLASS C4 :

M = P4 (1), P5 (1), P6 (1 )
I = 3 '- T5~ S

O'T6" 2

..cLASS C7 :
M = P4 (1), P7 ( 1)

I = 0" T5 '" 1
1~T7~3

CLASS Ci0 :

M = P4 (1), PS ( 1), P6 (1 )

I = 3 ~T5' S
0~T6~ 1

CLASS CD :

M P!(1) f P4(1) , PS(l)

I = 1 '" T4 "3°~T5~:<
T4 - T5 ~ 2
T5 !. T4 ~1

CLASS C2 :

M= P3(1) ,P4(1) ,P5(1)
1= 1~T4~4

O",TS 44
T4 - TS "2
TS - T4 "-1

CLASS c5 :

M= P4 (1), P7 (1 )

1= °'" TS '" 4°.:$T7" 2

CLASS C8 :
M= P3(1) ,P4(1) ,PS(1)

1= O""T4'2
3'TS-'5

CLASS Cll :

M= P4 (1), P7 (1)

1= 1"T5 '-4
0:f.T7:$ 2
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co --"> ti/el

el ~ t2/(S==1)/e2, t3/(S==1)/e13

e2 ---'" t4/e3, ts/e8

e3 ---')lo tS/C4, t6/e7

C4 ~ t6/(S = 1) /CS

es ......,.. tS/(S == 1)/e6, t7/eo

e6 --,. tS/(S 1) /e6, t7/eo
e7 --+ tS/(S 1)/e6, t7/eo

e8 ~ t4/C9

e9 -+ ts/el0, t6/e12

CI0 --+ t6/(S == 1) /cU

ell~ tS/(S == 1) /e6,. t7/eo

e12 -. t5/(S = 1) /e6, t7/eo

e13 ---p t4/e3, ts/e8

co is the initial class. Line 6, for instance, must be read: firing t5 from

class es leads to a class that, once shifted of a time 1, is equal to class C6;

firing t7 from class CS leads to class co.

II

I
I

TABLE 2 Graph of classes for the net figure 1

The graph represented table 2, together with the content of the

classes given table 1 caracterize t:he behavior of the net represented figure 1.

Feasible firing schedules are not made explicit in these tables but may be

deduced with little effort. We did not give, so far, conditions under which a

gi ven TPN has a finite number of classes. This problem is addressed in the

following section.

3. SOME PROPERTIES OF TIME PETRI NETS

Let us introduce some notations and terminology we will use in this

section :

- The set of markings of a TPN that can be reached from its initial marking

will be denoted R(Mo) ;

The reachability problem is whether or no a given marking belongs to R(Mo)



i.e. :

The boundedness problem is whether or no all markings in R(Mo) are bounded,
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('3kE'1N) (\'MER(MO» (\lpE.P) (M(p)' k) ;

- A TPN will be said T-bounded if it exists a natural number k such that

more than k times simultaneouslynone of its transitions may be enabled

by any reachable marking, i..e.

(':!kE;IN) (VlJ.lE;R(Mo» (ytET) (3PEP) U-1(p) ( fk + 1) • E(t.p)

It may be noted that Boundedness implies T-boundedness but that the converse

is not true •

The property T-safe is the particular case of the above T-bounded property,

with k = 1.

Theorem 1 recalls an undecidability result for TPNs

THEOREM 1

The reachability and boundedness problems for TPNs are undecidable.

Proof A direct proof is produced in reference [9]. Others (indirect) proofs may

be produced : it can be shown that TPNs can simulate Inhibitor Nets and

Priority Petri Nets, and have equivalent reachability and boundedness

problems. Since these problems are known undecidable for the two latter

classes of nets, (see (10] for instance), it may be infered that they are

also undecidable for TPNs. QED

A straightforward consequence of theorem 1 is that the finiteness

of the set of classes for TPNs is undecidable since classes are pairs (marking,

firing domain) •

Several sufficient conditions for boundedness will be given later

in the section, but we need first to state some theorems.

Lemma 1 : General form Lemma

The firing domains of state classes for any T-Safe TPN may be

expressed as solution sets of systems of inequalities of the following form

{ Ql. 't (i)~ p. for all i
1. - 1.

!.( j) - t(k)$ tC'k " for all j, k with j :f: k
- J

where t (i) is the variable associated with the .th transition enabledl.-
by the marking of the class.



Proof

0°, t') p, 6
}VU':Q )

The initial firing domain fits into this general form. It may be

expressed as a set of inequations : ot~~ t (i)~ A:~, where t (i) is
J. - , ....J. -

associated with the i th transition initially enabled andOC~ and B?
J. .p_

are the Static EFT and LFT of that transition, respectively
S(Pi may be unbounded) •

Default values for ~k may be

redundant inequations will not

s . S
provided with ~k = ~j - C:(lt' these

affect the solution set of the system.

The computation of the domains in the firing rule for classes

defined in section 2 consisted of four steps. For the purpose of the proof,

let us express it as three steps and show that those steps produce, from a

system with the general form, a new system that have also this general form.

STEP 1 Consists of steps (a) and (b) of the firing rule. Starting from a

system with form above, step 1 transforms as follows this system;

~ (f) being the variable associated with the transition fired :

(OP1)

-c(, becomes max (0 I - ~fi' I oli - ~I )J.

-~i becomes min ( (Sit " lSi - ol£ )
- (jkbeCOmes min (~jk ; ~j - otk )
- All inequations containing variable t (f) disappear from the system.

STEP 2

(OP2)

STEP 3

Eliminations

Corresponds to step (c) of the firing rule. It consists of successive

eliminations in the system of the variables associated with the tran

sitions disabled while ~ (f) was firing.

Each elimination, for instance of variable t (e), corresponds to the

following transformation of the system

-d... becomes max (01· ,..". "II!'. )
J. ].) Vle - Del

- f.'i becomes min ((3i.) pe+ ~ ie )

- ~jkbeCOmes min (2i'jk I Xje. t Xek)
- All inequations containing variable t (e) disappear from the system.

Introductions

Corresponds to step (d) of the firing rule. It consists of successive

introductions in the system of the variables and inequations relative

to the newly flnabled tranfJiticmu.

".,
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Each introduction, of variable ~ (n) for instance, corresponds

to the following transformation of the system :

For all i, j, k, di stinct from n, oi i ' ~i and ~k do not change.

"I

Static EFT and LFT of the transition

, So d~' ~s~sor. an ~s •
n n n

- A new variable t (n) is introduced, constrained by the inequations:
- S

ol So( t (n) '" r;n - f'n .

in whichCJ:5. and ~S denote the
n ,-n

associated with tn respectively. ThusCi
n

- Further inequations may be provided for relationships between

variable t (n) and the others. These inequations are

t (n) - t (k)~ lnk for all k k~ n

t (j) - t (n)' ~, for all j j ~ n
In

Default values for ~nk and ~n must be choosen such that these

inequations are redundant. This is acheived by

(OP3)

I
l{nk

21'jn =

I

For acheiving the proof of lemma 1, it must be shown that firing

a transition keeps the general form for the systems that define the tiring

domains. Firing a transition consists of an application of transformation

(OPl) followed by a number of applications of (OP2) and a number of applica

tions of (OP3). Each of these transformations, individually applied, keeps

the general form, thus so does their combination. QED.

Lemma 2 :

The constants or. , 11., and If 'k of any system computed from the
~ l"'~ J

initial system by the firing rule are linear combinations with integer coef-

ficients of the Static EFTs and LFTs associated with the transitions of the

TPN. i.e. the following hold :

('Vi) (3 ~1J ... " t\2h E: Z )
(oti = Alfo(~+·· ·+Jl'\o(~+tth..I~~+··· ... ,.{r~ ~~)

(and similarly for each Pi and tjkP.

..~
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Proof

Lemma 3

The proof is straight forward : Le~na 2 is true for the initial system

and this property is kept when the three basic transformations OPI,

OP2 and OP3 are individually applied. QED.

The cori'stants "'i' (3i and ~k' for all i. j, k, of any system

computed from the initial system by the firing rule have the following bounds

o 'di "0(:
o ~ (3i ~ ~:
s ··S

- t>!k "lfjk" ~j •

Sketck of the Eroof :

Upper bound for (:;i

are e~sily proven by induction

lower bound for eli and upper bound for l5jk
on the basic transformations : they are satisfied

by the initial system and they remain satisfied when any of these transformation

"-

bound for ~i requires that the smallest possible value

may only decrease when firing a tr~nsition. Using this

is applied. Consistency of the systems implies the lower bound for 13:.. Upper
~ ..

of t
i

(denotedO\)

fact and invoking con-

the upper bound for 0(. and lower bound
~

sistency of the systems allow to prove

for 3'jk. QED.

It may be noticed that, if the static LFT £3; is not bounded for

some transition i, then components a. and 1$.. (for all j, j f: i) are initially,
r"~ ~J

and will remain, unbounded.

Lemma 4 :

Let A and B be two bounded real constants and q1' ••• , qn be a

finite set of rational constants.

Then there are only a bounded number of linear combinations of

numbers qI' ••• , qn' with integer coefficients, between numbers A and B.

and

and

and

I.e. the number of rational numbers X such that

X = A.. q4 ..... of Jn<in
;";1 J ...) ~n €: Z

"
ql ~ ••• , qn € Q

A$ X~B

is bounded.



Proof Let us denote d the common denominator of rational numbers

Qi' ••• , Q , and Q. the product d.q .• The problem above is equiva-n ~ ~

lent to proving that there are only a bounded number of linear

combinations of integers Qi' ••• Qn' with integer coefficients, between

the bounds d.A and d.B, which is obViously true. QED.

"
i

I

I
~
Ii

Ii

Theorem 1 addressed the problem of the finiteness of the set

of markings. Theorem 2 below is concerned with the finiteness of the set of

firing domains of the state classes.

THEOREM 2 :

If a TPN is T-bounded, then the set of all the firing domains

of its state classes is finite.

Proof: The proof is carried out for the T-Safe case and then extended, with

an adequate interpretation, to the T- bounded case.

The possible O(i ,(3i and ~jk for systems that describe the domains

are linear combinations with integer coefficients of the static EFTs

and LFTs (from lemmas 1 and 2), they are either unbounded (and in

this case remain unbounded) or have upper and lower bounds (lemma 3).

Further, the Static EFTs and LFTs are rational numbers (definition of

TPNs). Thus, using lemma 4 only a bounded number of distinct 61i , Iii
and ~jk may be computed with the firing rule.

Consequently, only a bounded number of systems may be computed, cor

responding to a bounded number of firing domains for classes.

This proves theorem 2 for the T-Safe case.

For extending the proof to the T-bounded case, let us consider

the (possibly many) variables associated with a given transition as independent.

Firing the transition is then firing one of its occurrences (all possible ~

alternatives must be taken) and disabling applies to one or several occurrences

of the same transition, (all combinations for remaining enabled occurrences

must be considered).

The firing rule needs not to be modified further. The only diffe-
"renee with the T-safe case is then that there may be more variables in the

system that there are enabled transitions. But, since the net is T-bounded, the

total number of variables is bounded and, using a similar proof that for the

T-safe case, it comes that only a bounded number of firing domains may be

computed for the TPN. QED.
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RemalLk.

Restricting the static EFTs and LFTs of transitions to be ratio

nal numbers (instead of real numbers in Merlin's definition) is essential.

Theorem 2 does not hold if EFTs and LFTs are real numbers.

Figure 2 below shows one of those nets which is bounded (it has

only one marking), but which has an unbounded number of classes of states.

.I

FIGURE 2

Theorem 2 is interesting in that it permits to infer theorem 3

below

THEOREM 3

A TPN has a bounded number of state classes if and only if it is

bounded.

Proof : If not bounded, then it has an unbounded number of classes since

classes are pairs (marking, firing domain).

If bounded, then it is T-bounded and it has both a bounded nwnber of

markings (consequence of the boundedness property) and a bounded

number of firing domains(consequence of theorem 2). QED.

So, any sufficient condition for the boundedness property will
"

provide also a sufficient condition for the finiteness of the set of classes.

Three of these sufficient conditions, of increasing strength, are discussed

in the sequel. They are stated for T-Safe TPNs only.



••••

The notation M'~ M will be used in the following theorems

it is defined as :

(v pEP) (M' (p).). M(p» A (,3 pE. P) (M' (p) ". M(p» •

Lemma 5

If aT-Safe TPN is not bounded, then a firing sequence of un

bounded length, going through a sequence Sof states classes in which all

classes are pairwise different, is firable from its initial class.

Proof: From theorem 3 it comes that an unbounded TPN has an unbounded number,

of reachable classes. Further, since each state class may only have a

bounded number of successors by the firing rule, its set of classes

must necessarily contain such a sequence S. QED.

THEOREM 4 : Sufficient Condition 1 (SC1) :

(SC!)

Proof

AT-Safe TPN is bounded if no pair of state classes C = (M,D) and

C' = (M',D') are reachable from its initial state class and are such

that.

(i) C' is reachable from C

(ii) M'~ M.

Suppose the TPN unbounded and consider the unbounded sequence S used

in lemma 5. Since the net is T-Safe, it admits only a bounded number

of firing domains (theorem 2) and, as classes are pairs (marking,

domains), the unbounded sequence S must contain an unbounded subsequence

S' in which all markings of the classes are pairwise different. Further,

using [11],

two classes

So. 5C1

such an unbounded ~ubsequence 5' would necessarily

5', := (M,D) and 5'. := (M' 0') 'wfth 1'1' ~ Mi ). +n ' , ~.

is sufficient for boufldedness. .'However it is

contain

not necessary sufficient condition 1 fails for the TPN represented

.:;:

figure 3 below, though this net admits only two state classes.

The reason is that for TPNs, if a firing sequence is firable from

a marking M, it does not implies that the same sequence is firable from a mar~

king M' with M'~ M.

It may be noticed that scI holds for any TPN such that the Petri

Net we obtain from it by removing the time constraints on all transitions is

bounded (such as the TPN figure 1). This does not implies that sct is worthless

since it also' holds for some TPNs that do not satisfy this property.
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FIGURE 3

THEOREM 5

(SC2)

Sufficient Condition 2

AT-Safe TPN is bounded if no pair of state classes C = (M,D) and

C' = (M',D') are reachable from its initial class such that:

(i) C' is reachable from C ;

(ii) M' 5} M

(iii) D' = D •

M I ~ M and D' = D. So, SC2 is a

Proof Suppose the TPN unbounded and consider the unbounded sequence S' used

in the proof of theorem 4. Since this sequence is unbounded and the

net admits only a bounded number of firing domains, sequence S' must

contain an unbounded subsequence S" in which all classes have the same

domain. Further, this unbounded sequence SU must contain (Ili]) two classes

S': = (M D) and S" = M" D' with
1.' i+n'

sufficient condition for boundedness. However the condition is not

necessary : SC2 fails for the net figure 4. Below, though this net

admits only eleven state classes. QED.

FIGURE 4

It may be noticed that SC2 permits to prove bounded the net re

presented figure 3.



(i) C' is reachable from C

(SC3) (ii) M' ~ M

(iii) D' = D

(iv) (\!pEPw(M,M') ) (M(p) > max B(t,p»
tE,T

where Pw(M,M') ={PE P 1M' (P)>M(P)}.

subsequence S'" = (Mi I Di ) i E: iN such that ..
(V i) (Mi ~ Mi +1)

and (Y i) (Pw(Mi, Mi +1) ~ Pw (M . l'Mi) )
~-
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Sufficient Condition 3

A TPN is bounded if no pair of state classes C = (M,D) and.

C' = (M' ,D') are reachable from its initial state class and are

such that

Further, since the length of this sequence is unbounded and that the

number of distinct possible Pw is bounded, there must exist in this

sequence some pair of classes' $'." = (M,D) and S'." = (M' ,D) such that. ~. Hn

(ypEPw (M, M' » (M (p) > k(p»

where k is any mapping associating with any place an integer k(p).

Obviously, k may be choosen such that for any place P,

k(P) = max (F(t,p». So, SC3 is a sufficient condition for boundedness.

However the condition is not necessary: SC3 fails for the net

figure 5 below though this net admits only 13 classes. QED. ~

Suppose the TPN unbounded and consider the sequence S" used in the

proof of theorem 5. Using na, and since the number of distinct subsets

of P is bounded, this sequence S" must necessar~ly contain an unbounded

THEOREM 6

Proof

JII!

I

FIGURE 5
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In the net figure 5, firing ten times transition t 1 leads to a

state class with marking Pi (1), P2 (10) and firing intervals (1 ,1], [2,2], for

transitionst i and t
2

respectively. From this class, transition t
1

may be

fired two times, leading to two classes C and C' successively. Classes C

and C' satisfy the three conditions expressed in theorem 6 and thus SC3 fails

to prove this net bounded. But, the net is bounded: from class C i
, firing

once more transition t
i

is not allowed, and firing t
2

leeds to a previously

enumerated class.

Using theorem 6, the enumeration of classes stops when a firing

sequence is found that does not decrease the marking of any place and such

that all places it increases the marking of had, when starting the sequence,

markings greater than some bounds k (p). Though bounds k (p) may be arbitrarily

choosen, it would be wise to choose them as the maximum weight among those of

the outgoing arcs from the place. The idea behind this choice is that if the

marking of place P reaches that value, then it will help enabling some tran

sition that, when firing, will decrease the marking of place P. This is

obviously not always the case, due to the timing constraints (as for the exam

ple figure 4), or to the fact that some transitions may be dead.

It may be noticed that SC3 permits to prove bounded the net re

presented figure 4. Also, it is clear from the statements of theorems 4, 5

and 6 that

SC3 ~ SC2 ~ SCi.

In practice, the experimental computer software package we are

developping for analyzing TPNs allows a user controlled enumeration when

checking for boundedness. Sufficient Condition 3 is used together with con

ditions expressed by the user who provided the net and based upon his intui-

tive understanding of the behavior of the net. Typical user defined conditions ?j

are upper bounds for the markings of some places or relationships between

markings of several places. This technique has been proved adequate for most

of the application examples we have treated so far.

Finally, when the TPN associated with is bounded, it becomes pos-
It

sible,using the graph of classes, to prove specific properties that caracterize

the correct behavior of the system represented. F~ther, liveness properties,

similar to those defined for Petri Nets, may be defined for TPNs and, for

bounded TPNs, proved using the graph of state classes •

....
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4. EXAMPLES

4.1. AnalY6,u 06 Commu.nlc.a.-ti.on PILo:toc.oL6 :

As mentionned earlier, communication protocols make a wide use of

timing constraints : recovery mechanism for losses of messages are usually

implemented using time outs.

TPNs constitute a suitable tool to verify that the choosen

values for the time outs are correct.

The example used for illustrating the verification of communica- \

tion protocols is the Alternating Bit Protocol [,13]. This protocol is concerned

with transmitting messages from one place to another, allowing only one message

in transit at a time : the sender process waits, before sending a new message,

for the ackribwledgementof the last message it sent. Hypothesis on the behavior

of the transmission medium is that messages, or their acknowledgemen~ may be

lost or damaged during transit.

A mechanism is provided for recovering from these losses : a time

out is set when a message is sent and, if its acknowledgement does not arrive

in time, then the message is retransmitted.

But, the above mechanism is not sufficient to prevent duplicated

messages ; this is because if the acknowledgement for the last message sent is

lost, then the receiver is unable to decide whether the next message is a new

message or a copy of the last message it received. To overcome this problem,

the protocol uses modulo-2 sequence numbers attached to the messages.

The TPN figure 6 is a representation of such a protocol. For sim

plifying the example, it is assumed that only losses of messages and of ack

nowledgementsare possible. The meanings of the transitions are given in Table 3.

Estimates for the duration of all elementary actions are provided, except for

the sending of the first copy of the messages. Retransmissions of messages @l

occur at a time comprised between 5 and 6 units of time after the message is

sent. Equal estimates of times (between 0 and 1) are given for losses and

receptions of messages and acknowledgements.

The graph of state classe~produced for this net is represented

figure 7. Sixteen classes have been computed i markings and firing domains

for these classes are given in Table 4.
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RLP1

P"10

LA1
_IC-......

"t1b ( q,-1)

FIGURE 6 : A TPN for the Alternating Bit Protocol Example
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FIGURE 7 : Graph of state classes for the Alternatinc; Bit Protocol

",.
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T1 Send packet 0 T9 : Receive/Reject packet 0
T2 Resend packet 0 T10: Receive/ Release packet 1
T3 Receive ack 0 Tll: Send ack 1
T4 Send packet 1 T12: Receive/Reject packet 1
TS Resend packet 1 T13: Lose packet 0
T6 Receive ack 1 T14: Lose ack 0
T7 Receive/Release packet 0 T1S: Lose packet 1
T8 Send ack 0 T16: Lose ack 1

TABLE 3 Meanings of the transitions for the Alternating

Bit Protocol Example

CLASS 0

M = P1 (1) , PS (1)

I : 0", T1

CLASS 1

M = P2 (1), PS (1), P9 (1 )
I = S' T2 ~6

0~T7" 1
0", T13,1

CLA$S 2

M = P2 (1), :J?6 (1 )

I = 4:S T2 ~6

0~T8~2

CLASS 3

M = P2 (1), P7 (1), P10(1)
I = 2' T2 ~6

O~ T3 0'$1
0.:$ T14~1

CLASS 4

M = :J?3 (1), P7 (1)
I = 0 ~T4

CLASS 5

M = P4(1) ,P7(1) ,P11 (1)
I = S~ T5 '6

0~T1~10' T1S'1

CLASS 6

M = P4 (1), pa (1)
I = 4~ T5 '6

O~ TU'2

CLASS 7

M = P4(1), PS(1), P12(l)
I = 2.$ TS '-6

0,T6 ~ 1
O~ T16~1

CLASS 8

M = P4(1), P5(1)
I = O~ T5~ S

TABLE 4 List of state clas'ses for the Alternating Bit Protocol

CLASS 14

M = P2 (1), P7 (1)
I = O~ T2' 2

CLASS 11

M = P4 (1), P7 (1 )

I = O~TS' 2

CLASS 13

M = P2 (1), P7 (1), P9 (1)
I =' S.$ T2 ~ 6

0'T9~ 1
O,s T13~1

CLASS 10

M = P4 (1), PS (1 )
I = O~TS~ 2

CLASS 12

M = P2 (1), P7 (1)

I = 0~T2' 5

CLASS 15

M = P2 (1), P5 (1)
I = O~'l'2$"2

CLASS 9

M = P4 (l), PS (1), P11 (1)
I = 5~ TS ~6

0.$T12$1
0'T1S~1
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It is clear from Table 4 that only one message or acknowledgement

will be in transit at a time (places P9, PlO, Pl land P12 are, at most,

marked with one token) this assures that the time out is correctly set.

Further, no duplicate messages may be delivered (transitions T7 and TI0 alter

nate in all paths of the graph) and the net is live.

Among other communication protocols we have verified the proper

ties of, is a much more complex bus allocation protocol taken from the local

network REBUS developed at LAAS \1.4]'

4.2. RlU>oUILc.e alloc.ation mec.ha..u..6m.6

resource.

This second example shows how starvation problems in resource

allocation mechanism may be avoided by using temporal constraints.

in a shared

ee processes :The readers/writer problem represented involves

two readers and one writer. Reader processes access the resourc

mode and the writer process accesses it in an exclusive mode. The trouble

with the net represented in figure 8 is that the reader processes may act

together such that the writer process is never allowed to access the resource.

The mechanism we start from is a "readers/writer" scheme. The

corresponding net is represented in figure 8. The graph of classes for this

net (here isomorphic to the graph of markings of the non timed net) is repre

sented in figure 9.

This appears clearly in the graph figure 9 : there exists a cycle

in this graph going only through classes in which at least one reader process

is active and consequently the resource cannot be accessed by the writer.

Let us set static firing intervals for transitions t 2 and t 4 to

[1 ,2] and for transition t
6

to (2 ,4), re'l'l.ding then takes between 1 and 2 units

of time to complete and writing takes between 2 and 4 units. Further, let us

set a static firing interval of [3,GO] for transitions t 1 and t
3

, this means

that readers have to wait at least three unit of times before accessing the

Many possible methods can be used for overcoming this starvation

problem, including access priority for the writer and queing of the requests

for the resource. Here, we will use instead the (authoritative) method of

. limiting the durations of the read and update operations and the frequencies

of access to the resource by the reader processes.

I

I

,
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With these values for intervals, the TPN admits now 21 state

classes and it can be checked on the graph of classes that any cycle in the

graph contains a class from which the writer process is allowed to access the

resource ; thus starvation is avoided.

FIGURE 8 the readers/writer example

FIGURE 9 Graph of classes for the TPN represented figure 8

".
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'l'he previous examples do not give, by far, an eXhaustiv~ view
of what can be done using TPNs and the analysis teohnique introduced.

This technique is general enough so it can be used for various purposes, from

behavior analysis to performance evaluation;

We are currently investigating specific methods, based on the

graph of classes, for this last field of applications. Using the graph of

classes, and with some additional computations, questions of the following kihd

may be answered : in what states may the. system stand after a given time

elapsed since initialization or, how long may it take to reach a given state

from another.

'.



00062

CONCLUSION

The analysis technique for TPN introduced in sections 2 and 3

suffers some limitations

A first limitation comes from the fact that no necessary and sufficient

condition may be stated for the boundedness property, and this property

is required for acheiving analysis. The only thing one could do for

weakening this limitation would be developping sufficient conditions

stronger than those stated in section 3 and checking user defined requir

rements on markings together with the boundedness property, so the enume

ration would stop as early as possible if the behavior of the net is not

that expected.

- A second limitation, also typical of the usual enumerative approach for

analysing Petri Nets, is that the set of classes, even if it is bounded,

may be very large. Using information contained in a very large graph of

classes may be quite difficult, not talking about computation time or

storage problems. Here again few can be done. However, an expert in Petri

Nets will generally produce a net with a manageable number of classes

when this can be done • One could think of using alternative analysis

techniques for TPNs, such as, reduction techniques (15] or structural ana

lysis techniques (use of place or transition invariants) [16][17]
developed for Petri Nets.

For implementing the analysis technique, it is worth having a com

puter software package for enumerating the classes. We are developing,. for

carryi~9 out experiments, a prototype of such a package, written in APL lan

guage. Several months of work convinced us that it would be worth to extend

the Fortran written OGlVE/OVIDEpa]software product developed at LAAS (and

soon to be made commercial by the COmpany SYSECA,), so that it would allow also If;

analyzing Time Petri Nets. This extension is scheduled.

t.
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