Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Thèse de l'équipe MH2F

Choisir la langue : FR | EN

5documents trouvés

17062
09/03/2017

Spectroscopie diélectrique HyperFréquence des cellules biologiques soumisee à l'électroporation

A.TAMRA

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 9 Mars 2017, 164p., Président: S.YOSHIZAWA, Rapporteurs: O.FRANCAIS, P.RENAUD, Examinateurs: K.GRENIER, Directeurs de thèse: D.DUBUC, M.P.ROLS , N° 17062

Lien : https://hal.laas.fr/tel-01499406

Diffusable

Plus d'informations

Abstract

Electroporation is a physical process that consists in applying electric field pulses to transiently or permanently permeabilize the plasma membrane. This phenomenon is of great interest in the clinical field as well as in the industry because of its various applications, in particular electrochemotherapy which combines electrical pulses with the administration of a cytotoxic molecule in the treatment of tumors. The evaluation of this phenomenon is traditionally carried out using optical and biochemical methods (microscopy, flow cytometry, biochemical test). They are very effective but require the use of a wide range of fluorochromes and markers, which can be laborious and costly to implement, while being invasive to the cells. In recent years, the development of new biophysical tools for the study of electroporation has taken place, such as dielectrophoresis and impedance spectroscopy (low frequency). In addition to the ease of implementation, these methods are of interest in the study of membrane modifications of the cell. Hence the advantage of operating beyond the GHz, in the range of microwaves, for which the cytoplasmic membrane becomes transparent and the intracellular content is exposed. The extraction of the relative permittivity as a result of the electromagnetic field / biological cell interaction then reflects the cell state. This technique, microwave dielectric spectroscopy, is a relevant method for analyzing the effects of electroporation on cell viability. Moreover, it does not require any use of the exogenous molecules (non-invasive) and the measurements are directly carried out in the culture medium of the cells. Two objectives were defined during this thesis whose work is located at the interface between three scientific fields: cellular biology, microwave electronics and microtechnologies. The first objective concerns the transposition of conventional electroporation to the micrometric scale, which has shown an efficiency as efficient as the first. The second part of the work concerns the study by HighFrequency dielectric spectroscopy of cells subjected to different electrical treatments (combined or not with a cytotoxic molecule). This work presents a statistical power and shows a very good correlation (R2> 0.94) with standard techniques used in biology, which biologically validates the HF analysis method in the context of electroporation. This work also shows that microwave dielectric spectroscopy proves to be a powerful technique capable of revealing cell viability following chemical and / or electrical treatment. They open the way to 'non-invasive' analysis by hyper-frequency dielectric spectroscopy of electroporated cells in situ.

Résumé

L'électroporation est un procédé physique qui consiste à appliquer des impulsions de champ électrique pour perméabiliser de manière transitoire ou permanente la membrane plasmique. Ce phénomène est d'un grand intérêt dans le domaine clinique ainsi que dans l'industrie en raison de ses diverses applications, notamment l’électrochimiothérapie qui combine les impulsions électriques à l’administration d’une molécule cytotoxique, dans le cadre du traitement des tumeurs. L’analyse de ce phénomène est traditionnellement réalisée à l’aide des méthodes optique et biochimique (microscopie, cytométrie en flux, test biochimique). Elles sont très efficaces mais nécessitent l’utilisation d’une large gamme de fluorochromes et de marqueurs dont la mise en œuvre peut être laborieuse et coûteuse tout en ayant un caractère invasif aux cellules. Durant ces dernières années, le développement de nouveaux outils biophysiques pour l’étude de l’électroporation a pris place, tels que la diélectrophorèse et la spectroscopie d’impédance (basse fréquence). Outre une facilité de mise en œuvre, ces méthodes représentent un intérêt dans l’étude des modifications membranaires de la cellule. De là vient l’intérêt d’opérer au-delà du GHz, dans la gamme des micro-ondes, pour laquelle la membrane cytoplasmique devient transparente et le contenu intracellulaire est exposé. L’extraction de la permittivité relative suite à l’interaction champ électromagnétique/cellules biologiques reflète alors l’état cellulaire. Cette technique, la spectroscopie diélectrique hyperfréquence, se présente comme une méthode pertinente pour analyser les effets de l’électroporation sur la viabilité cellulaire. De plus, elle ne nécessite aucune utilisation des molécules exogènes (non-invasivité) et les mesures sont directement réalisées dans le milieu de culture des cellules. Deux objectifs ont été définis lors de cette thèse dont les travaux se situent à l’interface entre trois domaines scientifiques : la biologie cellulaire, l’électronique hyperfréquence et les micro-technologies. Le premier objectif concerne la transposition de l’électroporation conventionnelle à l’échelle micrométrique, qui a montré une efficacité aussi performante que la première. La deuxième partie du travail concerne l’étude par spectroscopie diélectrique HyperFréquence de cellules soumises à différents traitements électriques (combinés ou non à une molécule cytotoxique). Ces travaux présentent une puissance statistique et montrent une très bonne corrélation (R2 >0 .94) avec des techniques standards utilisées en biologie, ce qui valide ‘biologiquement’ la méthode d’analyse HF dans le contexte d’électroporation. Ces travaux montrent en outre que la spectroscopie diélectrique hyperfréquence s’avère être une technique puissante, capable de révéler la viabilité cellulaire suite à un traitement chimique et/ou électrique. Ils ouvrent la voie à l’analyse ‘non-invasive’ par spectroscopie diélectrique HyperFréquence de cellules électroporées in-situ.

Mots-Clés / Keywords
Analyse micro-onde; Electroporation; Biocapteur; Cellule unique; Microtechnologies; Perméabilisation membranaire; Spectroscopie diélectrique HyperFréquence;

139382
16355
21/09/2016

Spectroscopie diélectrique hyperfréquence de cellules uniques cancéreuses : de l’optimisation du capteur en sensibilité et répétabilité jusqu’au suivi en temps réel de stimuli chimiques

W.CHEN

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 21 Septembre 2016, 247p., Président: M.PIEL, Rapporteurs: P.FERRARI, S.RENAUD, Directeurs de thèse: K.GRENIER, D.DUBUC , N° 16355

Lien : https://hal.laas.fr/tel-01416948

Diffusable

Plus d'informations

Abstract

The measurement of biological cells is a routine step in many biological investigations. Current techniques used by biologists are mainly based on staining or fluorescent labelings, which provide very precise and effective molecular and cellular observations. Within this context, the microwave dielectric spectroscopy for cell analysis represents a new and attractive method, due to the lack of cells preparation and manipulation, without adding chemicals that could interfere with other cellular constituents. Its compatibility with the analysis of single-cells, potentially in real-time monitoring, constitute also two major assets of the analysis technique. This PhD thesis therefore focused on the optimization of a microfluidic and microwave based biosensor, which is dedicated to the dielectric spectroscopy of individual biological cells, and the development of its metrology to assess the dielectric behavior of cells subjected to chemical stimuli. After a state of the art on the current techniques available to analyze single cells, we focused on the optimization of the microwave biosensor to improve its performances in terms of sensitivity and repeatability. These optimizations dealt with the microfabrication process, the component architecture through the investigation of single cell loading efficacy as well as an electromagnetic parametric study. These developments were validated first experimentally with the measurement of polystyrene beads, which present a simplified dielectric model compared to the complexity of a biological cell, followed then by living individual cells in their culture medium. The test bench was also optimized to allow the dielectric measurement of cells over time, and especially in response to a chemical stimulus. The reaction kinetics of a single-cell subjected to saponin was recorded automatically for different cells. This work opens the door to single-cell analysis with microwave dielectric spectroscopy of complex biological processes in real-time.

Résumé

La mesure de cellules biologiques constitue une étape de routine dans de nombreuses investigations en biologie. Les techniques actuelles utilisées par les biologistes sont principalement basées sur l’utilisation marqueurs optiques de coloration ou fluorescents, qui fournissent des observations moléculaires et cellulaires très précises et efficaces. Dans ce contexte, la spectroscopie diélectrique micro-ondes pour analyse cellulaire constitue une méthode nouvelle et attrayante, en raison du manque de préparation et manipulation des cellules, sans besoin d’ajout de produits chimiques, qui pourraient interférer avec d'autres constituants cellulaires. Sa compatibilité avec l’analyse de cellules uniques, potentiellement en temps réel, constitue également deux atouts importants de la technique d’analyse. Les travaux de cette thèse ont donc porté sur l’optimisation d'un biocapteur hyperfréquence microfluidique, dédié à la spectroscopie diélectrique de cellules biologiques uniques, et au développement de sa métrologie pour accéder au comportement diélectrique de cellule soumise à des stimuli chimique. Après un état de l’art sur les techniques courantes d’analyse de cellule individuelle, nous nous sommes attachés à optimiser le biocapteur hyperfréquence pour en améliorer les performances en sensibilité et en répétabilité. Ces optimisations ont porté sur le procédé de micro-fabrication, l’architecture du composant, que ce soit au niveau mécanique vis à vis de l’efficacité de blocage d’une cellule unique, mais aussi d’un point de vue électromagnétique avec une étude paramétrique. Ces études ont été validées dans un premier temps expérimentalement par la mesure de billes de polystyrène, modèle diélectrique simplifié par rapport à la complexité d’une cellule biologique, puis sur cellules individuelles vivantes dans leur milieu de culture. Le banc de caractérisation a également été optimisé afin de permettre la mesure diélectrique de cellules au cours du temps, et notamment en réaction à un stimulus d’ordre chimique. La cinétique de réaction d’une cellule unique soumise à de la saponine a été enregistrée automatiquement pour différentes cellules. Ces travaux ouvrent ainsi la voie à l’analyse à l’échelle cellulaire par spectroscopie diélectrique micro-onde de processus biologiques complexes en temps réel.

Mots-Clés / Keywords
Cellule biologique unique; Micro-ondes; Biocapteur; Spectroscopie diélectrique; Bio-MEMS; Biologie cellulaire; Single-cell; Microwave; Biosensor; Dielectric spectroscopy; Cell biology;

137877
16277
17/05/2016

Développement d’un système hyperfréquence de caractérisation de solutions colloïdales fortement absorbantes

M.DEBURGHGRAEVE

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 17 Mai 2016, 170p., Président: T.TARIS, Rapporteurs: V.SCHMITT, D.PEYRADE, Directeurs de thèse: D.DUBUC, K.GRENIER , N° 16277

Non diffusable

Plus d'informations

Résumé

L’analyse de la stabilité de formulations est primordiale dans de multiples secteurs industriels : pharmaceutique, cosmétique, agroalimentaire… Il existe donc de nombreuses techniques permettant de caractériser la stabilité de solutions colloïdales. Les méthodes les plus communément utilisées reposent sur l’analyse par diffraction de la lumière, comme le Turbiscan, développé par la société Formulaction, qui est un instrument de référence dans ce domaine. Cependant, de par leur principe de mesure, ces techniques ne sont pas suffisamment sensibles pour l’analyse d’échantillons fortement absorbants. Les autres méthodes existantes – l’analyse par ultrasons, par rayons X… - sont quant à elles complexes, requièrent la connaissance de propriétés difficilement accessibles, voire sont insensibles de par leur principe physique aux produits à base de noir de carbone, qui constituent la majeure partie du marché des produits dits noirs. Il existe donc un besoin concernant une méthode de mesure simple et non-intrusive qui permette d’étudier la stabilité de dispersions fortement absorbantes. Nous présentons dans ce manuscrit une nouvelle méthode de caractérisation, basée sur l’interaction entre les ondes électromagnétiques hyperfréquences et la dispersion fluidique à l’étude. Dans un premier temps, une modélisation des capteurs ainsi que de l’interaction entre ondes hyperfréquences et liquide est présentée, afin de comprendre les mécanismes de fonctionnement du système développé et d’en optimiser la sensibilité. Par la suite, nous avons corroboré les résultats de modélisation par des simulations hyperfréquences démontrant la sensibilité de la technique à une variation de permittivité effective du liquide, et par extension à une variation de fraction volumique. Forts de ces résultats, l’intégration du système de mesure complet comportant quatre capteurs a été réalisée puis le fonctionnement de la technique a été validé par mesures de solutions colloïdales modèles. Enfin, le système de mesure a été testé sur diverses dispersions plus complexes, permettant ainsi de valider la capacité de la technique hyperfréquence à caractériser la stabilité des solutions colloïdales, et par extension la stabilité de solutions colloïdales fortement absorbantes.

Mots-Clés / Keywords
Caractérisation diéléctrique; Hyperfréquence; Instrumentation; Solution colloïdale;

137473
13460
20/09/2013

Biocapteurs hyperfréquences résonants pour l'analyse non-invasive de liquides biologiques

T.CHRETIENNOT

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 20 Septembre 2013, 231p., Président: T.CAMPS, Rapporteurs: B.BOCQUET, R.SAULEAU, Examinateurs: T.TARIS, Directeurs de thèse: K.GRENIER, D.DUBUC , N° 13460

Lien : http://tel.archives-ouvertes.fr/tel-00903918

Diffusable

Plus d'informations

Résumé

Nos travaux ont visé le développement de biocapteurs hyperfréquences microfluidiques pour l’analyse de fluides biologiques et notamment la mesure de glucose en solution aqueuse avec pour contexte applicatif la mesure de la glycémie humaine. Nous présentons dans un premier temps la modélisation du fonctionnement des biocapteurs développés et de l'interaction fluide/champ électrique sous-jacente afin d'en comprendre les mécanismes et d'optimiser les performances en sensibilité des dispositifs. Ces premiers résultats ont nourri la conception et fabrication de nouveaux biocapteurs hyperfréquences résonants microfluidiques. Nous avons validé expérimentalement les capacités en sensibilité et fiabilité de ces dispositifs pour la mesure de glucose à des concentrations physiologiques. Nous avons de plus démontré que l’ajout de constituants comme le chlorure de sodium ne remettait pas en cause les capacités de mesures de fluides complexes (comme le sang) de nos biocapteurs. Enfin, la dernière partie ouvre vers de nouvelles perspectives permises par les techniques hyperfréquences microfluidiques. Nous pointons ici le pouvoir sélectif de la technique rendant possible la mesure, sur un unique échantillon, de la concentration de plusieurs solutés (glucose et chlorure de sodium). Nous démontrons également que la convergence des techniques de conception et microfabrication hyperfréquence microfluidique et des propriétés des techniques de caractérisation hyperfréquence rend possible la mesure simultanée de plusieurs échantillons de liquides.

Mots-Clés / Keywords
Bio-capteur; Electro-magnetisme; Hyperfréquence; Microfluidique; Microsystèmes; Optimisation;

130614
12819
18/12/2012

Développement de biocapteurs hyperfréquences microfluidiques pour la spectroscopie diélectrique non-invasive de la cellule unique. Applications en cancérologie

T.CHEN

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 18 Décembre 2012, 181p., Président: A.CAZARRE, Rapporteurs: J.B.BEGUERET, D.FOURMY, Examinateurs: A.THIERY, Directeurs de thèse: D.DUBUC, K.GRENIER, Membre invité: M.POUPOT , N° 12819

Diffusable

129434
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/