Retour au site du LAAS-CNRS

Laboratoire d’analyse et d’architecture des systèmes

Thèse de l'équipe MH2F

Choisir la langue : FR | EN

4documents trouvés

16355
21/09/2016

Spectroscopie diélectrique hyperfréquence de cellules uniques cancéreuses : de l’optimisation du capteur en sensibilité et répétabilité jusqu’au suivi en temps réel de stimuli chimiques

W.CHEN

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 21 Septembre 2016, 247p., Président: M.PIEL, Rapporteurs: P.FERRARI, S.RENAUD, Directeurs de thèse: K.GRENIER, D.DUBUC , N° 16355

Diffusable

Plus d'informations

Abstract

The measurement of biological cells is a routine step in many biological investigations. Current techniques used by biologists are mainly based on staining or fluorescent labelings, which provide very precise and effective molecular and cellular observations. Within this context, the microwave dielectric spectroscopy for cell analysis represents a new and attractive method, due to the lack of cells preparation and manipulation, without adding chemicals that could interfere with other cellular constituents. Its compatibility with the analysis of single-cells, potentially in real-time monitoring, constitute also two major assets of the analysis technique. This PhD thesis therefore focused on the optimization of a microfluidic and microwave based biosensor, which is dedicated to the dielectric spectroscopy of individual biological cells, and the development of its metrology to assess the dielectric behavior of cells subjected to chemical stimuli. After a state of the art on the current techniques available to analyze single cells, we focused on the optimization of the microwave biosensor to improve its performances in terms of sensitivity and repeatability. These optimizations dealt with the microfabrication process, the component architecture through the investigation of single cell loading efficacy as well as an electromagnetic parametric study. These developments were validated first experimentally with the measurement of polystyrene beads, which present a simplified dielectric model compared to the complexity of a biological cell, followed then by living individual cells in their culture medium. The test bench was also optimized to allow the dielectric measurement of cells over time, and especially in response to a chemical stimulus. The reaction kinetics of a single-cell subjected to saponin was recorded automatically for different cells. This work opens the door to single-cell analysis with microwave dielectric spectroscopy of complex biological processes in real-time.

Résumé

La mesure de cellules biologiques constitue une étape de routine dans de nombreuses investigations en biologie. Les techniques actuelles utilisées par les biologistes sont principalement basées sur l’utilisation marqueurs optiques de coloration ou fluorescents, qui fournissent des observations moléculaires et cellulaires très précises et efficaces. Dans ce contexte, la spectroscopie diélectrique micro-ondes pour analyse cellulaire constitue une méthode nouvelle et attrayante, en raison du manque de préparation et manipulation des cellules, sans besoin d’ajout de produits chimiques, qui pourraient interférer avec d'autres constituants cellulaires. Sa compatibilité avec l’analyse de cellules uniques, potentiellement en temps réel, constitue également deux atouts importants de la technique d’analyse. Les travaux de cette thèse ont donc porté sur l’optimisation d'un biocapteur hyperfréquence microfluidique, dédié à la spectroscopie diélectrique de cellules biologiques uniques, et au développement de sa métrologie pour accéder au comportement diélectrique de cellule soumise à des stimuli chimique. Après un état de l’art sur les techniques courantes d’analyse de cellule individuelle, nous nous sommes attachés à optimiser le biocapteur hyperfréquence pour en améliorer les performances en sensibilité et en répétabilité. Ces optimisations ont porté sur le procédé de micro-fabrication, l’architecture du composant, que ce soit au niveau mécanique vis à vis de l’efficacité de blocage d’une cellule unique, mais aussi d’un point de vue électromagnétique avec une étude paramétrique. Ces études ont été validées dans un premier temps expérimentalement par la mesure de billes de polystyrène, modèle diélectrique simplifié par rapport à la complexité d’une cellule biologique, puis sur cellules individuelles vivantes dans leur milieu de culture. Le banc de caractérisation a également été optimisé afin de permettre la mesure diélectrique de cellules au cours du temps, et notamment en réaction à un stimulus d’ordre chimique. La cinétique de réaction d’une cellule unique soumise à de la saponine a été enregistrée automatiquement pour différentes cellules. Ces travaux ouvrent ainsi la voie à l’analyse à l’échelle cellulaire par spectroscopie diélectrique micro-onde de processus biologiques complexes en temps réel.

Mots-Clés / Keywords
Cellule biologique unique; Micro-ondes; Biocapteur; Spectroscopie diélectrique; Bio-MEMS; Biologie cellulaire; Single-cell; Microwave; Biosensor; Dielectric spectroscopy; Cell biology;

137877
16277
17/05/2016

Développement d’un système hyperfréquence de caractérisation de solutions colloïdales fortement absorbantes

M.DEBURGHGRAEVE

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 17 Mai 2016, 170p., Président: T.TARIS, Rapporteurs: V.SCHMITT, D.PEYRADE, Directeurs de thèse: D.DUBUC, K.GRENIER , N° 16277

Non diffusable

Plus d'informations

Résumé

L’analyse de la stabilité de formulations est primordiale dans de multiples secteurs industriels : pharmaceutique, cosmétique, agroalimentaire… Il existe donc de nombreuses techniques permettant de caractériser la stabilité de solutions colloïdales. Les méthodes les plus communément utilisées reposent sur l’analyse par diffraction de la lumière, comme le Turbiscan, développé par la société Formulaction, qui est un instrument de référence dans ce domaine. Cependant, de par leur principe de mesure, ces techniques ne sont pas suffisamment sensibles pour l’analyse d’échantillons fortement absorbants. Les autres méthodes existantes – l’analyse par ultrasons, par rayons X… - sont quant à elles complexes, requièrent la connaissance de propriétés difficilement accessibles, voire sont insensibles de par leur principe physique aux produits à base de noir de carbone, qui constituent la majeure partie du marché des produits dits noirs. Il existe donc un besoin concernant une méthode de mesure simple et non-intrusive qui permette d’étudier la stabilité de dispersions fortement absorbantes. Nous présentons dans ce manuscrit une nouvelle méthode de caractérisation, basée sur l’interaction entre les ondes électromagnétiques hyperfréquences et la dispersion fluidique à l’étude. Dans un premier temps, une modélisation des capteurs ainsi que de l’interaction entre ondes hyperfréquences et liquide est présentée, afin de comprendre les mécanismes de fonctionnement du système développé et d’en optimiser la sensibilité. Par la suite, nous avons corroboré les résultats de modélisation par des simulations hyperfréquences démontrant la sensibilité de la technique à une variation de permittivité effective du liquide, et par extension à une variation de fraction volumique. Forts de ces résultats, l’intégration du système de mesure complet comportant quatre capteurs a été réalisée puis le fonctionnement de la technique a été validé par mesures de solutions colloïdales modèles. Enfin, le système de mesure a été testé sur diverses dispersions plus complexes, permettant ainsi de valider la capacité de la technique hyperfréquence à caractériser la stabilité des solutions colloïdales, et par extension la stabilité de solutions colloïdales fortement absorbantes.

Mots-Clés / Keywords
Caractérisation diéléctrique; Hyperfréquence; Instrumentation; Solution colloïdale;

137473
13460
20/09/2013

Biocapteurs hyperfréquences résonants pour l'analyse non-invasive de liquides biologiques

T.CHRETIENNOT

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 20 Septembre 2013, 231p., Président: T.CAMPS, Rapporteurs: B.BOCQUET, R.SAULEAU, Examinateurs: T.TARIS, Directeurs de thèse: K.GRENIER, D.DUBUC , N° 13460

Lien : http://tel.archives-ouvertes.fr/tel-00903918

Diffusable

Plus d'informations

Résumé

Nos travaux ont visé le développement de biocapteurs hyperfréquences microfluidiques pour l’analyse de fluides biologiques et notamment la mesure de glucose en solution aqueuse avec pour contexte applicatif la mesure de la glycémie humaine. Nous présentons dans un premier temps la modélisation du fonctionnement des biocapteurs développés et de l'interaction fluide/champ électrique sous-jacente afin d'en comprendre les mécanismes et d'optimiser les performances en sensibilité des dispositifs. Ces premiers résultats ont nourri la conception et fabrication de nouveaux biocapteurs hyperfréquences résonants microfluidiques. Nous avons validé expérimentalement les capacités en sensibilité et fiabilité de ces dispositifs pour la mesure de glucose à des concentrations physiologiques. Nous avons de plus démontré que l’ajout de constituants comme le chlorure de sodium ne remettait pas en cause les capacités de mesures de fluides complexes (comme le sang) de nos biocapteurs. Enfin, la dernière partie ouvre vers de nouvelles perspectives permises par les techniques hyperfréquences microfluidiques. Nous pointons ici le pouvoir sélectif de la technique rendant possible la mesure, sur un unique échantillon, de la concentration de plusieurs solutés (glucose et chlorure de sodium). Nous démontrons également que la convergence des techniques de conception et microfabrication hyperfréquence microfluidique et des propriétés des techniques de caractérisation hyperfréquence rend possible la mesure simultanée de plusieurs échantillons de liquides.

Mots-Clés / Keywords
Bio-capteur; Electro-magnetisme; Hyperfréquence; Microfluidique; Microsystèmes; Optimisation;

130614
12819
18/12/2012

Développement de biocapteurs hyperfréquences microfluidiques pour la spectroscopie diélectrique non-invasive de la cellule unique. Applications en cancérologie

T.CHEN

MH2F

Doctorat : Université de Toulouse III - Paul Sabatier, 18 Décembre 2012, 181p., Président: A.CAZARRE, Rapporteurs: J.B.BEGUERET, D.FOURMY, Examinateurs: A.THIERY, Directeurs de thèse: D.DUBUC, K.GRENIER, Membre invité: M.POUPOT , N° 12819

Diffusable

129434
Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de dysfonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/