18009

17/11/2018

G.DAVY, E.FERON, P-L.GAROCHE, D.HENRION

ONERA, Georgia Institute, MAC

Manifestation avec acte : International Conference on Logic for Programming Artificial Intelligence and Reasoning ( LPAR ) 2018 du 16 novembre au 21 novembre 2018, Awassa (Ethiopie), Novembre 2018, 17p. , N° 18009

Lien : https://hal.archives-ouvertes.fr/hal-01681134

Diffusable

Plus d'informations

With the increasing power of computers, real-time algorithms tends to become more complex and therefore require better guarantees of safety. Among algorithms sustaining autonomous embedded systems, model predictive control (MPC) is now used to compute online trajec-tories, for example in the SpaceX rocket landing. The core components of these algorithms, such as the convex optimization function, will then have to be certified at some point. This paper focuses specifically on that problem and presents a method to formally prove a primal linear programming implementation. We explain how to write and annotate the code with Hoare triples in a way that eases their automatic proof. The proof process itself is performed with the WP-plugin of Frama-C and only relies on SMT solvers. Combined with a framework producing all together both the embedded code and its annotations, this work would permit to certify advanced autonomous functions relying on online optimization.

18346

09/11/2018

J.B.LASSERRE, V.MAGRON

MAC, L2S

Rapport LAAS N°18346, Novembre 2018, 16p.

Lien : https://hal.archives-ouvertes.fr/hal-01915976

Diffusable

Plus d'informations

We interpret some wrong results (due to numerical inaccuracies) already observed when solving SDP-relaxations for polynomial optimization on a double precision floating point SDP solver. It turns out that this behavior can be explained and justified satisfactorily by a relatively simple paradigm. In such a situation, the SDP solver (and not the user) performs some `robust optimization' without being told to do so. Instead of solving the original optimization problem with nominal criterion f, it uses a new criterion f~ which belongs to a ball B∞(f,ε) of small radius ε>0, centered at the nominal criterion f in the parameter space. In other words the resulting procedure can be viewed as a `max−min' robust optimization problem with two players (the solver which maximizes on B∞(f,ε) and the user who minimizes over the original decision variables). A mathematical rationale behind this `autonomous' behavior is described.

18339

06/11/2018

R.BOURBON, S.U.NGUEVEU , X.ROBOAM, B.SARENI, C.TURPIN, D.HERNANDEZ-TORRES

LAPLACE, ROC

Revue Scientifique : Mathematics and Computers in Simulation, Vol.158, pp.418-431, Novembre 2018, doi 10.1016/j.matcom.2018.09.022 , N° 18339

Lien : https://hal.laas.fr/hal-01904983

Diffusable

Plus d'informations

This paper aims at optimizing the energy management of a smart power plant composed of wind turbines coupled with a Lithium Ion storage device in order to fulfill a power production commitment to the utility grid. The application of this case study is typically related to islanded electric grids. Our work particularly investigates and compares two classes of energy management strategies for design purpose: a first capable of providing the global optimum of the power flow planning from a Linear Programming (LP) approach thanks to a priori knowledge of future events in the environment; a second, based on a classical control heuristic without any a priori knowledge on the future, applicable in real time. Beyond the future objectives in terms of system design (techno-economical sizing optimization), the comparison of both approaches also aims at improving the predefined heuristic from the analysis of the ideal reference provided by the global LP optimizer. In this scope, a linear power flow model of the power plant is developed in compliance with a LP solver (Cplex). A particular attention is paid to the techno-economic optimization including storage cost evaluation, commitment failure penalties and exploitation gains. Simulations and optimizations are carried out over one year in order to take variability and seasonal features of the wind potential into account.

18338

06/11/2018

M.CAPELLE, M.J.HUGUET, N.JOZEFOWIEZ, X.OLIVE

ROC, LCOMS, Thalès Alenia Space

Revue Scientifique : Networks, Vol.73, N°2, p.234-253, Novembre 2018, DOI : 10.1002/net.21859 , N° 18338

Lien : https://hal.laas.fr/hal-01898054

Diffusable

Plus d'informations

Free space optical communications are becoming a mature technology to cope with the needs of high data rate payloads for future low‐earth orbiting observation satellites. However, they are strongly impacted by clouds. In this paper, we aim to find a network of optical ground stations maximizing the percentage of data acquired by a low‐earth orbiting satellite that can be transferred to the Earth, taking into consideration cloud information. This problem can be separated in two parts and solved hierarchically: the selection of a network of optical ground stations and the assignment of downloads to visibility windows of the stations. We present theoretical and practical results regarding the complexity of the latter subproblem and propose a dynamic programming algorithm to solve it. We combine this algorithm with two methods for the enumeration of the stations, and compare them with a mixed integer linear program (MILP). Results show that even if the MILP can solve scenarios over small horizons, the hierarchical approaches outperform it in term of computation time while still achieving optimality for larger instances.

18013

01/11/2018

S.FOUCART, J.B.LASSERRE

Texas A&M University, MAC

Revue Scientifique : Journal of Approximation Theory, Vol.235, pp.74-91, Novembre 2018 , N° 18013

Lien : https://hal.laas.fr/hal-01679124

Diffusable

Plus d'informations

The long-standing problem of minimal projections is addressed from a computational point of view. Techniques to determine bounds on the projection constants of univariate polynomial spaces are presented. The upper bound, produced by a linear program, and the lower bound, produced by a semidefinite program exploiting the method of moments, are often close enough to deduce the projection constant with reasonable accuracy. The implementation of these programs makes it possible to find the projection constant of several three-dimensional spaces with five digits of accuracy, as well as the projection constants of the spaces of cubic, quartic, and quintic polynomials with four digits of accuracy. Beliefs about uniqueness and shape-preservation of minimal projections are contested along the way.

18627

01/11/2018

L.DAL COL, I.QUEINNEC, S.TARBOURIECH, L.ZACCARIAN

MAC

Revue Scientifique : IEEE Transactions on Control of Network Systems, Novembre 2018 , N° 18627

Lien : https://hal.laas.fr/hal-02080536

Diffusable

Plus d'informations

This paper addresses the local synchronization problem of identical linear multi-agent systems subject to input saturation constraints and exogenous disturbances with guaranteed region of attraction. A dynamic output feedback controller is proposed, while the information exchanged through the network is the relative input mismatch of each agent with respect to the neighbors. Using a suitable incremental sector condition we cast the synchronization of multi-agent systems with general undirected topology in terms of Bilinear Matrix Inequalities (BMIs). Based on a multi-step convex controller design procedure, the effectiveness of the theoretical results is demonstrated through numerical simulations of a fleet of quadrotors.

18584

01/11/2018

M.COCETTI, A.SERRANI, L.ZACCARIAN

Trento, OSU, MAC

Revue Scientifique : Automatica, Vol.97, pp.214-225, Novembre 2018 , N° 18584

Lien : https://hal.laas.fr/hal-01970880

Diffusable

Plus d'informations

This paper considers the linear output regulation problem for uncertain over-actuated plants. The general form of input redundancy considered in this work implies the existence of multiple control inputs and state trajectories compatible with a prescribed reference for the output. On-line selection, according to certain performance criteria, of the most suitable of these inputs-state trajectories leads to a linear output regulation problem with dynamic redundancy allocation. We present a solution that augments the well known internal model control scheme with two additional dynamical systems. The first one, named annihilator, parametrizes the inputs and the corresponding state trajectories that are invisible from the output. The second one, named redundancy allocator, dynamically selects the best solution according to a predefined performance criterion. We derive explicit solutions for the performance criterion equal to relaxed 1, 2, and ∞-norms of the plant input. This setup is a particular case of the dynamic redundancy allocation problem named dynamic input allocation. The proposed solutions can be implemented in an error feedback form and are especially suitable for optimizing sparsity, power and amplitude of the control input. Finally, structural stability, robustness and existence of a unique steady-state are proven.

18343

01/11/2018

F.FERRANTE, F.GOUAISBAUT, R.G.SANFELICE, S.TARBOURIECH

GIPSA-Lab, MAC, Arizona

Revue Scientifique : IEEE Transactions on Automatic Control, 17p., Novembre 2018 , N° 18343

Lien : https://hal.archives-ouvertes.fr/hal-01913205

Diffusable

Plus d'informations

This paper deals with the problem of estimating the state of a nonlinear time-invariant system in the presence of sporadically available measurements and external perturbations. An observer with a continuous intersample injection term is proposed. Such an intersample injection is provided by a linear dynamical system, whose state is reset to the measured output estimation error whenever a new measurement is available. The resulting system is augmented with a timer triggering the arrival of a new measurement and analyzed in a hybrid system framework. The design of the observer is performed to achieve exponential convergence with a given decay rate of the estima- tion error. Robustness with respect to external perturbations and L2-external stability from plant perturbations to a given performance output are considered. Computationally efficient algorithms based on the solution to linear matrix inequalities are proposed to design the observer. Finally, the effectiveness of the proposed methodology is shown in an example.

16426

01/11/2018

O.MOKRENKO, C.ALBEA SANCHEZ, S.LESECQ, L.ZACCARIAN

CEA-LETI, MAC

Revue Scientifique : IEEE Transactions on Control Systems Technology, Vol.26, N°6, pp.1995-2007, Novembre 2018, doi 10.1109/TCST.2017.2750999 , N° 16426

Lien : https://hal.archives-ouvertes.fr/hal-01402876

Diffusable

Plus d'informations

Energy is a key resource in Wireless Sensor Networks (WSNs), especially when sensor nodes are powered by batteries. This work investigates how to save energy of the whole WSN, thanks to control strategies, in real time and in a dynamic way. The energy management strategy is based on a Hybrid Dynamical System (HDS) approach. This choice is motivated by the hybrid inherent nature of the WSN system when energy management is considered. The hybrid nature basically comes from the combination of continuous physical processes, namely, the charge/discharge of the node batteries; while the discrete part is related to the change in the functioning modes and an Unreachable condition of the nodes. This approach provides a decentralized controller with low computational load that reduces the number of switching as compared to existing approaches. The proposed strategy is evaluated and compared in simulation on a realistic test-case. Lastly, they have been implemented on a real test-bench and the obtained results have been discussed.

18585

01/11/2018

A.BISOFFI, F.FORNI, M.DA LIO, L.ZACCARIAN

Trento, Univ of Cambridge, MAC

Revue Scientifique : Automatica, Vol.97, pp.104-114, Novembre 2018 , N° 18585

Lien : https://hal.laas.fr/hal-01970879

Diffusable

Plus d'informations

This work explores the potential of relay-based control on a one-degree-of-freedom nonlinear mechanical system, in the contexts of both sustaining and damping oscillations. For both cases we state our main results building upon a simple reset formulation (relay feedback) and providing intuitive basic equations from classical mechanics. With a more rigorous description following a hybrid system formalism, we establish then the global asymptotic stability of the corresponding (compact-set) attractors through hybrid Lyapunov tools. The aspects of sustaining and damping oscillation are seen as complementary, because they reduce to a suitable mirroring of the reset surface. Finally, we discuss two applications of our results to the case of a hopping mass and an automotive suspension.

Les informations recueillies font l’objet d’un traitement informatique destiné à des statistiques d'utilisation du formulaire de recherche dans la base de données des publications scientifiques. Les destinataires des données sont : le service de documentation du LAAS.Conformément à la loi « informatique et libertés » du 6 janvier 1978 modifiée en 2004, vous bénéficiez d’un droit d’accès et de rectification aux informations qui vous concernent, que vous pouvez exercer en vous adressant à