Publications personnelle

91documents trouvés

06735
19/07/2007

Climbing depth-bounded discrepancy search for solving hybrid flow shop problems

A.BEN HMIDA, M.J.HUGUET, P.LOPEZ, M.HAOUARI

MOGISA, La Marsa

Revue Scientifique : European Journal of Industrial Engineering, Vol.1, N°2, pp.223-243, Juillet 2007 , N° 06735

Lien : http://hal.archives-ouvertes.fr/hal-00159581

Diffusable

Plus d'informations

Abstract

This paper investigates how to adapt some discrepancy-based search methods to solve Hybrid Flow Shop (HFS) problems in which each stage consists of several identical machines operating in parallel. The objective is to determine a schedule that minimizes the makespan. We present here an adaptation of the Depth-bounded Discrepancy Search (DDS) method to obtain near-optimal solutions with makespan of high quality. This adaptation for the HFS contains no redundancy for the search tree expansion. To improve the solutions of our HFS problem, we propose a local search method, called Climbing Depth-bounded Discrepancy Search (CDDS), which is a hybridization of two existing discrepancy-based methods: DDS and Climbing Discrepancy Search. CDDS introduces an intensification process around promising solutions. These methods are tested on benchmark problems. Results show that discrepancy methods give promising results and CDDS method gives the best solutions.

110821
07356
01/05/2007

YIELDS: A yet improved limited discrepancy search for CSPs

W.KAROUI, M.J.HUGUET, P.LOPEZ, W.NAANAA

MOGISA, Monastir

Manifestation avec acte : 4th International Conference, CPAIOR 2007, Bruxelles (Belgique), 23 Mai 2007, pp.99-111 , N° 07356

Lien : http://hal.archives-ouvertes.fr/hal-00140032

Diffusable

Plus d'informations

Abstract

In this paper, we introduce a Yet ImprovEd Limited Discrepancy Search (YIELDS), a complete algorithm for solving Constraint Satisfaction Problems. As indicated in its name, YIELDS is an improved version of Limited Discrepancy Search (LDS). It integrates constraint propagation and variable order learning. The learning scheme, which is the main contribution of this paper, takes benefit from failures encountered during search in order to enhance the efficiency of variable ordering heuristic. As a result, we obtain a search which needs less discrepancies than LDS to find a solution or to state a problem is intractable. This method is then less redundant than LDS. The efficiency of YIELDS is experimentally validated, comparing it with several solving algorithms: Depth-bounded Discrepancy Search, Forward Checking, and Maintaining Arc-Consistency. Experiments carried out on randomly generated binary CSPs and real problems clearly indicate that YIELDS often outperforms the algorithms with which it is compared, especially for tractable problems.

110849
06736
20/02/2007

Apport de MDS à la résolution de CSP et applications aux problèmes de job shop et de quasi-groupes

W.KAROUI, M.J.HUGUET, P.LOPEZ, W.NAANAA

Monastir, MOGISA

Manifestation avec acte : 8ème Congrès de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF'2007), Grenoble (France), 20-23 Février 2007, 15p. , N° 06736

Diffusable

109262
06222
25/10/2006

Adaptation of discrepancy-based methods for solving hybrid flow shop problems

A.BEN HMIDA, M.J.HUGUET, P.LOPEZ, M.HAOUARI

La Marsa, MOGISA

Manifestation avec acte : International Conference on Service Systems & Service Management (ICSSSM'06), Troyes (France), 25-27 Octobre 2006, pp.1120-1125 , N° 06222

Lien : http://hal.archives-ouvertes.fr/hal-00137979

Diffusable

Plus d'informations

Abstract

This paper investigates how to adapt some discrepancy-based search methods to solve Hybrid Flow Shop (HFS) problems in which each stage consists of several identical machines operating in parallel. The objective is to determine a schedule that minimizes the makespan. We present here an adaptation of the Depth-bounded Discrepancy Search (DDS) method to obtain solutions with makespan of high quality. This adaptation for the HFS contains no redundancy for the search tree expansion. To improve the solutions of our HFS problem, we propose a local search method, called CDDS, which is a hybridization of two existing discrepancy-based methods (DDS and Climbing Discrepancy Search). CDDS introduces an intensification process around promising solutions. These methods are tested on benchmark problems. Results show that discrepancy methods give promising results.

108829
05598
26/04/2006

Solving hybrid flow shop scheduling problems by discrepancy-based methods

A.BEN HMIDA, M.HAOUARI, M.J.HUGUET, P.LOPEZ

La Marsa, MOGISA

Manifestations avec acte à diffusion limitée : 10th International Workshop on Project Management and Scheduling (PMS'2006), Poznan (Pologne), 26-28 Avril 2006, pp.168-174 , N° 05598

Diffusable

106760
05573
06/02/2006

Amélioration par apprentissage d'une méthode de recherche arborescente

W.KAROUI, M.J.HUGUET, P.LOPEZ, W.NAANAA

MOGISA, Monastir

Manifestations avec acte à diffusion limitée : 7ème Congrès de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF'06), Lille (France), 6-8 Février 2006 (Résumé) , N° 05573

Diffusable

105860
06093
01/02/2006

MDS: a learning method based on discrepancies and propagations

W.KAROUI, M.J.HUGUET, P.LOPEZ, W.NAANAA

MOGISA, Monastir

Rapport LAAS N°06093, Février 2006, 5p.

Diffusable

105904
06036
01/01/2006

Towards a minimal discrepancy search

W.KAROUI, M.J.HUGUET, P.LOPEZ, W.NAANAA

MOGISA, Monastir

Rapport LAAS N°06036, Janvier 2006, 14p.

Diffusable

105735
05619
01/11/2005

Solving hybrid flow shop problems by limited discrepancy search

A.BEN HMIDA, M.HAOUARI, M.J.HUGUET, P.LOPEZ

La Marsa, MOGISA

Rapport LAAS N°05619, Novembre 2005, 6p.

Diffusable

105045
05446
01/09/2005

Extension de mécanismes de propagation de contraintes pour l'ordonnancement

M.J.HUGUET, P.LOPEZ

MOGISA

Rapport LAAS N°05446, Septembre 2005, 25p.

Diffusable

Plus d'informations

Résumé

Cet article s'intéresse aux problèmes d'ordonnancement et à leur analyse par des techniques de propagation de contraintes. Nous proposons une extension de certaines de ces techniques de propagation. Celle-ci est basée sur les déductions temporelles obtenues en recherchant la cohérence de chemins sur le graphe de contraintes considéré comme modèle du problème d'ordonnancement. Des résultats d'expérience montrent que les extensions proposées permettent de contribuer à l'amélioration des résultats sur la borne inférieure de la durée totale d'ordonnancement.

Mots-Clés / Keywords
Ordonnancement; Contraintes;

104349
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/