Laboratoire d’Analyse et d’Architecture des Systèmes
N.AOUANI, S.SALHI, G.GARCIA, M.KSOURI
MAC, ENIT
Manifestation avec acte : 6th International Multi-Conference Systems, Signals and Design, Djerba (Tunisie), 23-26 Mars 2009, 5p. , N° 09132
Diffusable
116999G.GARCIA, S.TARBOURIECH, J.BERNUSSOU
MAC
Revue Scientifique : IEEE Transactions on Automatic Control, Vol.54, N°2, pp.364-369, Février 2009 , N° 08721
Diffusable
Plus d'informations
In this technical note, the problem of finite time stabilization of linear time-varying continuous systems is considered. Necessary and sufficient conditions, based upon the solution to some Lyapunov differential matrix equations, are proposed for particular cases of interest. From these conditions, the design of time-varying state feedback controller guaranteeing the finite time closed-loop stability is presented. Numerical experiments illustrate the potentialities of the approach.
G.VALMORBIDA, S.TARBOURIECH, G.GARCIA
MAC
Revue Scientifique : Journal Européen des Systèmes Automatisés , Vol.43, N°1-2, pp.1-24, Janvier 2009 , N° 07631
Diffusable
Plus d'informations
G.GARCIA, P.L.D.PERES, S.TARBOURIECH
MAC, Campinas
Manifestation avec acte : 47th IEEE Conference on Decision and Control (CDC 2008), Cancun (Mexique), 9-11 Décembre 2008, pp.5146-5151 , N° 08147
Diffusable
Plus d'informations
In this paper, necessary and sufficient numerical conditions for stability and for asymptotic stability of linear continuous time-varying systems are derived. For a given set of initial conditions, a tube containing all the trajectories of the system is constructed in the state space. At each instant of time, there exists an initial condition inside the set such that the resulting trajectory attains the border of the tube. Based on the above formulation, necessary and sufficient conditions for stability and for asymptotic stability are expressed through the solution of a linear differential Lyapunov equation. The conditions can deal with the stability of periodic systems as well. One of the main characteristics of the proposed necessary and sufficient conditions is that the only assumption on the dynamical matrix of the linear time-varying system is continuity. Examples from the literature illustrate the superiority of the proposed conditions when compared to other methods.
S.TARBOURIECH, G.VALMORBIDA, G.GARCIA, J.M.BIANNIC
MAC, ONERA
Manifestation avec acte : American Control Conference (ACC 2008), Seattle (USA), 11-13 Juin 2008, pp.401-406 , N° 07517
Diffusable
Plus d'informations
This paper considers linear systems subject to sensor and actuator saturations, for which a dynamic output feedback controller has been a priori designed. The effects of unmodeled dynamics appearing as additive uncertainties are studied with respect to the regional (local) stability of the closed-loop system. Constructive conditions based on matrix inequalities, or at least linear matrix inequalities (LMI) are proposed in order to minimize the influence of these unmodeled dynamics on both the estimate of the closed-loop system basin of attraction and on the performance.
G.GARCIA, S.SALHI
MAC, LACS-ENIT
Rapport LAAS N°08146, Mars 2008, 6p.
Diffusable
113339G.VALMORBIDA, S.TARBOURIECH, G.GARCIA, J.M.BIANNIC
MAC, ONERA
Rapport LAAS N°08149, Mars 2008, 8p.
Diffusable
113342Y.B.CHEIKH, J.EZZINE, G.GARCIA
ENIT, MAC
Rapport LAAS N°08140, Mars 2008, 6p.
Diffusable
Plus d'informations
S.SALHI, G.GARCIA
LACS-ENIT, MAC
Rapport LAAS N°08019, Janvier 2008, 14p.
Diffusable
112739I.QUEINNEC, S.TARBOURIECH, G.GARCIA
MAC
Rapport de Contrat : Contrat GARTEUR FM (AG15), Décembre 2007, 40p. , N° 07715
Non diffusable
112493