Laboratoire d’Analyse et d’Architecture des Systèmes
S.TARBOURIECH, G.GARCIA, J.M.GOMES DA SILVA Jr, I.QUEINNEC
MAC, UFRGS
Ouvrage (auteur) : Stability and Stabilization of Linear Systems with Saturating Actuators, N°ISBN 978-0-85729-940-6, Août 2011, 451p. , N° 11375
Non diffusable
125787S.TARBOURIECH, I.QUEINNEC, T.ALAMO, M.FIACCHINI, E.F.CAMACHO
MAC, Seville
Revue Scientifique : Automatica, Vol.47, N°7, pp.1473-1481, Juillet 2011 , N° 11326
Diffusable
124830M.FIACCHINI, S.TARBOURIECH, C.PRIEUR
MAC
Manifestation avec acte : American Control Conference (ACC 2011), San Francisco (USA), 29 Juin - 1 Juillet 2011, 7p. , N° 10652
Lien : http://hal.archives-ouvertes.fr/hal-00560880/fr/
Diffusable
Plus d'informations
The paper addresses the problem of characterizing and computing an estimation of the basin of attraction for saturated hybrid systems. Hybrid systems presenting saturation on signals involved in both the continuous-time and the discrete-time dynamics are considered. A geometrical characterization of local convergence is provided and employed to extend results proper of continuous-time and discrete-time saturated systems to the hybrid ones. A computation oriented condition of local convergence is given in form of convex constraints.
M.FIACCHINI, S.TARBOURIECH, C.PRIEUR
MAC
Manifestation avec acte : American Control Conference (ACC 2011), San Francisco (USA), 29 Juin - 1 Juillet 2011, 8p. , N° 10654
Lien : http://hal.archives-ouvertes.fr/hal-00560881/fr/
Diffusable
Plus d'informations
This paper presents a criterion to characterize control invariant polytopes for differential inclusion systems. The practice-oriented method, based on viability theory and convex analysis, can be applied to determine computational procedures to obtain families of control invariant polytopes. The criterion is based on a necessary and sufficient condition for viability to hold at any point on the boundary of a polytope.
S.TARBOURIECH, T.LOQUEN, C.PRIEUR
MAC, GIPSA-Lab
Revue Scientifique : International Journal of Robust and Nonlinear Control, Vol.21, N°10, pp.1159-1177, Mai 2011 , N° 11174
Lien : http://hal.archives-ouvertes.fr/hal-00595218/fr/
Diffusable
Plus d'informations
This paper proposes an anti-windup strategy to deal with stability and performance requirements for a class of hybrid systems, such as those including a reset controller and subject to input saturation. The computation of the anti-windup compensator aiming at ensuring both $\mathcal{L}_2$ input-to-state stability and internal stability of the closed-loop system is carried out from the solution of matrix inequalities. Depending on the way chosen to describe reset rules, the conditions for designing the anti-windup compensator are expressed through nonlinear matrix inequalities or linear matrix inequalities. Some optimization criteria in both cases are considered for the synthesis purpose: maximization of the $\mathcal{L}_2$-norm upper bound on the admissible disturbances for which the trajectories are assured to be bounded; minimization of the $\mathcal{L}_2$-gain of the disturbance to the system to-be-controlled output; and the maximization of an estimate of the domain of attraction of the origin.
M.JUNGERS, E.B.CASTELAN, S.TARBOURIECH, J.DAAFOUZ
CRAN, Vandoeuvre, UFSC, MAC
Revue Scientifique : Nonlinear Analysis: Hybrid Systems (papier invité) , Vol.5, N°2, pp.289-300, Mai 2011 , N° 10768
Diffusable
124447S.TARBOURIECH, G.GARCIA, J.M.BIANNIC
MAC, ONERA
Rapport de Contrat : Convention ONERA F/20 334/DA PPUJ, Mai 2011, 53p. , N° 11334
Non diffusable
124872J.M.BIANNIC, S.TARBOURIECH
ONERA, MAC
Rapport de Contrat : Convention ONERA F/20 334/DA PPUJ, Mars 2011, 31p. , N° 11336
Non diffusable
124884S.TARBOURIECH, F.GOUAISBAUT
MAC
Manifestation avec acte : IEEE Conference on Decision and Control (CDC 2010), Atlanta (USA), 15-17 Décembre 2010, 6p. , N° 10877
Diffusable
123897S.TARBOURIECH, C.PRIEUR, I.QUEINNEC
MAC
Revue Scientifique : Automatica, Vol.46, N°11, pp.1911-1915, Novembre 2010 , N° 10423
Diffusable
Plus d'informations
This paper addresses the problem of stability analysis for a given class of nonlinear systems resulting from the connection of a linear system with an isolated backlash operator. Constructive conditions based on LMIs to ensure closed-loop stability are proposed by using some suitable Lyapunov functionals with quadratic terms and Lure type terms, and generalized sector conditions. Additionally, the boundary of the associated set of all the admissible equilibrium points is precisely defined.