Laboratoire d’Analyse et d’Architecture des Systèmes
N.PERRIN, O.STASSE, F.LAMIRAUX, E.YOSHIDA
GEPETTO, AIST
Rapport LAAS N°10187, Mars 2010, 6p.
Lien : http://hal.archives-ouvertes.fr/hal-00455454/fr/
Diffusable
120974E.YOSHIDA, M.POIRIER, J.P.LAUMOND, O.KANOUN, F.LAMIRAUX, R.ALAMI, K.YOKOI
AIST, GEPETTO, RIS
Revue Scientifique : Autonomous Robots, Vol.28, N°1, pp.77-88, 2010 , N° 08732
Diffusable
Plus d'informations
S.DALIBARD, A.NAKHAEI SARVEDANI, F.LAMIRAUX, J.P.LAUMOND
GEPETTO
Manifestation avec acte : 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids 09), Paris (France), 7-10 Décembre 2009, pp.355-360 , N° 09789
Lien : http://hal.archives-ouvertes.fr/hal-00450897/fr/
Diffusable
120079E.YOSHIDA, M.POIRIER, J.P.LAUMOND, O.KANOUN, F.LAMIRAUX, R.ALAMI, K.YOKOI
GEPETTO, RIS, AIST
Manifestation avec acte : IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe (Japon), 12-17 Mai 2009, 6p. , N° 09139
Diffusable
117505O.KANOUN, F.LAMIRAUX, P.B.WIEBER
INRIA Rhône-Alpes, GEPETTO
Manifestation avec acte : IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe (Japon), 12-17 Mai 2009, 6p. , N° 09178
Lien : http://hal.inria.fr/inria-00390581/fr/
Diffusable
117506K.BOUYARMANE, A.ESCANDE, F.LAMIRAUX, A.KHEDDAR
LIRMM, CEA LIST, GEPETTO
Manifestation avec acte : ICRA 2009 - International Conference on Robotics and Automation, Kobe (Japon), 12-17 Mai 2009, 6p. , N° 09336
Lien : http://hal-lirmm.ccsd.cnrs.fr/lirmm-00776642
Diffusable
Plus d'informations
We present a motion planning algorithm that computes rough trajectories used by a contact-points planner as a guide to grow its search graph. We adapt collision-free motion planning algorithms to plan a path within the guide space, a submanifold of the configuration space included in the free space in which the configurations are subject to static stability constraint. We first discuss the definition of the guide space. Then we detail the different techniques and ideas involved: relevant C-space sampling for humanoid robot, task-driven projection process, static stability test based on polyhedral convex cones theory's double description method. We finally present results from our implementation of the algorithm.
J.HIMMELSTEIN, G.GINIOUX, E.FERRE, A.NAKHAEI SARVEDANI, F.LAMIRAUX, J.P.LAUMOND
Kineo, GEPETTO
Manifestation avec acte : 10th International Conference on Control, Automation, Robotics and Vision (ICARCV 2008), Hanoi (Vietnam), 17-20 Décembre 2008, 8p. , N° 08675
Diffusable
Plus d'informations
Many collision detection methods exist, each specialized for certain data types under certain constraints. In order to enable rapid development of efficient collision detection procedures, we propose an extensible software architecture that allows for cross-queries between data types, while permitting the time and memory optimizations needed for high-performance. By decomposing collision detection into well-defined algorithmic and data components, we can use the same tree-descent algorithm to execute proximity queries, regardless the data type. We validate our implementation on a path planning problem in which a vision guided humanoid represented by an OBB tree explores a dynamic environment composed of voxel maps.
A.NAKHAEI SARVEDANI, F.LAMIRAUX
GEPETTO
Manifestation avec acte : 8th IEEE International Conference on Humanoids Robots (HUMANOIDS08), Daejon (Corée), 1-3 Décembre 2008, 8p. , N° 08783
Diffusable
116746A.NAKHAEI SARVEDANI, F.LAMIRAUX
GEPETTO
Manifestation avec acte : 10th International Conference on Control, Automation, Robotics and Vision (ICARCV 2008), Hanoi (Vietnam), 17-20 Décembre 2008, 6p. , N° 08498
Diffusable
Plus d'informations
In this paper we propose a framework for motion planning in stochastic maps. Most of the recent planners are good enough to solve motion planning problems. However, they need a complete and accurate model of the environment and such an assumption may cause a collision in executing the results in a real world with its uncertainties. Considering uncertainties in the model of environment, we reformulate the path planning problem in a stochastic map and then propose a way to modify classical path planning methods in order to fit into this new framework. Our work shares ideas with previous work in this area~\cite{MisRoy06} but follows a different approach. In this framework, sensors and landmarks need to be taken into account. The core computations lie in the evaluation of the probability of collision of configurations with the map.
H.TSUKAGOSHI, E.-S.NEO, F.LAMIRAUX, K.YOKOI
AIST, GEPETTO
Manifestation avec acte : 9th SICE - System Integration Division Annual Conference, Tokyo (Japon), Décembre 2008, pp.1071-1072 , N° 08844
Diffusable
118025