Publications personnelle

245documents trouvés

07138
18/06/2008

Nonlinear optimal control via occupation measures and LMI-relaxations

J.B.LASSERRE, D.HENRION, C.PRIEUR, E.TRELAT

MAC, Université d'Orléans

Revue Scientifique : SIAM Journal on Control and Optimization, Vol.47, N°4, pp.1643-1666, Juin 2008 , N° 07138

Lien : http://hal.archives-ouvertes.fr/hal-00312011/fr/

Diffusable

Plus d'informations

Abstract

We consider the class of nonlinear optimal control problems (OCPs) with polynomial data, i.e., the differential equation, state and control constraints, and cost are all described by polynomials, and more generally for OCPs with smooth data. In addition, state constraints as well as state and/or action constraints are allowed. We provide a simple hierarchy of LMI- (linear matrix inequality)-relaxations whose optimal values form a nondecreasing sequence of lower bounds on the optimal value. Under some convexity assumptions, the sequence converges to the optimal value of the OCP. Preliminary results show that good approximations are obtained with few moments.

Mots-Clés / Keywords
Nonlinear control; Optimal control; Semidefinite programming; measures; Moments;

114032
08168
01/03/2008

Computing the real variety of an ideal. A real algebraic and symbolic-numeric algorithm

J.B.LASSERRE, M.LAURENT, P.ROSTALSKI

MAC, Kruislaan, ACL Zurich

Manifestation avec acte : ACM Symposium on Applied Computing (SAC 2008), Fortaleza (Brésil), 16-20 Mars 2008, 2p. , N° 08168

Diffusable

113455
08838
01/03/2008

Approximating integrals of multivariate exponentials: A moment approach

D.BERTSIMAS, X.VINH DOAN, J.B.LASSERRE

MAC, ORC Cambridge

Revue Scientifique : Operations Research Letters, Vol.36, N°2, pp.205-210, Mars 2008 , N° 08838

Diffusable

117952
08078
01/02/2008

Générateur d'instances difficiles pour le sac à dos multi-dimensionnels à variables 0-1

V.BOYER, D.EL BAZ, M.ELKIHEL, J.B.LASSERRE

CDA, MAC

Manifestation avec acte : 9ème Congrès de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF'08), Clermont Ferrand (France), 25-27 Février 2008, pp.33-44 , N° 08078

Diffusable

Plus d'informations

Mots-Clés / Keywords
Problème du sac à dos; Relaxation Lagrangienne; Transformée en Z;

113187
07095
19/12/2007

Maximum entropy estimation and semidefinite programming

J.B.LASSERRE

MAC

Manifestation avec acte : 46th IEEE Conference on Decision and Control, New Orleans (USA), 12-14 Décembre 2007, pp.3060-3064 , N° 07095

Diffusable

Plus d'informations

Abstract

We consider the classical problem of estimating a density on [0,1] via some maximum entropy criterion. For solving this convex optimization problem with algorithms using first-order or second-order methods, at each iteration one has to compute (or at least approximate) moments of some measure with a density on [0,1], to obtain gradient and Hessian data. We propose a numerical scheme based on semidefinite programming that avoids computing quadrature formula for this gradient and Hessian computation.

112438
06789
01/11/2007

Conditions for a real polynomial to be sum of squares

J.B.LASSERRE

MAC

Revue Scientifique : Archiv der Mathematik , Vol.89, N°5, pp.390-398, Novembre 2007 , N° 06789

Diffusable

Plus d'informations

Abstract

We provide explicit sufficient conditions for a polynomial f to be a sum of squares (s.o.s.), linear in the coefficients of f. All conditions are simple and provide an explicit description of a convex polyhedral subcone of the cone of s.o.s. polynomials of degree at most 2d. We also provide a simple condition to ensure that f is s.o.s., possibly after adding a constant.

Mots-Clés / Keywords
Sum-of-squares; Real algebraic geometry; Positive polynomials;

112797
06748
09/07/2007

Simple explicit formula for counting lattice points of polyhedra

J.B.LASSERRE, E.S.ZERON

MAC, CINVESTAV-IPN Mexico

Ouvrage (contribution) : Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 4513, Springer, N°ISBN 978-3-540-72791-0, 2007, pp.367-381 , N° 06748

Diffusable

Plus d'informations

Abstract

Given z  n and A  $m×n, we provide an explicit expression and an algorithm for evaluating the counting function h(y;z): =  { zx | x  $n;Ax=y,x e 0}. The algorithm only involves simple (but possibly numerous) calculations. In addition, we exhibit finitely many fixed convex cones of n explicitly and exclusively defined by A, such that for any y  $m, h(y;z) is obtained by a simple formula that evaluates  zx over the integral points of those cones only. At last, we also provide an alternative (and different) formula from a decomposition of the generating function into simpler rational fractions, easy to invert.

110667
05570
01/05/2007

S.O.S. approximation of nonnegative polynomials via simple high degree perturbations

J.B.LASSERRE, T.NETZER

MAC, Konstanz

Revue Scientifique : Mathematische Zeitschrift , Vol.256, N°1, pp.99-112, Mai 2007 , N° 05570

Diffusable

Plus d'informations

Abstract

We show that every real polynomial f nonnegative on [1,1] n can be approximated in the l 1-norm of coefficients, by a sequence of polynomials that are sums of squares (s.o.s). This complements the existence of s.o.s. approximations in the denseness result of Berg, Christensen and Ressel, as we provide a very simple and explicit approximation sequence. Then we show that if the moment problem holds for a basic closed semi-algebraic set with nonempty interior, then every polynomial nonnegative on K S can be approximated in a similar fashion by elements from the corresponding preordering. Finally, we show that the degree of the perturbation in the approximating sequence depends on as well as the degree and the size of coefficients of the nonnegative polynomial f, but not on the specific values of its coefficients.

110666
04428
01/01/2007

A sum of squares approximation of nonnegative polynomials

J.B.LASSERRE

MAC

Revue Scientifique : SIAM Review, Vol.49, N°4, pp.651-669, 2007 , N° 04428

Diffusable

Plus d'informations

Abstract

We show that every real nonnegative polynomial $f$ can be approximated as closely as desired (in the $l_1$-norm of its coefficient vector) by a sequence of polynomials $\{f_\epsilon\}$ that are sums of squares. The novelty is that each $f_\epsilon$ has a simple and explicit form in terms of $f$ and $\epsilon$.

Mots-Clés / Keywords
Real algebraic geometry; Positive polynomials; Sum-of-squares; Semidefinite programming;

113531
04553
01/01/2007

A new hierarchy of SDP-relaxations for polynomial programming

J.B.LASSERRE

MAC

Revue Scientifique : Pacific Journal of Optimization, Vol.3, N°2, pp.273-299, Janvier 2007 , N° 04553

Diffusable

Plus d'informations

Abstract

We consider the global minimization of a multivariate polynomial on a variety K ‚ R n. We present two new hierarchies of SDP-relaxations in the same spirit but simpler than those defined in \cite{lasserre1}, which are valid for an arbitrary variety K (not necessarily compact). In particular, (a) the sequence of optimal values converges monotonically to the global optimum and (b), every accumulation point of an associated sequence of moment sequences converges to a moment sequence of a moment-determinate probability measure, supported on the global minimizers of the original problem. Preliminary computational results are presented.

110665
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/