Publications personnelle

245documents trouvés

09228
19/05/2009

Certificates and relaxations for integer programming and the semi-group membership problem

J.B.LASSERRE, E.S.ZERON

MAC, CINVESTAV-IPN Mexico

Rapport LAAS N°09228, Mai 2009, 21p.

Lien : http://hal.archives-ouvertes.fr/hal-00382774/fr/

Diffusable

Plus d'informations

Abstract

We consider integer programming and the semi-group membership problem. We provide the following theorem of the alternative: the system Ax=b has no nonnegative integral solution x if and only if p(b) <0 for some given polynomial p whose vector of coefficients lies in a convex cone that we characterize. We also provide a hierarchy of linear programming relaxations, where the continuous case Ax=b with x real and nonnegative, describes the first relaxation in the hierarchy.

Mots-Clés / Keywords
Discrete optimization; Integer linear programming; discrete Farkas lemma;

117497
09813
21/04/2009

Linear and Integer Programming vs Linear Integration and Counting : A Duality Viewpoint

J.B.LASSERRE

MAC

Ouvrage (auteur) : Springer Series in Operations Research and Financial Engineering , Springer Series in Operations Research and Financial Engineering , Springer Verlag, 2009, N°ISBN: 978-0-387-09413-7, 21 Avril 2009, pp.1-168 , N° 09813

Non diffusable

120161
08349
01/03/2009

Convexity in semi-algebraic geometry and polynomial optimization

J.B.LASSERRE

MAC

Revue Scientifique : SIAM Journal on Optimization, Vol.19, N°4, pp.1995-1009, Mars 2009 , N° 08349

Diffusable

Plus d'informations

Abstract

We review several (and provide new) results on the theory of moments, sums of squares, and basic semialgebraic sets when convexity is present. In particular, we show that, under convexity, the hierarchy of semidefinite relaxations for polynomial optimization simplifies and has finite convergence, a highly desirable feature as convex problems are in principle easier to solve. In addition, if a basic semialgebraic set $\mathbf{K}$ is convex but its defining polynomials are not, we provide two algebraic certificates of convexity which can be checked numerically. The second is simpler and holds if a sufficient (and almost necessary) condition is satisfied; it also provides a new condition for $\mathbf{K}$ to have semidefinite representation. For this we use (and extend) some of the recent results from the author and Helton and Nie [Math. Program., to appear]. Finally, we show that, when restricting to a certain class of convex polynomials, the celebrated Jensen's inequality in convex analysis can be extended to linear functionals that are not necessarily probability measures.

117949
05334
01/01/2009

The K-moment problem with densities

J.B.LASSERRE

MAC

Revue Scientifique : Mathematical Programming, Vol.116, N°1-2, pp.321-341, Janvier 2009 , N° 05334

Diffusable

Plus d'informations

Abstract

Given a compact basic semi-algebraic set , a rational fraction , and a sequence of scalars y = (y ±), we investigate when holds for all , i.e., when y is the moment sequence of some measure fd¼, supported on K. This yields a set of (convex) linear matrix inequalities (LMI). We also use semidefinite programming to develop a converging approximation scheme to evaluate the integral + fd¼ when the moments of ¼ are known and f is a given rational fraction. Numerical expreriments are also provided. We finally provide (again LMI) conditions on the moments of two measures with support contained in K, to have for some rational fraction f.

Mots-Clés / Keywords
Problem of moments; Semidefinite programming; Relaxation;

112213
08155
01/12/2008

Nonlinear optimal control synthesis via occupation measures

D.HENRION, J.B.LASSERRE, C.SAVORGNAN

MAC

Manifestation avec acte : 47th IEEE Conference on Decision and Control (CDC 2008), Cancun (Mexique), 9-11 Décembre 2008, 16p. , N° 08155

Lien : http://hal.archives-ouvertes.fr/hal-00262309/fr/

Diffusable

Plus d'informations

Abstract

We consider nonlinear optimal control problems (OCPs) for which all problem data are polynomial. In the first part of the paper, we review how occupation measures can be used to approximate pointwise the optimal value function of a given OCP, using a hierarchy of linear matrix inequality (LMI) relaxations. In the second part, we extend the methodology to approximate the optimal value function on a given set and we use such a function to constructively and computationally derive an almost optimal control law. Numerical examples show the effectiveness of the approach.

119018
06066
03/10/2008

A semidefinite programming approach to the generalized problem of moments

J.B.LASSERRE

MAC

Revue Scientifique : Mathematical Programming , Vol.112, N°1, pp.65-92, Octobre 2008, DOI: 10.1007/s10107-006-0085-1 , N° 06066

Diffusable

Plus d'informations

Abstract

We consider the generalized problem of moments (GPM) from a computational point of view and provide a hierarchy of semidefinite programming relaxations whose sequence of optimal values converges to the optimal value of the GPM. We then investigate in detail various examples of applications in optimization, probability, financial economics and optimal control, which all can be viewed as particular instances of the GPM.

Mots-Clés / Keywords
Semidefinite programming; Relaxations; Problem of moments;

111567
06579
01/10/2008

Semidefinite characterization and computation of real radical ideals

J.B.LASSERRE, M.LAURENT, P.ROSTALSKI

MAC, Kruislaan, ACL Zurich

Revue Scientifique : Foundations of Computational Mathematics, Vol.8, N°5, pp.607-647, Octobre 2008 , N° 06579

Diffusable

117835
08094
29/08/2008

Representation of nonnegative convex polynomials

J.B.LASSERRE

MAC

Revue Scientifique : Archiv der Mathematik, Vol.91, N°2, pp.126-130, Août 2008 , N° 08094

Diffusable

Plus d'informations

Abstract

We provide a specific representation of convex polynomials nonnegative on a convex (not necessarily compact) basic closed semi-algebraic set K C Rn. Namely, they belong to a specific subset of the quadratic module generated by the concave polynomials that define K.

Mots-Clés / Keywords
Positive polynomials; Sum-of-squares; Quadratic modules; Convex sets;

114652
07090
28/08/2008

Measures with zeros in the inverse of their moment matrix

J.W.HELTON, J.B.LASSERRE, M.PUTINAR

MAC, Santa Barbara, San Diego

Revue Scientifique : Annals of Probability, Vol.36, N°4, pp.1453-1471, Août 2008 , N° 07090

Diffusable

Plus d'informations

Abstract

We investigate and discuss when the inverse of a multivariate truncated moment matrix of a measure ¼ has zeros in some prescribed entries. We describe precisely which pattern of these zeroes corresponds to independence, namely, the measure having a product structure. A more refined finding is that the key factor forcing a zero entry in this inverse matrix is a certain conditional triangularity property of the orthogonal polynomials associated with ¼.

Mots-Clés / Keywords
Moment matrix; Orthogonal polynomials;

114637
05337
28/08/2008

Computing uniform convex approximations for convex envelopes and convex hulls

R.LARAKI, J.B.LASSERRE

LEEP, MAC

Revue Scientifique : Journal of Convex Analysis, Vol.15, N°3, pp.635-654, Août 2008 , N° 05337

Lien : http://hal.archives-ouvertes.fr/hal-00243009/fr/

Diffusable

Plus d'informations

Résumé

Nous établissons une procédure numérique pour approcher uniformément par une suite de fonctions convexes., l'enveloppe convexe d'une fraction rationnelle ayant pour domaine, D, un ensemble de dimension finie supposée compacte et semi-algébrique. Calculer la valeur d'une approximation en un point donné de K=co(D) se résume à résoudre un programme semi-défini. En suite, nous caractérisons K=co(D) comme projection d'un LMI semi-infini, et en plus nous approximons K par une suite décroissante d'ensembles convexes. Tester si un point donné n'est pas dans K se résume à résoudre un nombre fini de programmes semi-définis.

Abstract

We provide a numerical procedure to compute uniform (convex) approximations {f_{r}} of the convex envelope f of a rational fraction f, on a compact semi-algebraic set D. At each point x in K=co(D), computing f_{r}(x) reduces to solving a semidefinite program. We next characterize the convex hull K=co(D) in terms of the projection of a semi-infinite LMI, and provide outer convex approximations {K_{r}}«K. Testing whether x is not in K reduces to solving finitely many semidefinite programs.

Mots-Clés / Keywords
Enveloppe convexe; Programme semi-défini; Ensemble semi-algébrique; Dualité; Convex envelope; Semi-definite program; Semi-algbraic set; Duality;

114636
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/