Publications personnelle

245documents trouvés

10037
01/10/2010

Lp-norms, Log-barriers and Cramer transform in Optimization

J.B.LASSERRE, E.S.ZERON

MAC, CINVESTAV-IPN Mexico

Revue Scientifique : Set-Valued Analysis, Vol.18, N°3-4, pp.513-530, Octobre 2010 , N° 10037

Lien : http://hal.archives-ouvertes.fr/hal-00444812/fr/

Diffusable

Plus d'informations

Abstract

We show that the Laplace approximation of a supremum by Lp-norms has interesting consequences in optimization. For instance, the logarithmic barrier functions (LBF) of a primal convex problem P and its dual appear naturally when using this simple approximation technique for the value function g of P or its Legendre-Fenchel conjugate. In addition, minimizing the LBF of the dual is just evaluating the Cramer transform of the Laplace approximation of g. Finally, this technique permits to sometimes define an explicit dual problem in cases when the Legendre-Fenchel conjugate of g cannot be derived explicitly from its definition.

124183
10918
28/09/2010

A new look at nonnegativity on closed sets

J.B.LASSERRE

MAC

Conférence invitée : Modern Trends in Optimization and Its Application Workshop I: Convex Optimization and Algebraic Geometry, Los Angeles (USA), 28 Septembre - 1 Octobre 2010 , N° 10918

Diffusion restreinte

124332
10919
14/09/2010

On the moment-sos approach in optimization

J.B.LASSERRE

MAC

Conférence invitée : Congresso Nacional de Estadistica e Inverstigacion Operativa, coruna (Espagne), 14-17 Septembre 2010 , N° 10919

Diffusion restreinte

124334
10073
01/08/2010

Certificates of convexity for basic semi-algebraic sets

J.B.LASSERRE

MAC

Revue Scientifique : Applied Mathematics Letters, Vol.23, N°8, pp.912-916, Août 2010 , N° 10073

Lien : http://hal.archives-ouvertes.fr/hal-00356714/fr/

Diffusable

120476
09662
13/07/2010

On representations of the feasible set in convex optimization

J.B.LASSERRE

MAC

Revue Scientifique : Optimization Lettrers, Vol.4, N°1, pp.1-5, Juillet 2010 , N° 09662

Lien : http://hal.archives-ouvertes.fr/hal-00430141/fr/

Diffusable

121977
10921
14/06/2010

A "joint+marginal" algorithm for polynomial optimization

J.B.LASSERRE

MAC

Conférence invitée : International Worshop on High Performance Optimization Techniques (HPOPT 2010), Tilburg (Pays Bas), 14-16 Juin 2010, 1p. (Résumé) , N° 10921

Diffusable

124338
10914
12/04/2010

A "joint+marginal" algorithm in 0/1 programming

J.B.LASSERRE

MAC

Conférence invitée : European Worshop on Mixed Integer Nonlinear Programming, Marseille (France), 12-16 Avril 2010 , N° 10914

Diffusion restreinte

124324
10186
29/03/2010

A "joint+marginal" algorithm for polynomial optimization

J.B.LASSERRE, T.PHAN THANH

MAC

Rapport LAAS N°10186, Mars 2010, 6p.

Lien : http://hal.archives-ouvertes.fr/hal-00463095/fr/

Diffusable

120962
10916
19/03/2010

A "joint+marginal" algorithm for 0-1 nonlinear programs

J.B.LASSERRE

MAC

Conférence invitée : Programmation Non Linéaire en Nombres Entiers; 23èmes Journée JFRO, Paris (France), 19 Mars 2010, 1p. (Résumé) , N° 10916

Diffusable

124328
09315
01/03/2010

A "joint+marginal" approach to parametric polynomial optimization

J.B.LASSERRE

MAC

Revue Scientifique : SIAM Journal on Optimization, Vol.20, N°4, pp.1995-2022, Mars 2010 , N° 09315

Lien : http://hal.archives-ouvertes.fr/hal-00384400/fr/

Diffusable

Plus d'informations

Abstract

Given a compact parameter set $Y\subset R^p$, we consider polynomial optimization problems $(P_y$) on $R^n$ whose description depends on the parameter $y\inY$. We assume that one can compute all moments of some probability measure $\varphi$ on $Y$, absolutely continuous with respect to the Lebesgue measure (e.g. $Y$ is a box or a simplex and $\varphi$ is uniformly distributed). We then provide a hierarchy of semidefinite relaxations whose associated sequence of optimal solutions converges to the moment vector of a probability measure that encodes all information about all global optimal solutions $x^*(y)$ of $P_y$. In particular, one may approximate as closely as desired any polynomial functional of the optimal solutions, like e.g. their $\varphi$-mean. In addition, using this knowledge on moments, the measurable function $y\mapsto x^*_k(y)$ of the $k$-th coordinate of optimal solutions, can be estimated, e.g. by maximum entropy methods. Also, for a boolean variable $x_k$, one may approximate as closely as desired its persistency $\varphi(\{y:x^*_k(y)=1\})$, i.e. the probability that in an optimal solution $x^*(y)$, the coordinate $x^*_k(y)$ takes the value $1$. At last but not least, from an optimal solution of the dual semidefinite relaxations, one provides a sequence of polynomial (resp. piecewise polynomial) lower approximations with $L_1(\varphi)$ (resp. almost uniform) convergence to the optimal value function.

122325
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/