Publications personnelle

245documents trouvés

10492
01/07/2011

A new look at nonnegativity on closed sets and polynomial optimization

J.B.LASSERRE

MAC

Revue Scientifique : SIAM Journal on Optimization, Vol.21, N°3, pp.864-885, Juillet 2011 , N° 10492

Lien : http://hal.archives-ouvertes.fr/hal-00512560/fr/

Diffusable

Plus d'informations

Abstract

We first show that a continuous function f is nonnegative on a closed set $K\subseteq R^n$ if and only if (countably many) moment matrices of some signed measure $d\nu =fd\mu$ with support equal to K, are all positive semidefinite (if $K$ is compact $\mu$ is an arbitrary finite Borel measure with support equal to K. In particular, we obtain a convergent explicit hierarchy of semidefinite (outer) approximations with {\it no} lifting, of the cone of nonnegative polynomials of degree at most $d$. Wen used in polynomial optimization on certain simple closed sets $\K$ (like e.g., the whole space $\R^n$, the positive orthant, a box, a simplex, or the vertices of the hypercube), it provides a nonincreasing sequence of upper bounds which converges to the global minimum by solving a hierarchy of semidefinite programs with only one variable. This convergent sequence of upper bounds complements the convergent sequence of lower bounds obtained by solving a hierarchy of semidefinite relaxations.

126924
10920
01/07/2011

A new look at nonnegativity on closed sets

J.B.LASSERRE

MAC

Revue Scientifique : SIAM Journal on Optimization, Vol.21, N°3, pp.864-885, Juillet 2011 , N° 10920

Diffusable

126364
11102
04/03/2011

The K-moment problem for continuous linear functionals

J.B.LASSERRE

MAC

Rapport LAAS N°11102, Mars 2011, 15p.

Lien : http://hal.archives-ouvertes.fr/hal-00570653/fr/

Diffusable

Plus d'informations

Abstract

Given a closed (and non necessarily compact) basic semi-algebraic set $K\subseteq R^n$, we solve the $K$-moment problem for continuous linear functionals. Namely, we introduce a weighted $\ell_1$-norm $\ell_w$ on $R[x]$, and show that the $\ell_w$-closures of the preordering $P$ and quadratic module $Q$ (associated with the generators of $K$) is the cone $psd(K)$ of polynomials nonnegative on $K$. We also prove that $P$ an $Q$ solve the $K$-moment problem for $\ell_w$-continuous linear functionals and completely characterize those $\ell_w$-continuous linear functionals positive on $P$ and $Q$ (hence on $psd(K)$). When $K$ has a nonempty interior we also provide an explicit form of the $\ell_w$-projection $g^w_f$ of a given polynomial $f$ on the (degree-truncated) preordering or quadratic module. Remarkably, the support of $g^w_f$ is very sparse and does not depend on $K$! This enables us to provide an explicit Positivstellensatz on $K$. At last but not least, we provide a simple characterization of polynomials positive on $K$, which is crucial in proving the above results.

124113
11100
01/03/2011

Minimizing the sum of many rational functions

F.BUGARIN, D.HENRION, J.B.LASSERRE

CROMeP , MAC

Rapport LAAS N°11100, Mars 2011, 16p.

Lien : http://hal.archives-ouvertes.fr/hal-00569067/fr/

Diffusable

Plus d'informations

Abstract

We consider the problem of globally minimizing the sum of many rational functions over a given compact semialgebraic set. The number of terms can be large (10 to 100), the degree of each term should be small (up to 10), and the number of variables can be large (10 to 100) provided some kind of sparsity is present. We describe a formulation of the rational optimization problem as a generalized moment problem and its hierarchy of convex semidefinite relaxations. Under some conditions we prove that the sequence of optimal values converges to the globally optimal value. We show how public-domain software can be used to model and solve such problems.

124093
10796
10/01/2011

New approximations for the cone of copositive matrices and its dual

J.B.LASSERRE

MAC

Rapport LAAS N°10796, Janvier 2011, 8p.

Lien : http://hal.archives-ouvertes.fr/hal-00545755/fr/

Diffusable

Plus d'informations

Abstract

We provide convergent hierarchies for the cone C of copositive matrices and its dual, the cone of completely positive matrices. In both cases the corresponding hierarchy consists of nested spectrahedra and provide outer (resp. inner) approximations for C (resp. for its dual), thus complementing previous inner (resp. outer) approximations for C (for the dual). In particular, both inner and outer approximations have a very simple interpretation. Finally, extension to K-copositivity and K-complete positivity for a closed convex cone K, is straightforward.

123477
10794
07/01/2011

Best $\ell_1$-approximation of nonnegative polynomials by sums of squares

J.B.LASSERRE

MAC

Rapport LAAS N°10794, Janvier 2011, 4p.

Lien : http://hal.archives-ouvertes.fr/hal-00546660/fr/

Diffusable

Plus d'informations

Abstract

Given a nonnegative polynomial f, we provide an explicit expression for its best $\ell_1$-norm approximation by a sum of squares of given degree.

123466
10915
10/12/2010

The "joint+marginal" approach in optimization

J.B.LASSERRE

MAC

Conférence invitée : International Conference on Optimization: techniques and Application (ICOTA8), Shanghai (Chine), 10-13 Décembre 2010, 2p. (Résumé) , N° 10915

Diffusable

124326
10917
01/12/2010

A "joint+marginal" algorithm in 0/1 programming

J.B.LASSERRE

MAC

Conférence invitée : Exploratory Workshop on Non-Linear Integer Programming, Séville (Espagne), 1-3 Décembre 2010 , N° 10917

Diffusion restreinte

124330
10899
01/12/2010

Positivity and optimization for semi-algebraic functions

J.B.LASSERRE, M.PUTINAR

MAC, Santa Barbara

Revue Scientifique : SIAM Journal on Optimization, Vol.20, N°6, pp.3364-3383, Décembre 2010 , N° 10899

Non diffusable

124185
10920
25/10/2010

A new look at nonnegativity on closed sets

J.B.LASSERRE

MAC

Conférence invitée : Colloque JBHU 2010, Bayonne (France), 15-17 Octobre 2010 , N° 10920

Diffusable

124336
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/