Publications personnelle

245documents trouvés

12238
01/01/2012

Handbook on Semidefinite, Conic and Polynomial Optimization

J.B.LASSERRE, F.M.ANJOS

MAC, HEC Montréal

Ouvrage (éditeur) : Handbook on Semidefinite, Conic and Polynomial Optimization, Miguel F. Anjos and Jean B. Lasserre (Editors). International Series in Operations Research & Management Science Volume 166, Springer Verlag, Berlin, 2012 , N°ISBN 978-1-4614-0768-3, Janvier 2012, 957p. , N° 12238

Non disponible

Plus d'informations

Abstract

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike.

127222
12782
01/01/2012

Positivity and optimization: beyond polynomials

J.B.LASSERRE, M.PUTINAR

MAC, Santa Barbara

Ouvrage (contribution) : Handbook on Semidefinite, Conic and Polynomial Optimization, Miguel F. Anjos and Jean B. Lasserre (Editors). International Series in Operations Research & Management Science Volume 166, 957p, Janvier 2012, pp.407-436 , N° 12782

Diffusable

129095
12780
01/01/2012

Introduction to semidefinite, conic and polynomial optimization

F.M.ANJOS, J.B.LASSERRE

HEC Montréal, MAC

Ouvrage (contribution) : Handbook on Semidefinite, Conic and Polynomial Optimization, Miguel F. Anjos and Jean B. Lasserre (Editors). International Series in Operations Research & Management Science Volume 166, 957p., Janvier 2012, pp.1-22 , N° 12780

Diffusable

129091
12781
01/01/2012

A "joint+marginal" approach in optimization

J.B.LASSERRE

MAC

Ouvrage (contribution) : Handbook on Semidefinite, Conic and Polynomial Optimization, Miguel F. Anjos and Jean B. Lasserre (Editors). International Series in Operations Research & Management Science Volume 166, 957p, Janvier 2012, pp.271-296 , N° 12781

Diffusable

129093
11140
12/12/2011

Inverse polynomial optimization

J.B.LASSERRE

MAC

Manifestation avec acte : IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011), Orlando (USA), 12-15 Décembre 2011, pp.2794-2799 , N° 11140

Lien : http://hal.archives-ouvertes.fr/hal-00577168/fr/

Diffusable

126936
11595
22/11/2011

Level sets and non Gaussian integrals of positively homogeneous functions

J.B.LASSERRE

MAC

Rapport LAAS N°11595, Novembre 2011, 28p.

Lien : http://hal.archives-ouvertes.fr/hal-00637049/fr/

Diffusable

Plus d'informations

Abstract

We investigate various properties of the sublevel set $\{x \,:\,g(x)\leq 1\}$ and the integration of $h$ on this sublevel set when $g$ and $h$are positively homogeneous functions. For instance, the latter integral reduces to integrating $h\exp(-g)$ on the whole space $R^n$ (a non Gaussian integral) and when $g$ is a polynomial, then the volume of the sublevel set is a convex function of the coefficients of $g$. In fact, whenever $h$ is nonnegative, the functional $\int \phi(g(x))h(x)dx$ is a convex function of $g$ for a large class of functions $\phi:R_+\to R$. We also provide a numerical approximation scheme to compute the volume or integrate $h$ (or, equivalently to approximate the associated non Gaussian integral). We also show that finding the sublevel set $\{x \,:\,g(x)\leq 1\}$ of minimum volume that contains some given subset $K$ is a (hard) convex optimization problem for which we also propose two convergent numerical schemes. Finally, we provide a Gaussian-like property of non Gaussian integrals for homogeneous polynomials that are sums of squares and critical points of a specific function.

125758
10482
01/11/2011

On Convex optimization without convex representation

J.B.LASSERRE

MAC

Revue Scientifique : Optimization Letters, Vol.5, N°4, pp.549-556, Novembre 2011 , N° 10482

Lien : http://hal.archives-ouvertes.fr/hal-00495396/fr/

Diffusable

Plus d'informations

Abstract

We consider the convex optimization problem P: min { f(x): x in K} where "f" is convex continuously differentiable, and K is a compact convex set in Rn with representation {x: g_j(x) >=0, j=1,;;,m} for some continuously differentiable functions (g_j). We discuss the case where the g_j's are not all concave (in contrast with convex programming where they all are). In particular, even if the g_j's are not concave, we consider the log-barrier function phi_\mu with parameter \mu, associated with P, usually defined for concave functions (g_j). We then show that any limit point of any sequence (x_\mu) of stationary points of phi_\mu, \mu ->0, is a Karush-Kuhn-Tucker point of problem P and a global minimizer of f on K.

126363
10519
01/09/2011

Min-max and robust polynomial optimization

J.B.LASSERRE

MAC

Revue Scientifique : Journal of Global Optimization, Vol.51, N°1, pp.1-10, Septembre 2011 , N° 10519

Diffusable

126361
10676
01/09/2011

Bounding the support of a measure from its marginal moments

J.B.LASSERRE

MAC

Revue Scientifique : Proceedings of the American Mathematical Society, Vol.139, N°9, pp.3375-3382, Septembre 2011 , N° 10676

Lien : http://hal.archives-ouvertes.fr/hal-00530932/fr/

Diffusable

Plus d'informations

Abstract

Given all moments of the marginals of a measure on Rn, one provides (a) explicit bounds on its support and (b), a numerical scheme to compute the smallest box that contains the support. It consists of solving a hierarchy of generalized eigenvalue problems associated with some Hankel matrices.

126362
10185
28/08/2011

Moment and SDP relaxation techniques for smooth approximations of nonlinear differential equations

M.MEVISSEN, J.B.LASSERRE, D.HENRION

TI Tech, MAC

Manifestation avec acte : World IFAC Congress (IFAC 2011), Milan (Italie), 28 Août - 2 Septembre 2011, pp.10887-10892 , N° 10185

Lien : http://hal.archives-ouvertes.fr/hal-00462301/fr/

Diffusable

125409
Pour recevoir une copie des documents, contacter doc@laas.fr en mentionnant le n° de rapport LAAS et votre adresse postale. Signalez tout problème de fonctionnement à sysadmin@laas.fr. http://www.laas.fr/pulman/pulman-isens/web/app.php/