Laboratoire d’Analyse et d’Architecture des Systèmes
J.DARLAY, N.BRAUNER, J.MONCEL
G-SCOP, MOGISA
Revue Scientifique : Discrete Applied Mathematics, Vol.160, N°16-17, pp.2389-2396, Novembre 2012 , N° 11401
Diffusable
128110M.BOUZNIF, J.MONCEL, M.PREISSMANN
G-SCOP, MOGISA
Revue Scientifique : Discrete Mathematics, Vol.312, N°17, pp.2707-2719, Septembre 2012 , N° 11546
Diffusable
128108J.MONCEL, G.FINKE, V.JOST
MOGISA, G-SCOP, LIX
Rapport LAAS N°11844, Avril 2012, 6p.
Lien : http://hal.archives-ouvertes.fr/hal-00647789
Diffusable
Plus d'informations
The purpose of this note is two-fold. First, it answers an open prob- lem about a single-machine scheduling problem with exponential position-dependent processing times de ned in [V. S. Gordon, C. N. Potts, V. A.Strusevich, J. D. Whitehead, Single machine scheduling models with deterioration and learning: Handling precedence constraints via priority generation, Journal of Scheduling 11 (2008), 357{370]. In this problem, the processing time of job i when scheduled in rank r is equal to p(i; r) = pir-1,with a positive constant. Gordon et al show in the above-mentioned paper with priority-generating techniques that the problem of minimizing the total ow-time on one machine admits an O(n log n) algorithm when 2]0; 1[[[2;+1[, and leave the case 2 [1; 2[ open. We show that the problem admits an O(n log n) algorithm also for 2 [1; 2[. The second purpose of this note is to provide a simple and general insight on why and when position-dependent scheduling problems on one machine can be solved in time O(n log n).
S.GRAVIER, M.KOVSE, M.MOLLARD, J.MONCEL, A.PARREAU
UJF, Univ. of Maribor, MOGISA
Rapport LAAS N°11400, Juillet 2011, 8p.
Lien : http://hal.archives-ouvertes.fr/hal-00656467/fr/
Diffusable
Plus d'informations
In this paper we study identifying codes, locating-dominating codes, and total-dominating codes in Sierpinski graphs. We compute the minimum size of such codes in Sierpinski graphs
Y.BEN HAIM, S.GRAVIER, A.LOBSTEIN, J.MONCEL
IBM Israel, UJF, Institut Telecom, MOGISA
Revue Scientifique : Electronic Journal of Combinatorics, Vol.18, N°1, 18p., Mai 2011 , N° 11393
Diffusable
125018