Laboratoire d’Analyse et d’Architecture des Systèmes
F.FICHERA, C.PRIEUR, S.TARBOURIECH, L.ZACCARIAN
MAC, GIPSA-Lab
Manifestation avec acte : IEEE Conference on Decision and Control ( CDC ) 2012 du 10 décembre au 13 décembre 2012, Maui (USA), Décembre 2012, 6p. , N° 12538
Lien : http://hal.archives-ouvertes.fr/hal-00734470
Diffusable
Plus d'informations
In this paper, a hybrid controller design for a continuous-time linear time-invariant (LTI) plant is presented. The idea is to simultaneously design the flow and jump maps with the respective sets of the controller, guaranteeing H∞ specifications and decay rate of the plant state of the hybrid closed-loop system. A convex LMI-based design procedure is proposed, generalizing the results in [22].
F.FICHERA, C.PRIEUR, S.TARBOURIECH, L.ZACCARIAN
MAC, GIPSA-Lab
Manifestation avec acte : American Control Conference (ACC 2012), Montréal (Canda), 27-29 Juin 2012, pp.3192-3197 , N° 11558
Lien : http://hal.archives-ouvertes.fr/hal-00734467
Diffusable
Plus d'informations
In this paper, we extend the state feedback results of Prieur et al. (NOLCOS 2010) to the linear output feedback case, when the plant state is not available and is estimated via a Luenberger observer. Two techniques, based on different reset maps and flow and jump sets and guaranteeing global practical asymptotic stability of the origin of the closed-loop system, are proposed. The effectiveness of the solutions is illustrated on a simulation example where we show suitable reduction of the output overshoot.
F.FICHERA, C.PRIEUR, S.TARBOURIECH, L.ZACCARIAN
MAC, GIPSA-Lab
Manifestation avec acte : IFAC Conference on Analysis and Design of Hybrid Systems (ADHS'12), Eindhoven (Pays Bas), 6-8 Juin 2012, 6p. , N° 12225
Lien : http://hal.archives-ouvertes.fr/hal-00734468
Diffusable
Plus d'informations
In this paper, we extend some results of Prieur et al. (NOLCOS 2010) by adding a dwell- time logic. The idea is to augment a pre-existing (not necessarily stabilizing) continuous-time controller by resetting its state in suitable regions when flow conditions, based on suitable Lyapunov-like functions and a dwell-time logic, are not satisfied. The additional flexibility due to the dwell time allows us to establish global exponential stability of the origin and guarantees some robustness properties. Moreover the solutions of the corresponding hybrid closed-loop systems can be made arbitrarily close to the ones in Prieur et al. (NOLCOS 2010) and therefore the optimal techniques for the maximization of the decay rate or for the overshoot reduction hold.